| /* Definitions of target machine for GNU compiler, for IBM RS/6000. |
| Copyright (C) 1992-2022 Free Software Foundation, Inc. |
| Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu) |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it |
| under the terms of the GNU General Public License as published |
| by the Free Software Foundation; either version 3, or (at your |
| option) any later version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
| License for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* Note that some other tm.h files include this one and then override |
| many of the definitions. */ |
| |
| #ifndef RS6000_OPTS_H |
| #include "config/rs6000/rs6000-opts.h" |
| #endif |
| |
| /* 128-bit floating point precision values. */ |
| #ifndef RS6000_MODES_H |
| #include "config/rs6000/rs6000-modes.h" |
| #endif |
| |
| /* Definitions for the object file format. These are set at |
| compile-time. */ |
| |
| #define OBJECT_XCOFF 1 |
| #define OBJECT_ELF 2 |
| #define OBJECT_MACHO 4 |
| |
| #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF) |
| #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF) |
| #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO) |
| |
| #ifndef TARGET_AIX |
| #define TARGET_AIX 0 |
| #endif |
| |
| #ifndef TARGET_AIX_OS |
| #define TARGET_AIX_OS 0 |
| #endif |
| |
| /* Turn off TOC support if pc-relative addressing is used. */ |
| #define TARGET_TOC (TARGET_HAS_TOC && !TARGET_PCREL) |
| |
| /* On 32-bit systems without a TOC or pc-relative addressing, we need to use |
| ADDIS/ADDI to load up the address of a symbol. */ |
| #define TARGET_NO_TOC_OR_PCREL (!TARGET_HAS_TOC && !TARGET_PCREL) |
| |
| /* Control whether function entry points use a "dot" symbol when |
| ABI_AIX. */ |
| #define DOT_SYMBOLS 1 |
| |
| /* Default string to use for cpu if not specified. */ |
| #ifndef TARGET_CPU_DEFAULT |
| #define TARGET_CPU_DEFAULT ((char *)0) |
| #endif |
| |
| /* If configured for PPC405, support PPC405CR Erratum77. */ |
| #ifdef CONFIG_PPC405CR |
| #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405) |
| #else |
| #define PPC405_ERRATUM77 0 |
| #endif |
| |
| #ifndef SUBTARGET_DRIVER_SELF_SPECS |
| # define SUBTARGET_DRIVER_SELF_SPECS "" |
| #endif |
| |
| /* Only for use in the testsuite: -mdejagnu-cpu=<value> filters out all |
| -mcpu= as well as -mtune= options then simply adds -mcpu=<value>, |
| while -mdejagnu-tune=<value> filters out all -mtune= options then |
| simply adds -mtune=<value>. |
| With older versions of Dejagnu the command line arguments you set in |
| RUNTESTFLAGS override those set in the testcases; with these options, |
| the testcase will always win. */ |
| #define DRIVER_SELF_SPECS \ |
| "%{mdejagnu-cpu=*: %<mcpu=* %<mtune=* -mcpu=%*}", \ |
| "%{mdejagnu-tune=*: %<mtune=* -mtune=%*}", \ |
| "%{mdejagnu-*: %<mdejagnu-*}", \ |
| SUBTARGET_DRIVER_SELF_SPECS |
| |
| #if CHECKING_P |
| #define ASM_OPT_ANY "" |
| #else |
| #define ASM_OPT_ANY " -many" |
| #endif |
| |
| /* Common ASM definitions used by ASM_SPEC among the various targets for |
| handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.cc to |
| provide the default assembler options if the user uses -mcpu=native, so if |
| you make changes here, make them also there. PR63177: Do not pass -mpower8 |
| to the assembler if -mpower9-vector was also used. */ |
| #define ASM_CPU_SPEC \ |
| "%{mcpu=native: %(asm_cpu_native); \ |
| mcpu=power10: -mpower10; \ |
| mcpu=power9: -mpower9; \ |
| mcpu=power8|mcpu=powerpc64le: %{mpower9-vector: -mpower9;: -mpower8}; \ |
| mcpu=power7: -mpower7; \ |
| mcpu=power6x: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \ |
| mcpu=power6: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \ |
| mcpu=power5+: -mpower5; \ |
| mcpu=power5: -mpower5; \ |
| mcpu=power4: -mpower4; \ |
| mcpu=power3: -mppc64; \ |
| mcpu=powerpc: -mppc; \ |
| mcpu=powerpc64: -mppc64; \ |
| mcpu=a2: -ma2; \ |
| mcpu=cell: -mcell; \ |
| mcpu=rs64: -mppc64; \ |
| mcpu=401: -mppc; \ |
| mcpu=403: -m403; \ |
| mcpu=405: -m405; \ |
| mcpu=405fp: -m405; \ |
| mcpu=440: -m440; \ |
| mcpu=440fp: -m440; \ |
| mcpu=464: -m440; \ |
| mcpu=464fp: -m440; \ |
| mcpu=476: -m476; \ |
| mcpu=476fp: -m476; \ |
| mcpu=505: -mppc; \ |
| mcpu=601: -m601; \ |
| mcpu=602: -mppc; \ |
| mcpu=603: -mppc; \ |
| mcpu=603e: -mppc; \ |
| mcpu=ec603e: -mppc; \ |
| mcpu=604: -mppc; \ |
| mcpu=604e: -mppc; \ |
| mcpu=620: -mppc64; \ |
| mcpu=630: -mppc64; \ |
| mcpu=740: -mppc; \ |
| mcpu=750: -mppc; \ |
| mcpu=G3: -mppc; \ |
| mcpu=7400: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \ |
| mcpu=7450: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \ |
| mcpu=G4: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \ |
| mcpu=801: -mppc; \ |
| mcpu=821: -mppc; \ |
| mcpu=823: -mppc; \ |
| mcpu=860: -mppc; \ |
| mcpu=970: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \ |
| mcpu=G5: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \ |
| mcpu=8540: -me500; \ |
| mcpu=8548: -me500; \ |
| mcpu=e300c2: -me300; \ |
| mcpu=e300c3: -me300; \ |
| mcpu=e500mc: -me500mc; \ |
| mcpu=e500mc64: -me500mc64; \ |
| mcpu=e5500: -me5500; \ |
| mcpu=e6500: -me6500; \ |
| mcpu=titan: -mtitan; \ |
| !mcpu*: %{mpower9-vector: -mpower9; \ |
| mpower8-vector|mcrypto|mdirect-move|mhtm: -mpower8; \ |
| mvsx: -mpower7; \ |
| mpowerpc64: -mppc64;: %(asm_default)}; \ |
| :%eMissing -mcpu option in ASM_CPU_SPEC?\n} \ |
| %{mvsx: -mvsx -maltivec; maltivec: -maltivec}" \ |
| ASM_OPT_ANY |
| |
| #define CPP_DEFAULT_SPEC "" |
| |
| #define ASM_DEFAULT_SPEC "" |
| #define ASM_DEFAULT_EXTRA "" |
| |
| /* This macro defines names of additional specifications to put in the specs |
| that can be used in various specifications like CC1_SPEC. Its definition |
| is an initializer with a subgrouping for each command option. |
| |
| Each subgrouping contains a string constant, that defines the |
| specification name, and a string constant that used by the GCC driver |
| program. |
| |
| Do not define this macro if it does not need to do anything. */ |
| |
| #define SUBTARGET_EXTRA_SPECS |
| |
| #define EXTRA_SPECS \ |
| { "cpp_default", CPP_DEFAULT_SPEC }, \ |
| { "asm_cpu", ASM_CPU_SPEC }, \ |
| { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \ |
| { "asm_default", ASM_DEFAULT_SPEC ASM_DEFAULT_EXTRA }, \ |
| { "cc1_cpu", CC1_CPU_SPEC }, \ |
| SUBTARGET_EXTRA_SPECS |
| |
| /* -mcpu=native handling only makes sense with compiler running on |
| an PowerPC chip. If changing this condition, also change |
| the condition in driver-rs6000.cc. */ |
| #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX) |
| /* In driver-rs6000.cc. */ |
| extern const char *host_detect_local_cpu (int argc, const char **argv); |
| #define EXTRA_SPEC_FUNCTIONS \ |
| { "local_cpu_detect", host_detect_local_cpu }, |
| #define HAVE_LOCAL_CPU_DETECT |
| #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)" |
| |
| #else |
| #define ASM_CPU_NATIVE_SPEC "%(asm_default)" |
| #endif |
| |
| #ifndef CC1_CPU_SPEC |
| #ifdef HAVE_LOCAL_CPU_DETECT |
| #define CC1_CPU_SPEC \ |
| "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \ |
| %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}" |
| #else |
| #define CC1_CPU_SPEC "" |
| #endif |
| #endif |
| |
| /* Architecture type. */ |
| |
| /* Define TARGET_MFCRF if the target assembler does not support the |
| optional field operand for mfcr. */ |
| |
| #ifndef HAVE_AS_MFCRF |
| #undef TARGET_MFCRF |
| #define TARGET_MFCRF 0 |
| #endif |
| |
| #ifndef TARGET_SECURE_PLT |
| #define TARGET_SECURE_PLT 0 |
| #endif |
| |
| #ifndef TARGET_CMODEL |
| #define TARGET_CMODEL CMODEL_SMALL |
| #endif |
| |
| #define TARGET_32BIT (! TARGET_64BIT) |
| |
| #ifndef HAVE_AS_TLS |
| #define HAVE_AS_TLS 0 |
| #endif |
| |
| #ifndef HAVE_AS_PLTSEQ |
| #define HAVE_AS_PLTSEQ 0 |
| #endif |
| |
| #ifndef TARGET_PLTSEQ |
| #define TARGET_PLTSEQ 0 |
| #endif |
| |
| #ifndef TARGET_LINK_STACK |
| #define TARGET_LINK_STACK 0 |
| #endif |
| |
| #ifndef SET_TARGET_LINK_STACK |
| #define SET_TARGET_LINK_STACK(X) do { } while (0) |
| #endif |
| |
| #ifndef TARGET_FLOAT128_ENABLE_TYPE |
| #define TARGET_FLOAT128_ENABLE_TYPE 0 |
| #endif |
| |
| /* Return 1 for a symbol ref for a thread-local storage symbol. */ |
| #define RS6000_SYMBOL_REF_TLS_P(RTX) \ |
| (SYMBOL_REF_P (RTX) && SYMBOL_REF_TLS_MODEL (RTX) != 0) |
| |
| #ifdef IN_LIBGCC2 |
| /* For libgcc2 we make sure this is a compile time constant */ |
| #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__) |
| #undef TARGET_POWERPC64 |
| #define TARGET_POWERPC64 1 |
| #else |
| #undef TARGET_POWERPC64 |
| #define TARGET_POWERPC64 0 |
| #endif |
| #else |
| /* The option machinery will define this. */ |
| #endif |
| |
| #define TARGET_DEFAULT (OPTION_MASK_MULTIPLE) |
| |
| /* Define generic processor types based upon current deployment. */ |
| #define PROCESSOR_COMMON PROCESSOR_PPC601 |
| #define PROCESSOR_POWERPC PROCESSOR_PPC604 |
| #define PROCESSOR_POWERPC64 PROCESSOR_RS64A |
| |
| /* Define the default processor. This is overridden by other tm.h files. */ |
| #define PROCESSOR_DEFAULT PROCESSOR_PPC603 |
| #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A |
| |
| /* Specify the dialect of assembler to use. Only new mnemonics are supported |
| starting with GCC 4.8, i.e. just one dialect, but for backwards |
| compatibility with older inline asm ASSEMBLER_DIALECT needs to be |
| defined. */ |
| #define ASSEMBLER_DIALECT 1 |
| |
| /* Debug support */ |
| #define MASK_DEBUG_STACK 0x01 /* debug stack applications */ |
| #define MASK_DEBUG_ARG 0x02 /* debug argument handling */ |
| #define MASK_DEBUG_REG 0x04 /* debug register handling */ |
| #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */ |
| #define MASK_DEBUG_COST 0x10 /* debug rtx codes */ |
| #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */ |
| #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */ |
| #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \ |
| | MASK_DEBUG_ARG \ |
| | MASK_DEBUG_REG \ |
| | MASK_DEBUG_ADDR \ |
| | MASK_DEBUG_COST \ |
| | MASK_DEBUG_TARGET \ |
| | MASK_DEBUG_BUILTIN) |
| |
| #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK) |
| #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG) |
| #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG) |
| #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR) |
| #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST) |
| #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET) |
| #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN) |
| |
| /* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM |
| long double format that uses a pair of doubles, or IEEE 128-bit floating |
| point. KFmode was added as a way to represent IEEE 128-bit floating point, |
| even if the default for long double is the IBM long double format. |
| Similarly IFmode is the IBM long double format even if the default is IEEE |
| 128-bit. Don't allow IFmode if -msoft-float. */ |
| #define FLOAT128_IEEE_P(MODE) \ |
| ((TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 \ |
| && ((MODE) == TFmode || (MODE) == TCmode)) \ |
| || ((MODE) == KFmode) || ((MODE) == KCmode)) |
| |
| #define FLOAT128_IBM_P(MODE) \ |
| ((!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 \ |
| && ((MODE) == TFmode || (MODE) == TCmode)) \ |
| || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode))) |
| |
| /* Helper macros to say whether a 128-bit floating point type can go in a |
| single vector register, or whether it needs paired scalar values. */ |
| #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)) |
| |
| #define FLOAT128_2REG_P(MODE) \ |
| (FLOAT128_IBM_P (MODE) \ |
| || ((MODE) == TDmode) \ |
| || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))) |
| |
| /* Return true for floating point that does not use a vector register. */ |
| #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \ |
| (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE)) |
| |
| /* Describe the vector unit used for arithmetic operations. */ |
| extern enum rs6000_vector rs6000_vector_unit[]; |
| |
| #define VECTOR_UNIT_NONE_P(MODE) \ |
| (rs6000_vector_unit[(MODE)] == VECTOR_NONE) |
| |
| #define VECTOR_UNIT_VSX_P(MODE) \ |
| (rs6000_vector_unit[(MODE)] == VECTOR_VSX) |
| |
| #define VECTOR_UNIT_P8_VECTOR_P(MODE) \ |
| (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR) |
| |
| #define VECTOR_UNIT_ALTIVEC_P(MODE) \ |
| (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC) |
| |
| #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \ |
| (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \ |
| (int)VECTOR_VSX, \ |
| (int)VECTOR_P8_VECTOR)) |
| |
| /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either |
| altivec (VMX) or VSX vector instructions. P8 vector support is upwards |
| compatible, so allow it as well, rather than changing all of the uses of the |
| macro. */ |
| #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \ |
| (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \ |
| (int)VECTOR_ALTIVEC, \ |
| (int)VECTOR_P8_VECTOR)) |
| |
| /* Describe whether to use VSX loads or Altivec loads. For now, just use the |
| same unit as the vector unit we are using, but we may want to migrate to |
| using VSX style loads even for types handled by altivec. */ |
| extern enum rs6000_vector rs6000_vector_mem[]; |
| |
| #define VECTOR_MEM_NONE_P(MODE) \ |
| (rs6000_vector_mem[(MODE)] == VECTOR_NONE) |
| |
| #define VECTOR_MEM_VSX_P(MODE) \ |
| (rs6000_vector_mem[(MODE)] == VECTOR_VSX) |
| |
| #define VECTOR_MEM_P8_VECTOR_P(MODE) \ |
| (rs6000_vector_mem[(MODE)] == VECTOR_VSX) |
| |
| #define VECTOR_MEM_ALTIVEC_P(MODE) \ |
| (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC) |
| |
| #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \ |
| (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \ |
| (int)VECTOR_VSX, \ |
| (int)VECTOR_P8_VECTOR)) |
| |
| #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \ |
| (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \ |
| (int)VECTOR_ALTIVEC, \ |
| (int)VECTOR_P8_VECTOR)) |
| |
| /* Return the alignment of a given vector type, which is set based on the |
| vector unit use. VSX for instance can load 32 or 64 bit aligned words |
| without problems, while Altivec requires 128-bit aligned vectors. */ |
| extern int rs6000_vector_align[]; |
| |
| #define VECTOR_ALIGN(MODE) \ |
| ((rs6000_vector_align[(MODE)] != 0) \ |
| ? rs6000_vector_align[(MODE)] \ |
| : (int)GET_MODE_BITSIZE ((MODE))) |
| |
| /* Element number of the 64-bit value in a 128-bit vector that can be accessed |
| with scalar instructions. */ |
| #define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1) |
| |
| /* Element number of the 64-bit value in a 128-bit vector that can be accessed |
| with the ISA 3.0 MFVSRLD instructions. */ |
| #define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0) |
| |
| /* Alignment options for fields in structures for sub-targets following |
| AIX-like ABI. |
| ALIGN_POWER word-aligns FP doubles (default AIX ABI). |
| ALIGN_NATURAL doubleword-aligns FP doubles (align to object size). |
| |
| Override the macro definitions when compiling libobjc to avoid undefined |
| reference to rs6000_alignment_flags due to library's use of GCC alignment |
| macros which use the macros below. */ |
| |
| #ifndef IN_TARGET_LIBS |
| #define MASK_ALIGN_POWER 0x00000000 |
| #define MASK_ALIGN_NATURAL 0x00000001 |
| #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL) |
| #else |
| #define TARGET_ALIGN_NATURAL 0 |
| #endif |
| |
| /* We use values 126..128 to pick the appropriate long double type (IFmode, |
| KFmode, TFmode). */ |
| #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size > 64) |
| #define TARGET_IEEEQUAD rs6000_ieeequad |
| #define TARGET_ALTIVEC_ABI rs6000_altivec_abi |
| #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL) |
| |
| /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only. |
| Enable 32-bit fcfid's on any of the switches for newer ISA machines. */ |
| #define TARGET_FCFID (TARGET_POWERPC64 \ |
| || TARGET_PPC_GPOPT /* 970/power4 */ \ |
| || TARGET_POPCNTB /* ISA 2.02 */ \ |
| || TARGET_CMPB /* ISA 2.05 */ \ |
| || TARGET_POPCNTD) /* ISA 2.06 */ |
| |
| #define TARGET_FCTIDZ TARGET_FCFID |
| #define TARGET_STFIWX TARGET_PPC_GFXOPT |
| #define TARGET_LFIWAX TARGET_CMPB |
| #define TARGET_LFIWZX TARGET_POPCNTD |
| #define TARGET_FCFIDS TARGET_POPCNTD |
| #define TARGET_FCFIDU TARGET_POPCNTD |
| #define TARGET_FCFIDUS TARGET_POPCNTD |
| #define TARGET_FCTIDUZ TARGET_POPCNTD |
| #define TARGET_FCTIWUZ TARGET_POPCNTD |
| #define TARGET_CTZ TARGET_MODULO |
| #define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64) |
| #define TARGET_MADDLD TARGET_MODULO |
| |
| #define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR) |
| #define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR) |
| #define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64) |
| #define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \ |
| && TARGET_POWERPC64) |
| #define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \ |
| && TARGET_POWERPC64) |
| |
| /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI). */ |
| #define TARGET_NO_SF_SUBREG TARGET_DIRECT_MOVE_64BIT |
| #define TARGET_ALLOW_SF_SUBREG (!TARGET_DIRECT_MOVE_64BIT) |
| |
| /* This wants to be set for p8 and newer. On p7, overlapping unaligned |
| loads are slow. */ |
| #define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX |
| |
| /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present |
| in power7, so conditionalize them on p8 features. TImode syncs need quad |
| memory support. */ |
| #define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \ |
| || TARGET_QUAD_MEMORY_ATOMIC \ |
| || TARGET_DIRECT_MOVE) |
| |
| #define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC |
| |
| /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need |
| to allocate the SDmode stack slot to get the value into the proper location |
| in the register. */ |
| #define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP) |
| |
| /* ISA 3.0 has new min/max functions that don't need fast math that are being |
| phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct |
| answers if the arguments are not in the normal range. */ |
| #define TARGET_MINMAX (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \ |
| && (TARGET_P9_MINMAX || !flag_trapping_math)) |
| |
| /* In switching from using target_flags to using rs6000_isa_flags, the options |
| machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. The MASK_<xxxx> |
| options that have not yet been replaced by their OPTION_MASK_<xxx> |
| equivalents are defined here. */ |
| |
| #define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN |
| |
| #ifndef IN_LIBGCC2 |
| #define MASK_POWERPC64 OPTION_MASK_POWERPC64 |
| #endif |
| |
| #ifdef TARGET_64BIT |
| #define MASK_64BIT OPTION_MASK_64BIT |
| #endif |
| |
| #ifdef TARGET_LITTLE_ENDIAN |
| #define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN |
| #endif |
| |
| /* For power systems, we want to enable Altivec and VSX builtins even if the |
| user did not use -maltivec or -mvsx to allow the builtins to be used inside |
| of #pragma GCC target or the target attribute to change the code level for a |
| given system. */ |
| |
| #define TARGET_EXTRA_BUILTINS (TARGET_POWERPC64 \ |
| || TARGET_PPC_GPOPT /* 970/power4 */ \ |
| || TARGET_POPCNTB /* ISA 2.02 */ \ |
| || TARGET_CMPB /* ISA 2.05 */ \ |
| || TARGET_POPCNTD /* ISA 2.06 */ \ |
| || TARGET_ALTIVEC \ |
| || TARGET_VSX \ |
| || TARGET_HARD_FLOAT) |
| |
| /* E500 cores only support plain "sync", not lwsync. */ |
| #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \ |
| || rs6000_cpu == PROCESSOR_PPC8548) |
| |
| |
| /* Which machine supports the various reciprocal estimate instructions. */ |
| #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT) |
| |
| #define TARGET_FRE (TARGET_HARD_FLOAT \ |
| && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode))) |
| |
| #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \ |
| && TARGET_PPC_GFXOPT) |
| |
| #define TARGET_FRSQRTE (TARGET_HARD_FLOAT \ |
| && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode))) |
| |
| /* Macro to say whether we can do optimizations where we need to do parts of |
| the calculation in 64-bit GPRs and then is transfered to the vector |
| registers. */ |
| #define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \ |
| && TARGET_P8_VECTOR \ |
| && TARGET_POWERPC64) |
| |
| /* Inlining allows targets to define the meanings of bits in target_info |
| field of ipa_fn_summary by itself, the used bits for rs6000 are listed |
| below. */ |
| #define RS6000_FN_TARGET_INFO_HTM 1 |
| |
| /* Whether the various reciprocal divide/square root estimate instructions |
| exist, and whether we should automatically generate code for the instruction |
| by default. */ |
| #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */ |
| #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */ |
| #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */ |
| #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */ |
| |
| extern unsigned char rs6000_recip_bits[]; |
| |
| #define RS6000_RECIP_HAVE_RE_P(MODE) \ |
| (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE) |
| |
| #define RS6000_RECIP_AUTO_RE_P(MODE) \ |
| (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE) |
| |
| #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \ |
| (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE) |
| |
| #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \ |
| (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE) |
| |
| /* The default CPU for TARGET_OPTION_OVERRIDE. */ |
| #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT |
| |
| /* Target pragma. */ |
| #define REGISTER_TARGET_PRAGMAS() do { \ |
| c_register_pragma (0, "longcall", rs6000_pragma_longcall); \ |
| targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \ |
| targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \ |
| rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \ |
| } while (0) |
| |
| /* Target #defines. */ |
| #define TARGET_CPU_CPP_BUILTINS() \ |
| rs6000_cpu_cpp_builtins (pfile) |
| |
| /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order |
| we're compiling for. Some configurations may need to override it. */ |
| #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \ |
| do \ |
| { \ |
| if (BYTES_BIG_ENDIAN) \ |
| { \ |
| builtin_define ("__BIG_ENDIAN__"); \ |
| builtin_define ("_BIG_ENDIAN"); \ |
| builtin_assert ("machine=bigendian"); \ |
| } \ |
| else \ |
| { \ |
| builtin_define ("__LITTLE_ENDIAN__"); \ |
| builtin_define ("_LITTLE_ENDIAN"); \ |
| builtin_assert ("machine=littleendian"); \ |
| } \ |
| } \ |
| while (0) |
| |
| /* Target machine storage layout. */ |
| |
| /* Define this if most significant bit is lowest numbered |
| in instructions that operate on numbered bit-fields. */ |
| /* That is true on RS/6000. */ |
| #define BITS_BIG_ENDIAN 1 |
| |
| /* Define this if most significant byte of a word is the lowest numbered. */ |
| /* That is true on RS/6000. */ |
| #define BYTES_BIG_ENDIAN 1 |
| |
| /* Define this if most significant word of a multiword number is lowest |
| numbered. |
| |
| For RS/6000 we can decide arbitrarily since there are no machine |
| instructions for them. Might as well be consistent with bits and bytes. */ |
| #define WORDS_BIG_ENDIAN 1 |
| |
| /* This says that for the IBM long double the larger magnitude double |
| comes first. It's really a two element double array, and arrays |
| don't index differently between little- and big-endian. */ |
| #define LONG_DOUBLE_LARGE_FIRST 1 |
| |
| #define MAX_BITS_PER_WORD 64 |
| |
| /* Width of a word, in units (bytes). */ |
| #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8) |
| #ifdef IN_LIBGCC2 |
| #define MIN_UNITS_PER_WORD UNITS_PER_WORD |
| #else |
| #define MIN_UNITS_PER_WORD 4 |
| #endif |
| #define UNITS_PER_FP_WORD 8 |
| #define UNITS_PER_ALTIVEC_WORD 16 |
| #define UNITS_PER_VSX_WORD 16 |
| |
| /* Type used for ptrdiff_t, as a string used in a declaration. */ |
| #define PTRDIFF_TYPE "int" |
| |
| /* Type used for size_t, as a string used in a declaration. */ |
| #define SIZE_TYPE "long unsigned int" |
| |
| /* Type used for wchar_t, as a string used in a declaration. */ |
| #define WCHAR_TYPE "short unsigned int" |
| |
| /* Width of wchar_t in bits. */ |
| #define WCHAR_TYPE_SIZE 16 |
| |
| /* A C expression for the size in bits of the type `short' on the |
| target machine. If you don't define this, the default is half a |
| word. (If this would be less than one storage unit, it is |
| rounded up to one unit.) */ |
| #define SHORT_TYPE_SIZE 16 |
| |
| /* A C expression for the size in bits of the type `int' on the |
| target machine. If you don't define this, the default is one |
| word. */ |
| #define INT_TYPE_SIZE 32 |
| |
| /* A C expression for the size in bits of the type `long' on the |
| target machine. If you don't define this, the default is one |
| word. */ |
| #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64) |
| |
| /* A C expression for the size in bits of the type `long long' on the |
| target machine. If you don't define this, the default is two |
| words. */ |
| #define LONG_LONG_TYPE_SIZE 64 |
| |
| /* A C expression for the size in bits of the type `float' on the |
| target machine. If you don't define this, the default is one |
| word. */ |
| #define FLOAT_TYPE_SIZE 32 |
| |
| /* A C expression for the size in bits of the type `double' on the |
| target machine. If you don't define this, the default is two |
| words. */ |
| #define DOUBLE_TYPE_SIZE 64 |
| |
| /* A C expression for the size in bits of the type `long double' on the target |
| machine. If you don't define this, the default is two words. */ |
| #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size |
| |
| /* Work around rs6000_long_double_type_size dependency in ada/targtyps.cc. */ |
| #define WIDEST_HARDWARE_FP_SIZE 64 |
| |
| /* Width in bits of a pointer. |
| See also the macro `Pmode' defined below. */ |
| extern unsigned rs6000_pointer_size; |
| #define POINTER_SIZE rs6000_pointer_size |
| |
| /* Allocation boundary (in *bits*) for storing arguments in argument list. */ |
| #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64) |
| |
| /* Boundary (in *bits*) on which stack pointer should be aligned. */ |
| #define STACK_BOUNDARY \ |
| ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \ |
| ? 64 : 128) |
| |
| /* Allocation boundary (in *bits*) for the code of a function. */ |
| #define FUNCTION_BOUNDARY 32 |
| |
| /* No data type is required to be aligned rounder than this. Warning, if |
| BIGGEST_ALIGNMENT is changed, then this may be an ABI break. An example |
| of where this can break an ABI is in GLIBC's struct _Unwind_Exception. */ |
| #define BIGGEST_ALIGNMENT 128 |
| |
| /* Alignment of field after `int : 0' in a structure. */ |
| #define EMPTY_FIELD_BOUNDARY 32 |
| |
| /* Every structure's size must be a multiple of this. */ |
| #define STRUCTURE_SIZE_BOUNDARY 8 |
| |
| /* A bit-field declared as `int' forces `int' alignment for the struct. */ |
| #define PCC_BITFIELD_TYPE_MATTERS 1 |
| |
| enum data_align { align_abi, align_opt, align_both }; |
| |
| /* A C expression to compute the alignment for a variables in the |
| local store. TYPE is the data type, and ALIGN is the alignment |
| that the object would ordinarily have. */ |
| #define LOCAL_ALIGNMENT(TYPE, ALIGN) \ |
| rs6000_data_alignment (TYPE, ALIGN, align_both) |
| |
| /* Make arrays of chars word-aligned for the same reasons. */ |
| #define DATA_ALIGNMENT(TYPE, ALIGN) \ |
| rs6000_data_alignment (TYPE, ALIGN, align_opt) |
| |
| /* Align vectors to 128 bits. */ |
| #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \ |
| rs6000_data_alignment (TYPE, ALIGN, align_abi) |
| |
| /* Nonzero if move instructions will actually fail to work |
| when given unaligned data. */ |
| #define STRICT_ALIGNMENT 0 |
| |
| /* Standard register usage. */ |
| |
| /* Number of actual hardware registers. |
| The hardware registers are assigned numbers for the compiler |
| from 0 to just below FIRST_PSEUDO_REGISTER. |
| All registers that the compiler knows about must be given numbers, |
| even those that are not normally considered general registers. |
| |
| RS/6000 has 32 fixed-point registers, 32 floating-point registers, |
| a count register, a link register, and 8 condition register fields, |
| which we view here as separate registers. AltiVec adds 32 vector |
| registers and a VRsave register. |
| |
| In addition, the difference between the frame and argument pointers is |
| a function of the number of registers saved, so we need to have a |
| register for AP that will later be eliminated in favor of SP or FP. |
| This is a normal register, but it is fixed. |
| |
| We also create a pseudo register for float/int conversions, that will |
| really represent the memory location used. It is represented here as |
| a register, in order to work around problems in allocating stack storage |
| in inline functions. |
| |
| Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame |
| pointer, which is eventually eliminated in favor of SP or FP. */ |
| |
| #define FIRST_PSEUDO_REGISTER 111 |
| |
| /* Use standard DWARF numbering for DWARF debugging information. */ |
| #define DEBUGGER_REGNO(REGNO) rs6000_debugger_regno ((REGNO), 0) |
| |
| /* Use gcc hard register numbering for eh_frame. */ |
| #define DWARF_FRAME_REGNUM(REGNO) (REGNO) |
| |
| /* Map register numbers held in the call frame info that gcc has |
| collected using DWARF_FRAME_REGNUM to those that should be output in |
| .debug_frame and .eh_frame. */ |
| #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \ |
| rs6000_debugger_regno ((REGNO), (FOR_EH) ? 2 : 1) |
| |
| /* 1 for registers that have pervasive standard uses |
| and are not available for the register allocator. |
| |
| On RS/6000, r1 is used for the stack. On Darwin, r2 is available |
| as a local register; for all other OS's r2 is the TOC pointer. |
| |
| On System V implementations, r13 is fixed and not available for use. */ |
| |
| #define FIXED_REGISTERS \ |
| {/* GPRs */ \ |
| 0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ |
| /* FPRs */ \ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ |
| /* VRs */ \ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ |
| /* lr ctr ca ap */ \ |
| 0, 0, 1, 1, \ |
| /* cr0..cr7 */ \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| /* vrsave vscr sfp */ \ |
| 1, 1, 1 \ |
| } |
| |
| /* Like `CALL_USED_REGISTERS' except this macro doesn't require that |
| the entire set of `FIXED_REGISTERS' be included. |
| (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS'). |
| This macro is optional. If not specified, it defaults to the value |
| of `CALL_USED_REGISTERS'. */ |
| |
| #define CALL_REALLY_USED_REGISTERS \ |
| {/* GPRs */ \ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ |
| /* FPRs */ \ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ |
| /* VRs */ \ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ |
| /* lr ctr ca ap */ \ |
| 1, 1, 1, 1, \ |
| /* cr0..cr7 */ \ |
| 1, 1, 0, 0, 0, 1, 1, 1, \ |
| /* vrsave vscr sfp */ \ |
| 0, 0, 0 \ |
| } |
| |
| #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1) |
| |
| #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20) |
| #define FIRST_SAVED_FP_REGNO (14+32) |
| #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13) |
| |
| /* List the order in which to allocate registers. Each register must be |
| listed once, even those in FIXED_REGISTERS. |
| |
| We allocate in the following order: |
| fp0 (not saved or used for anything) |
| fp13 - fp2 (not saved; incoming fp arg registers) |
| fp1 (not saved; return value) |
| fp31 - fp14 (saved; order given to save least number) |
| cr7, cr5 (not saved or special) |
| cr6 (not saved, but used for vector operations) |
| cr1 (not saved, but used for FP operations) |
| cr0 (not saved, but used for arithmetic operations) |
| cr4, cr3, cr2 (saved) |
| r9 (not saved; best for TImode) |
| r10, r8-r4 (not saved; highest first for less conflict with params) |
| r3 (not saved; return value register) |
| r11 (not saved; later alloc to help shrink-wrap) |
| r0 (not saved; cannot be base reg) |
| r31 - r13 (saved; order given to save least number) |
| r12 (not saved; if used for DImode or DFmode would use r13) |
| ctr (not saved; when we have the choice ctr is better) |
| lr (saved) |
| r1, r2, ap, ca (fixed) |
| v0 - v1 (not saved or used for anything) |
| v13 - v3 (not saved; incoming vector arg registers) |
| v2 (not saved; incoming vector arg reg; return value) |
| v19 - v14 (not saved or used for anything) |
| v31 - v20 (saved; order given to save least number) |
| vrsave, vscr (fixed) |
| sfp (fixed) |
| */ |
| |
| #if FIXED_R2 == 1 |
| #define MAYBE_R2_AVAILABLE |
| #define MAYBE_R2_FIXED 2, |
| #else |
| #define MAYBE_R2_AVAILABLE 2, |
| #define MAYBE_R2_FIXED |
| #endif |
| |
| #if FIXED_R13 == 1 |
| #define EARLY_R12 12, |
| #define LATE_R12 |
| #else |
| #define EARLY_R12 |
| #define LATE_R12 12, |
| #endif |
| |
| #define REG_ALLOC_ORDER \ |
| {32, \ |
| /* move fr13 (ie 45) later, so if we need TFmode, it does */ \ |
| /* not use fr14 which is a saved register. */ \ |
| 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \ |
| 33, \ |
| 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \ |
| 50, 49, 48, 47, 46, \ |
| 100, 107, 105, 106, 101, 104, 103, 102, \ |
| MAYBE_R2_AVAILABLE \ |
| 9, 10, 8, 7, 6, 5, 4, \ |
| 3, EARLY_R12 11, 0, \ |
| 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \ |
| 18, 17, 16, 15, 14, 13, LATE_R12 \ |
| 97, 96, \ |
| 1, MAYBE_R2_FIXED 99, 98, \ |
| /* AltiVec registers. */ \ |
| 64, 65, \ |
| 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, \ |
| 66, \ |
| 83, 82, 81, 80, 79, 78, \ |
| 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, \ |
| 108, 109, \ |
| 110 \ |
| } |
| |
| /* True if register is floating-point. */ |
| #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63) |
| |
| /* True if register is a condition register. */ |
| #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO) |
| |
| /* True if register is a condition register, but not cr0. */ |
| #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO) |
| |
| /* True if register is an integer register. */ |
| #define INT_REGNO_P(N) \ |
| ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM) |
| |
| /* True if register is the CA register. */ |
| #define CA_REGNO_P(N) ((N) == CA_REGNO) |
| |
| /* True if register is an AltiVec register. */ |
| #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO) |
| |
| /* True if register is a VSX register. */ |
| #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N)) |
| |
| /* Alternate name for any vector register supporting floating point, no matter |
| which instruction set(s) are available. */ |
| #define VFLOAT_REGNO_P(N) \ |
| (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N))) |
| |
| /* Alternate name for any vector register supporting integer, no matter which |
| instruction set(s) are available. */ |
| #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N) |
| |
| /* Alternate name for any vector register supporting logical operations, no |
| matter which instruction set(s) are available. Allow GPRs as well as the |
| vector registers. */ |
| #define VLOGICAL_REGNO_P(N) \ |
| (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \ |
| || (TARGET_VSX && FP_REGNO_P (N))) \ |
| |
| /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate |
| enough space to account for vectors in FP regs. However, TFmode/TDmode |
| should not use VSX instructions to do a caller save. */ |
| #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \ |
| ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO] \ |
| ? (MODE) \ |
| : TARGET_VSX \ |
| && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \ |
| && FP_REGNO_P (REGNO) \ |
| ? V2DFmode \ |
| : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \ |
| ? DFmode \ |
| : (MODE) == TDmode && FP_REGNO_P (REGNO) \ |
| ? DImode \ |
| : choose_hard_reg_mode ((REGNO), (NREGS), NULL)) |
| |
| #define VSX_VECTOR_MODE(MODE) \ |
| ((MODE) == V4SFmode \ |
| || (MODE) == V2DFmode) \ |
| |
| /* Modes that are not vectors, but require vector alignment. Treat these like |
| vectors in terms of loads and stores. */ |
| #define VECTOR_ALIGNMENT_P(MODE) \ |
| (FLOAT128_VECTOR_P (MODE) || (MODE) == OOmode || (MODE) == XOmode) |
| |
| #define ALTIVEC_VECTOR_MODE(MODE) \ |
| ((MODE) == V16QImode \ |
| || (MODE) == V8HImode \ |
| || (MODE) == V4SFmode \ |
| || (MODE) == V4SImode \ |
| || VECTOR_ALIGNMENT_P (MODE)) |
| |
| #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \ |
| (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \ |
| || (MODE) == V2DImode || (MODE) == V1TImode) |
| |
| /* Post-reload, we can't use any new AltiVec registers, as we already |
| emitted the vrsave mask. */ |
| |
| #define HARD_REGNO_RENAME_OK(SRC, DST) \ |
| (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST)) |
| |
| /* Specify the cost of a branch insn; roughly the number of extra insns that |
| should be added to avoid a branch. |
| |
| Set this to 3 on the RS/6000 since that is roughly the average cost of an |
| unscheduled conditional branch. */ |
| |
| #define BRANCH_COST(speed_p, predictable_p) 3 |
| |
| /* Override BRANCH_COST heuristic which empirically produces worse |
| performance for removing short circuiting from the logical ops. */ |
| |
| #define LOGICAL_OP_NON_SHORT_CIRCUIT 0 |
| |
| /* Specify the registers used for certain standard purposes. |
| The values of these macros are register numbers. */ |
| |
| /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */ |
| /* #define PC_REGNUM */ |
| |
| /* Register to use for pushing function arguments. */ |
| #define STACK_POINTER_REGNUM 1 |
| |
| /* Base register for access to local variables of the function. */ |
| #define HARD_FRAME_POINTER_REGNUM 31 |
| |
| /* Base register for access to local variables of the function. */ |
| #define FRAME_POINTER_REGNUM 110 |
| |
| /* Base register for access to arguments of the function. */ |
| #define ARG_POINTER_REGNUM 99 |
| |
| /* Place to put static chain when calling a function that requires it. */ |
| #define STATIC_CHAIN_REGNUM 11 |
| |
| /* Base register for access to thread local storage variables. */ |
| #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2) |
| |
| |
| /* Define the classes of registers for register constraints in the |
| machine description. Also define ranges of constants. |
| |
| One of the classes must always be named ALL_REGS and include all hard regs. |
| If there is more than one class, another class must be named NO_REGS |
| and contain no registers. |
| |
| The name GENERAL_REGS must be the name of a class (or an alias for |
| another name such as ALL_REGS). This is the class of registers |
| that is allowed by "g" or "r" in a register constraint. |
| Also, registers outside this class are allocated only when |
| instructions express preferences for them. |
| |
| The classes must be numbered in nondecreasing order; that is, |
| a larger-numbered class must never be contained completely |
| in a smaller-numbered class. |
| |
| For any two classes, it is very desirable that there be another |
| class that represents their union. */ |
| |
| /* The RS/6000 has three types of registers, fixed-point, floating-point, and |
| condition registers, plus three special registers, CTR, and the link |
| register. AltiVec adds a vector register class. VSX registers overlap the |
| FPR registers and the Altivec registers. |
| |
| However, r0 is special in that it cannot be used as a base register. |
| So make a class for registers valid as base registers. |
| |
| Also, cr0 is the only condition code register that can be used in |
| arithmetic insns, so make a separate class for it. */ |
| |
| enum reg_class |
| { |
| NO_REGS, |
| BASE_REGS, |
| GENERAL_REGS, |
| FLOAT_REGS, |
| ALTIVEC_REGS, |
| VSX_REGS, |
| VRSAVE_REGS, |
| VSCR_REGS, |
| GEN_OR_FLOAT_REGS, |
| GEN_OR_VSX_REGS, |
| LINK_REGS, |
| CTR_REGS, |
| LINK_OR_CTR_REGS, |
| SPECIAL_REGS, |
| SPEC_OR_GEN_REGS, |
| CR0_REGS, |
| CR_REGS, |
| NON_FLOAT_REGS, |
| CA_REGS, |
| ALL_REGS, |
| LIM_REG_CLASSES |
| }; |
| |
| #define N_REG_CLASSES (int) LIM_REG_CLASSES |
| |
| /* Give names of register classes as strings for dump file. */ |
| |
| #define REG_CLASS_NAMES \ |
| { \ |
| "NO_REGS", \ |
| "BASE_REGS", \ |
| "GENERAL_REGS", \ |
| "FLOAT_REGS", \ |
| "ALTIVEC_REGS", \ |
| "VSX_REGS", \ |
| "VRSAVE_REGS", \ |
| "VSCR_REGS", \ |
| "GEN_OR_FLOAT_REGS", \ |
| "GEN_OR_VSX_REGS", \ |
| "LINK_REGS", \ |
| "CTR_REGS", \ |
| "LINK_OR_CTR_REGS", \ |
| "SPECIAL_REGS", \ |
| "SPEC_OR_GEN_REGS", \ |
| "CR0_REGS", \ |
| "CR_REGS", \ |
| "NON_FLOAT_REGS", \ |
| "CA_REGS", \ |
| "ALL_REGS" \ |
| } |
| |
| /* Define which registers fit in which classes. |
| This is an initializer for a vector of HARD_REG_SET |
| of length N_REG_CLASSES. */ |
| |
| #define REG_CLASS_CONTENTS \ |
| { \ |
| /* NO_REGS. */ \ |
| { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \ |
| /* BASE_REGS. */ \ |
| { 0xfffffffe, 0x00000000, 0x00000000, 0x00004008 }, \ |
| /* GENERAL_REGS. */ \ |
| { 0xffffffff, 0x00000000, 0x00000000, 0x00004008 }, \ |
| /* FLOAT_REGS. */ \ |
| { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, \ |
| /* ALTIVEC_REGS. */ \ |
| { 0x00000000, 0x00000000, 0xffffffff, 0x00000000 }, \ |
| /* VSX_REGS. */ \ |
| { 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 }, \ |
| /* VRSAVE_REGS. */ \ |
| { 0x00000000, 0x00000000, 0x00000000, 0x00001000 }, \ |
| /* VSCR_REGS. */ \ |
| { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, \ |
| /* GEN_OR_FLOAT_REGS. */ \ |
| { 0xffffffff, 0xffffffff, 0x00000000, 0x00004008 }, \ |
| /* GEN_OR_VSX_REGS. */ \ |
| { 0xffffffff, 0xffffffff, 0xffffffff, 0x00004008 }, \ |
| /* LINK_REGS. */ \ |
| { 0x00000000, 0x00000000, 0x00000000, 0x00000001 }, \ |
| /* CTR_REGS. */ \ |
| { 0x00000000, 0x00000000, 0x00000000, 0x00000002 }, \ |
| /* LINK_OR_CTR_REGS. */ \ |
| { 0x00000000, 0x00000000, 0x00000000, 0x00000003 }, \ |
| /* SPECIAL_REGS. */ \ |
| { 0x00000000, 0x00000000, 0x00000000, 0x00001003 }, \ |
| /* SPEC_OR_GEN_REGS. */ \ |
| { 0xffffffff, 0x00000000, 0x00000000, 0x0000500b }, \ |
| /* CR0_REGS. */ \ |
| { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, \ |
| /* CR_REGS. */ \ |
| { 0x00000000, 0x00000000, 0x00000000, 0x00000ff0 }, \ |
| /* NON_FLOAT_REGS. */ \ |
| { 0xffffffff, 0x00000000, 0x00000000, 0x00004ffb }, \ |
| /* CA_REGS. */ \ |
| { 0x00000000, 0x00000000, 0x00000000, 0x00000004 }, \ |
| /* ALL_REGS. */ \ |
| { 0xffffffff, 0xffffffff, 0xffffffff, 0x00007fff } \ |
| } |
| |
| /* The same information, inverted: |
| Return the class number of the smallest class containing |
| reg number REGNO. This could be a conditional expression |
| or could index an array. */ |
| |
| extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER]; |
| |
| #define REGNO_REG_CLASS(REGNO) \ |
| (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\ |
| rs6000_regno_regclass[(REGNO)]) |
| |
| /* Register classes for various constraints that are based on the target |
| switches. */ |
| enum r6000_reg_class_enum { |
| RS6000_CONSTRAINT_d, /* FPR registers */ |
| RS6000_CONSTRAINT_v, /* Altivec registers */ |
| RS6000_CONSTRAINT_wa, /* Any VSX register */ |
| RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */ |
| RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */ |
| RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */ |
| RS6000_CONSTRAINT_wA, /* BASE_REGS if 64-bit. */ |
| RS6000_CONSTRAINT_MAX |
| }; |
| |
| extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX]; |
| |
| /* The class value for index registers, and the one for base regs. */ |
| #define INDEX_REG_CLASS GENERAL_REGS |
| #define BASE_REG_CLASS BASE_REGS |
| |
| /* Return whether a given register class can hold VSX objects. */ |
| #define VSX_REG_CLASS_P(CLASS) \ |
| ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS) |
| |
| /* Return whether a given register class targets general purpose registers. */ |
| #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS) |
| |
| /* Given an rtx X being reloaded into a reg required to be |
| in class CLASS, return the class of reg to actually use. |
| In general this is just CLASS; but on some machines |
| in some cases it is preferable to use a more restrictive class. |
| |
| On the RS/6000, we have to return NO_REGS when we want to reload a |
| floating-point CONST_DOUBLE to force it to be copied to memory. |
| |
| We also don't want to reload integer values into floating-point |
| registers if we can at all help it. In fact, this can |
| cause reload to die, if it tries to generate a reload of CTR |
| into a FP register and discovers it doesn't have the memory location |
| required. |
| |
| ??? Would it be a good idea to have reload do the converse, that is |
| try to reload floating modes into FP registers if possible? |
| */ |
| |
| #define PREFERRED_RELOAD_CLASS(X,CLASS) \ |
| rs6000_preferred_reload_class_ptr (X, CLASS) |
| |
| /* Return the register class of a scratch register needed to copy IN into |
| or out of a register in CLASS in MODE. If it can be done directly, |
| NO_REGS is returned. */ |
| |
| #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \ |
| rs6000_secondary_reload_class_ptr (CLASS, MODE, IN) |
| |
| /* Return the maximum number of consecutive registers |
| needed to represent mode MODE in a register of class CLASS. |
| |
| On RS/6000, this is the size of MODE in words, except in the FP regs, where |
| a single reg is enough for two words, unless we have VSX, where the FP |
| registers can hold 128 bits. */ |
| #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)] |
| |
| /* Stack layout; function entry, exit and calling. */ |
| |
| /* Define this if pushing a word on the stack |
| makes the stack pointer a smaller address. */ |
| #define STACK_GROWS_DOWNWARD 1 |
| |
| /* Offsets recorded in opcodes are a multiple of this alignment factor. */ |
| #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8))) |
| |
| /* Define this to nonzero if the nominal address of the stack frame |
| is at the high-address end of the local variables; |
| that is, each additional local variable allocated |
| goes at a more negative offset in the frame. |
| |
| On the RS/6000, we grow upwards, from the area after the outgoing |
| arguments. */ |
| #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \ |
| || (flag_sanitize & SANITIZE_ADDRESS) != 0) |
| |
| /* Size of the fixed area on the stack */ |
| #define RS6000_SAVE_AREA \ |
| ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \ |
| << (TARGET_64BIT ? 1 : 0)) |
| |
| /* Stack offset for toc save slot. */ |
| #define RS6000_TOC_SAVE_SLOT \ |
| ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0)) |
| |
| /* Align an address */ |
| #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a)) |
| |
| /* Offset within stack frame to start allocating local variables at. |
| If FRAME_GROWS_DOWNWARD, this is the offset to the END of the |
| first local allocated. Otherwise, it is the offset to the BEGINNING |
| of the first local allocated. |
| |
| On the RS/6000, the frame pointer is the same as the stack pointer, |
| except for dynamic allocations. So we start after the fixed area and |
| outgoing parameter area. |
| |
| If the function uses dynamic stack space (CALLS_ALLOCA is set), that |
| space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the |
| sizes of the fixed area and the parameter area must be a multiple of |
| STACK_BOUNDARY. */ |
| |
| #define RS6000_STARTING_FRAME_OFFSET \ |
| (cfun->calls_alloca \ |
| ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA, \ |
| (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 )) \ |
| : (RS6000_ALIGN (crtl->outgoing_args_size, \ |
| (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \ |
| + RS6000_SAVE_AREA)) |
| |
| /* Offset from the stack pointer register to an item dynamically |
| allocated on the stack, e.g., by `alloca'. |
| |
| The default value for this macro is `STACK_POINTER_OFFSET' plus the |
| length of the outgoing arguments. The default is correct for most |
| machines. See `function.cc' for details. |
| |
| This value must be a multiple of STACK_BOUNDARY (hard coded in |
| `emit-rtl.cc'). */ |
| #define STACK_DYNAMIC_OFFSET(FUNDECL) \ |
| RS6000_ALIGN (crtl->outgoing_args_size.to_constant () \ |
| + STACK_POINTER_OFFSET, \ |
| (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) |
| |
| /* If we generate an insn to push BYTES bytes, |
| this says how many the stack pointer really advances by. |
| On RS/6000, don't define this because there are no push insns. */ |
| /* #define PUSH_ROUNDING(BYTES) */ |
| |
| /* Offset of first parameter from the argument pointer register value. |
| On the RS/6000, we define the argument pointer to the start of the fixed |
| area. */ |
| #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA |
| |
| /* Offset from the argument pointer register value to the top of |
| stack. This is different from FIRST_PARM_OFFSET because of the |
| register save area. */ |
| #define ARG_POINTER_CFA_OFFSET(FNDECL) 0 |
| |
| /* Define this if stack space is still allocated for a parameter passed |
| in a register. The value is the number of bytes allocated to this |
| area. */ |
| #define REG_PARM_STACK_SPACE(FNDECL) \ |
| rs6000_reg_parm_stack_space ((FNDECL), false) |
| |
| /* Define this macro if space guaranteed when compiling a function body |
| is different to space required when making a call, a situation that |
| can arise with K&R style function definitions. */ |
| #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \ |
| rs6000_reg_parm_stack_space ((FNDECL), true) |
| |
| /* Define this if the above stack space is to be considered part of the |
| space allocated by the caller. */ |
| #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1 |
| |
| /* This is the difference between the logical top of stack and the actual sp. |
| |
| For the RS/6000, sp points past the fixed area. */ |
| #define STACK_POINTER_OFFSET RS6000_SAVE_AREA |
| |
| /* Define this if the maximum size of all the outgoing args is to be |
| accumulated and pushed during the prologue. The amount can be |
| found in the variable crtl->outgoing_args_size. */ |
| #define ACCUMULATE_OUTGOING_ARGS 1 |
| |
| /* Define how to find the value returned by a library function |
| assuming the value has mode MODE. */ |
| |
| #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE)) |
| |
| /* DRAFT_V4_STRUCT_RET defaults off. */ |
| #define DRAFT_V4_STRUCT_RET 0 |
| |
| /* Let TARGET_RETURN_IN_MEMORY control what happens. */ |
| #define DEFAULT_PCC_STRUCT_RETURN 0 |
| |
| /* Mode of stack savearea. |
| FUNCTION is VOIDmode because calling convention maintains SP. |
| BLOCK needs Pmode for SP. |
| NONLOCAL needs twice Pmode to maintain both backchain and SP. */ |
| #define STACK_SAVEAREA_MODE(LEVEL) \ |
| (LEVEL == SAVE_FUNCTION ? VOIDmode \ |
| : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode) |
| |
| /* Minimum and maximum general purpose registers used to hold arguments. */ |
| #define GP_ARG_MIN_REG 3 |
| #define GP_ARG_MAX_REG 10 |
| #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1) |
| |
| /* Minimum and maximum floating point registers used to hold arguments. */ |
| #define FP_ARG_MIN_REG 33 |
| #define FP_ARG_AIX_MAX_REG 45 |
| #define FP_ARG_V4_MAX_REG 40 |
| #define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \ |
| ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG) |
| #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1) |
| |
| /* Minimum and maximum AltiVec registers used to hold arguments. */ |
| #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2) |
| #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11) |
| #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1) |
| |
| /* Maximum number of registers per ELFv2 homogeneous aggregate argument. */ |
| #define AGGR_ARG_NUM_REG 8 |
| |
| /* Return registers */ |
| #define GP_ARG_RETURN GP_ARG_MIN_REG |
| #define FP_ARG_RETURN FP_ARG_MIN_REG |
| #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2) |
| #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \ |
| : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1)) |
| #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \ |
| ? (ALTIVEC_ARG_RETURN \ |
| + (TARGET_FLOAT128_TYPE ? 1 : 0)) \ |
| : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1)) |
| |
| /* Flags for the call/call_value rtl operations set up by function_arg */ |
| #define CALL_NORMAL 0x00000000 /* no special processing */ |
| /* Bits in 0x00000001 are unused. */ |
| #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */ |
| #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */ |
| #define CALL_LONG 0x00000008 /* always call indirect */ |
| #define CALL_LIBCALL 0x00000010 /* libcall */ |
| |
| /* Identify PLT sequence for rs6000_pltseq_template. */ |
| enum rs6000_pltseq_enum { |
| RS6000_PLTSEQ_TOCSAVE, |
| RS6000_PLTSEQ_PLT16_HA, |
| RS6000_PLTSEQ_PLT16_LO, |
| RS6000_PLTSEQ_MTCTR, |
| RS6000_PLTSEQ_PLT_PCREL34 |
| }; |
| |
| #define IS_V4_FP_ARGS(OP) \ |
| ((INTVAL (OP) & (CALL_V4_CLEAR_FP_ARGS | CALL_V4_SET_FP_ARGS)) != 0) |
| |
| /* We don't have prologue and epilogue functions to save/restore |
| everything for most ABIs. */ |
| #define WORLD_SAVE_P(INFO) 0 |
| |
| /* 1 if N is a possible register number for a function value |
| as seen by the caller. |
| |
| On RS/6000, this is r3, fp1, and v2 (for AltiVec). */ |
| #define FUNCTION_VALUE_REGNO_P(N) \ |
| ((N) == GP_ARG_RETURN \ |
| || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN) \ |
| && TARGET_HARD_FLOAT) \ |
| || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN) \ |
| && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)) |
| |
| /* 1 if N is a possible register number for function argument passing. |
| On RS/6000, these are r3-r10 and fp1-fp13. |
| On AltiVec, v2 - v13 are used for passing vectors. */ |
| #define FUNCTION_ARG_REGNO_P(N) \ |
| (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG) \ |
| || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG) \ |
| && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \ |
| || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG) \ |
| && TARGET_HARD_FLOAT)) |
| |
| /* Define a data type for recording info about an argument list |
| during the scan of that argument list. This data type should |
| hold all necessary information about the function itself |
| and about the args processed so far, enough to enable macros |
| such as FUNCTION_ARG to determine where the next arg should go. |
| |
| On the RS/6000, this is a structure. The first element is the number of |
| total argument words, the second is used to store the next |
| floating-point register number, and the third says how many more args we |
| have prototype types for. |
| |
| For ABI_V4, we treat these slightly differently -- `sysv_gregno' is |
| the next available GP register, `fregno' is the next available FP |
| register, and `words' is the number of words used on the stack. |
| |
| The varargs/stdarg support requires that this structure's size |
| be a multiple of sizeof(int). */ |
| |
| typedef struct rs6000_args |
| { |
| int words; /* # words used for passing GP registers */ |
| int fregno; /* next available FP register */ |
| int vregno; /* next available AltiVec register */ |
| int nargs_prototype; /* # args left in the current prototype */ |
| int prototype; /* Whether a prototype was defined */ |
| int stdarg; /* Whether function is a stdarg function. */ |
| int call_cookie; /* Do special things for this call */ |
| int sysv_gregno; /* next available GP register */ |
| int intoffset; /* running offset in struct (darwin64) */ |
| int use_stack; /* any part of struct on stack (darwin64) */ |
| int floats_in_gpr; /* count of SFmode floats taking up |
| GPR space (darwin64) */ |
| int named; /* false for varargs params */ |
| int escapes; /* if function visible outside tu */ |
| int libcall; /* If this is a compiler generated call. */ |
| } CUMULATIVE_ARGS; |
| |
| /* Initialize a variable CUM of type CUMULATIVE_ARGS |
| for a call to a function whose data type is FNTYPE. |
| For a library call, FNTYPE is 0. */ |
| |
| #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \ |
| init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \ |
| N_NAMED_ARGS, FNDECL, VOIDmode) |
| |
| /* Similar, but when scanning the definition of a procedure. We always |
| set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */ |
| |
| #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \ |
| init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \ |
| 1000, current_function_decl, VOIDmode) |
| |
| /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */ |
| |
| #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \ |
| init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \ |
| 0, NULL_TREE, MODE) |
| |
| #define PAD_VARARGS_DOWN \ |
| (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD) |
| |
| /* Output assembler code to FILE to increment profiler label # LABELNO |
| for profiling a function entry. */ |
| |
| #define FUNCTION_PROFILER(FILE, LABELNO) \ |
| output_function_profiler ((FILE), (LABELNO)); |
| |
| /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, |
| the stack pointer does not matter. No definition is equivalent to |
| always zero. |
| |
| On the RS/6000, this is nonzero because we can restore the stack from |
| its backpointer, which we maintain. */ |
| #define EXIT_IGNORE_STACK 1 |
| |
| /* Define this macro as a C expression that is nonzero for registers |
| that are used by the epilogue or the return' pattern. The stack |
| and frame pointer registers are already be assumed to be used as |
| needed. */ |
| |
| #define EPILOGUE_USES(REGNO) \ |
| ((reload_completed && (REGNO) == LR_REGNO) \ |
| || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \ |
| || (crtl->calls_eh_return \ |
| && TARGET_AIX \ |
| && (REGNO) == 2)) |
| |
| |
| /* Length in units of the trampoline for entering a nested function. */ |
| |
| #define TRAMPOLINE_SIZE rs6000_trampoline_size () |
| |
| /* Definitions for __builtin_return_address and __builtin_frame_address. |
| __builtin_return_address (0) should give link register (LR_REGNO), enable |
| this. */ |
| /* This should be uncommented, so that the link register is used, but |
| currently this would result in unmatched insns and spilling fixed |
| registers so we'll leave it for another day. When these problems are |
| taken care of one additional fetch will be necessary in RETURN_ADDR_RTX. |
| (mrs) */ |
| /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */ |
| |
| /* Number of bytes into the frame return addresses can be found. See |
| rs6000_stack_info in rs6000.cc for more information on how the different |
| abi's store the return address. */ |
| #define RETURN_ADDRESS_OFFSET \ |
| ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0)) |
| |
| /* The current return address is in the link register. The return address |
| of anything farther back is accessed normally at an offset of 8 from the |
| frame pointer. */ |
| #define RETURN_ADDR_RTX(COUNT, FRAME) \ |
| (rs6000_return_addr (COUNT, FRAME)) |
| |
| |
| /* Definitions for register eliminations. |
| |
| We have two registers that can be eliminated on the RS/6000. First, the |
| frame pointer register can often be eliminated in favor of the stack |
| pointer register. Secondly, the argument pointer register can always be |
| eliminated; it is replaced with either the stack or frame pointer. |
| |
| In addition, we use the elimination mechanism to see if r30 is needed |
| Initially we assume that it isn't. If it is, we spill it. This is done |
| by making it an eliminable register. We replace it with itself so that |
| if it isn't needed, then existing uses won't be modified. */ |
| |
| /* This is an array of structures. Each structure initializes one pair |
| of eliminable registers. The "from" register number is given first, |
| followed by "to". Eliminations of the same "from" register are listed |
| in order of preference. */ |
| #define ELIMINABLE_REGS \ |
| {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ |
| { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ |
| { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ |
| { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ |
| { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ |
| { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } } |
| |
| /* Define the offset between two registers, one to be eliminated, and the other |
| its replacement, at the start of a routine. */ |
| #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ |
| ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO)) |
| |
| /* Addressing modes, and classification of registers for them. */ |
| |
| #define HAVE_PRE_DECREMENT 1 |
| #define HAVE_PRE_INCREMENT 1 |
| #define HAVE_PRE_MODIFY_DISP 1 |
| #define HAVE_PRE_MODIFY_REG 1 |
| |
| /* Macros to check register numbers against specific register classes. */ |
| |
| /* These assume that REGNO is a hard or pseudo reg number. |
| They give nonzero only if REGNO is a hard reg of the suitable class |
| or a pseudo reg currently allocated to a suitable hard reg. |
| Since they use reg_renumber, they are safe only once reg_renumber |
| has been allocated, which happens in reginfo.cc during register |
| allocation. */ |
| |
| #define REGNO_OK_FOR_INDEX_P(REGNO) \ |
| (HARD_REGISTER_NUM_P (REGNO) \ |
| ? (REGNO) <= 31 \ |
| || (REGNO) == ARG_POINTER_REGNUM \ |
| || (REGNO) == FRAME_POINTER_REGNUM \ |
| : (reg_renumber[REGNO] >= 0 \ |
| && (reg_renumber[REGNO] <= 31 \ |
| || reg_renumber[REGNO] == ARG_POINTER_REGNUM \ |
| || reg_renumber[REGNO] == FRAME_POINTER_REGNUM))) |
| |
| #define REGNO_OK_FOR_BASE_P(REGNO) \ |
| (HARD_REGISTER_NUM_P (REGNO) \ |
| ? ((REGNO) > 0 && (REGNO) <= 31) \ |
| || (REGNO) == ARG_POINTER_REGNUM \ |
| || (REGNO) == FRAME_POINTER_REGNUM \ |
| : (reg_renumber[REGNO] > 0 \ |
| && (reg_renumber[REGNO] <= 31 \ |
| || reg_renumber[REGNO] == ARG_POINTER_REGNUM \ |
| || reg_renumber[REGNO] == FRAME_POINTER_REGNUM))) |
| |
| /* Nonzero if X is a hard reg that can be used as an index |
| or if it is a pseudo reg in the non-strict case. */ |
| #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \ |
| ((!(STRICT) && !HARD_REGISTER_P (X)) \ |
| || REGNO_OK_FOR_INDEX_P (REGNO (X))) |
| |
| /* Nonzero if X is a hard reg that can be used as a base reg |
| or if it is a pseudo reg in the non-strict case. */ |
| #define INT_REG_OK_FOR_BASE_P(X, STRICT) \ |
| ((!(STRICT) && !HARD_REGISTER_P (X)) \ |
| || REGNO_OK_FOR_BASE_P (REGNO (X))) |
| |
| |
| /* Maximum number of registers that can appear in a valid memory address. */ |
| |
| #define MAX_REGS_PER_ADDRESS 2 |
| |
| /* Recognize any constant value that is a valid address. */ |
| |
| #define CONSTANT_ADDRESS_P(X) \ |
| (GET_CODE (X) == LABEL_REF || SYMBOL_REF_P (X) \ |
| || CONST_INT_P (X) || GET_CODE (X) == CONST \ |
| || GET_CODE (X) == HIGH) |
| |
| #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15) |
| #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \ |
| && EASY_VECTOR_15((n) >> 1) \ |
| && ((n) & 1) == 0) |
| |
| #define EASY_VECTOR_MSB(n,mode) \ |
| ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \ |
| ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1)) |
| |
| |
| #define FIND_BASE_TERM rs6000_find_base_term |
| |
| /* The register number of the register used to address a table of |
| static data addresses in memory. In some cases this register is |
| defined by a processor's "application binary interface" (ABI). |
| When this macro is defined, RTL is generated for this register |
| once, as with the stack pointer and frame pointer registers. If |
| this macro is not defined, it is up to the machine-dependent files |
| to allocate such a register (if necessary). */ |
| |
| #define RS6000_PIC_OFFSET_TABLE_REGNUM 30 |
| #define PIC_OFFSET_TABLE_REGNUM \ |
| (TARGET_TOC ? TOC_REGISTER \ |
| : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \ |
| : INVALID_REGNUM) |
| |
| #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2) |
| |
| /* Define this macro if the register defined by |
| `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define |
| this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */ |
| |
| /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */ |
| |
| /* A C expression that is nonzero if X is a legitimate immediate |
| operand on the target machine when generating position independent |
| code. You can assume that X satisfies `CONSTANT_P', so you need |
| not check this. You can also assume FLAG_PIC is true, so you need |
| not check it either. You need not define this macro if all |
| constants (including `SYMBOL_REF') can be immediate operands when |
| generating position independent code. */ |
| |
| /* #define LEGITIMATE_PIC_OPERAND_P (X) */ |
| |
| /* Define as C expression which evaluates to nonzero if the tablejump |
| instruction expects the table to contain offsets from the address of the |
| table. |
| Do not define this if the table should contain absolute addresses. */ |
| #define CASE_VECTOR_PC_RELATIVE rs6000_relative_jumptables |
| |
| /* Specify the machine mode that this machine uses |
| for the index in the tablejump instruction. */ |
| #define CASE_VECTOR_MODE (rs6000_relative_jumptables ? SImode : Pmode) |
| |
| /* Define this as 1 if `char' should by default be signed; else as 0. */ |
| #define DEFAULT_SIGNED_CHAR 0 |
| |
| /* An integer expression for the size in bits of the largest integer machine |
| mode that should actually be used. */ |
| |
| /* Allow pairs of registers to be used, which is the intent of the default. */ |
| #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode) |
| |
| /* Max number of bytes we can move from memory to memory |
| in one reasonably fast instruction. */ |
| #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8) |
| #define MAX_MOVE_MAX 8 |
| |
| /* Nonzero if access to memory by bytes is no faster than for words. |
| Also nonzero if doing byte operations (specifically shifts) in registers |
| is undesirable. */ |
| #define SLOW_BYTE_ACCESS 1 |
| |
| /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD |
| will either zero-extend or sign-extend. The value of this macro should |
| be the code that says which one of the two operations is implicitly |
| done, UNKNOWN if none. */ |
| #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND |
| |
| /* Define if loading short immediate values into registers sign extends. */ |
| #define SHORT_IMMEDIATES_SIGN_EXTEND 1 |
| |
| /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */ |
| #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ |
| ((VALUE) = GET_MODE_BITSIZE (MODE), 2) |
| |
| /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of |
| zero. The hardware instructions added in Power9 and the sequences using |
| popcount return 32 or 64. */ |
| #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ |
| (TARGET_CTZ || TARGET_POPCNTD \ |
| ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2) \ |
| : ((VALUE) = -1, 2)) |
| |
| /* Specify the machine mode that pointers have. |
| After generation of rtl, the compiler makes no further distinction |
| between pointers and any other objects of this machine mode. */ |
| extern scalar_int_mode rs6000_pmode; |
| #define Pmode rs6000_pmode |
| |
| /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */ |
| #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode) |
| |
| /* Mode of a function address in a call instruction (for indexing purposes). |
| Doesn't matter on RS/6000. */ |
| #define FUNCTION_MODE SImode |
| |
| /* Define this if addresses of constant functions |
| shouldn't be put through pseudo regs where they can be cse'd. |
| Desirable on machines where ordinary constants are expensive |
| but a CALL with constant address is cheap. */ |
| #define NO_FUNCTION_CSE 1 |
| |
| /* Define this to be nonzero if shift instructions ignore all but the low-order |
| few bits. |
| |
| The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED |
| have been dropped from the PowerPC architecture. */ |
| #define SHIFT_COUNT_TRUNCATED 0 |
| |
| /* Adjust the length of an INSN. LENGTH is the currently-computed length and |
| should be adjusted to reflect any required changes. This macro is used when |
| there is some systematic length adjustment required that would be difficult |
| to express in the length attribute. |
| |
| In the PowerPC, we use this to adjust the length of an instruction if one or |
| more prefixed instructions are generated, using the attribute |
| num_prefixed_insns. A prefixed instruction is 8 bytes instead of 4, but the |
| hardware requires that a prefied instruciton does not cross a 64-byte |
| boundary. This means the compiler has to assume the length of the first |
| prefixed instruction is 12 bytes instead of 8 bytes. Since the length is |
| already set for the non-prefixed instruction, we just need to udpate for the |
| difference. */ |
| |
| #define ADJUST_INSN_LENGTH(INSN,LENGTH) \ |
| (LENGTH) = rs6000_adjust_insn_length ((INSN), (LENGTH)) |
| |
| /* Given a comparison code (EQ, NE, etc.) and the first operand of a |
| COMPARE, return the mode to be used for the comparison. For |
| floating-point, CCFPmode should be used. CCUNSmode should be used |
| for unsigned comparisons. CCEQmode should be used when we are |
| doing an inequality comparison on the result of a |
| comparison. CCmode should be used in all other cases. */ |
| |
| #define SELECT_CC_MODE(OP,X,Y) \ |
| (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \ |
| : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \ |
| : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \ |
| ? CCEQmode : CCmode)) |
| |
| /* Can the condition code MODE be safely reversed? This is safe in |
| all cases on this port, because at present it doesn't use the |
| trapping FP comparisons (fcmpo). */ |
| #define REVERSIBLE_CC_MODE(MODE) 1 |
| |
| /* Given a condition code and a mode, return the inverse condition. */ |
| #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE) |
| |
| |
| /* Target cpu costs. */ |
| |
| struct processor_costs { |
| const int mulsi; /* cost of SImode multiplication. */ |
| const int mulsi_const; /* cost of SImode multiplication by constant. */ |
| const int mulsi_const9; /* cost of SImode mult by short constant. */ |
| const int muldi; /* cost of DImode multiplication. */ |
| const int divsi; /* cost of SImode division. */ |
| const int divdi; /* cost of DImode division. */ |
| const int fp; /* cost of simple SFmode and DFmode insns. */ |
| const int dmul; /* cost of DFmode multiplication (and fmadd). */ |
| const int sdiv; /* cost of SFmode division (fdivs). */ |
| const int ddiv; /* cost of DFmode division (fdiv). */ |
| const int cache_line_size; /* cache line size in bytes. */ |
| const int l1_cache_size; /* size of l1 cache, in kilobytes. */ |
| const int l2_cache_size; /* size of l2 cache, in kilobytes. */ |
| const int simultaneous_prefetches; /* number of parallel prefetch |
| operations. */ |
| const int sfdf_convert; /* cost of SF->DF conversion. */ |
| }; |
| |
| extern const struct processor_costs *rs6000_cost; |
| |
| /* Control the assembler format that we output. */ |
| |
| /* A C string constant describing how to begin a comment in the target |
| assembler language. The compiler assumes that the comment will end at |
| the end of the line. */ |
| #define ASM_COMMENT_START " #" |
| |
| /* Flag to say the TOC is initialized */ |
| extern int toc_initialized; |
| |
| /* Macro to output a special constant pool entry. Go to WIN if we output |
| it. Otherwise, it is written the usual way. |
| |
| On the RS/6000, toc entries are handled this way. */ |
| |
| #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \ |
| { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \ |
| { \ |
| output_toc (FILE, X, LABELNO, MODE); \ |
| goto WIN; \ |
| } \ |
| } |
| |
| #ifdef HAVE_GAS_WEAK |
| #define RS6000_WEAK 1 |
| #else |
| #define RS6000_WEAK 0 |
| #endif |
| |
| #if RS6000_WEAK |
| /* Used in lieu of ASM_WEAKEN_LABEL. */ |
| #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \ |
| rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL)) |
| #endif |
| |
| #if HAVE_GAS_WEAKREF |
| #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \ |
| do \ |
| { \ |
| fputs ("\t.weakref\t", (FILE)); \ |
| RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ |
| fputs (", ", (FILE)); \ |
| RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \ |
| if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \ |
| && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \ |
| { \ |
| fputs ("\n\t.weakref\t.", (FILE)); \ |
| RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ |
| fputs (", .", (FILE)); \ |
| RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \ |
| } \ |
| fputc ('\n', (FILE)); \ |
| } while (0) |
| #endif |
| |
| /* This implements the `alias' attribute. */ |
| #undef ASM_OUTPUT_DEF_FROM_DECLS |
| #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \ |
| do \ |
| { \ |
| const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \ |
| const char *name = IDENTIFIER_POINTER (TARGET); \ |
| if (TREE_CODE (DECL) == FUNCTION_DECL \ |
| && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \ |
| { \ |
| if (TREE_PUBLIC (DECL)) \ |
| { \ |
| if (!RS6000_WEAK || !DECL_WEAK (DECL)) \ |
| { \ |
| fputs ("\t.globl\t.", FILE); \ |
| RS6000_OUTPUT_BASENAME (FILE, alias); \ |
| putc ('\n', FILE); \ |
| } \ |
| } \ |
| else if (TARGET_XCOFF) \ |
| { \ |
| if (!RS6000_WEAK || !DECL_WEAK (DECL)) \ |
| { \ |
| fputs ("\t.lglobl\t.", FILE); \ |
| RS6000_OUTPUT_BASENAME (FILE, alias); \ |
| putc ('\n', FILE); \ |
| fputs ("\t.lglobl\t", FILE); \ |
| RS6000_OUTPUT_BASENAME (FILE, alias); \ |
| putc ('\n', FILE); \ |
| } \ |
| } \ |
| fputs ("\t.set\t.", FILE); \ |
| RS6000_OUTPUT_BASENAME (FILE, alias); \ |
| fputs (",.", FILE); \ |
| RS6000_OUTPUT_BASENAME (FILE, name); \ |
| fputc ('\n', FILE); \ |
| } \ |
| ASM_OUTPUT_DEF (FILE, alias, name); \ |
| } \ |
| while (0) |
| |
| #define TARGET_ASM_FILE_START rs6000_file_start |
| |
| /* Output to assembler file text saying following lines |
| may contain character constants, extra white space, comments, etc. */ |
| |
| #define ASM_APP_ON "" |
| |
| /* Output to assembler file text saying following lines |
| no longer contain unusual constructs. */ |
| |
| #define ASM_APP_OFF "" |
| |
| /* How to refer to registers in assembler output. |
| This sequence is indexed by compiler's hard-register-number (see above). */ |
| |
| extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */ |
| |
| #define REGISTER_NAMES \ |
| { \ |
| &rs6000_reg_names[ 0][0], /* r0 */ \ |
| &rs6000_reg_names[ 1][0], /* r1 */ \ |
| &rs6000_reg_names[ 2][0], /* r2 */ \ |
| &rs6000_reg_names[ 3][0], /* r3 */ \ |
| &rs6000_reg_names[ 4][0], /* r4 */ \ |
| &rs6000_reg_names[ 5][0], /* r5 */ \ |
| &rs6000_reg_names[ 6][0], /* r6 */ \ |
| &rs6000_reg_names[ 7][0], /* r7 */ \ |
| &rs6000_reg_names[ 8][0], /* r8 */ \ |
| &rs6000_reg_names[ 9][0], /* r9 */ \ |
| &rs6000_reg_names[10][0], /* r10 */ \ |
| &rs6000_reg_names[11][0], /* r11 */ \ |
| &rs6000_reg_names[12][0], /* r12 */ \ |
| &rs6000_reg_names[13][0], /* r13 */ \ |
| &rs6000_reg_names[14][0], /* r14 */ \ |
| &rs6000_reg_names[15][0], /* r15 */ \ |
| &rs6000_reg_names[16][0], /* r16 */ \ |
| &rs6000_reg_names[17][0], /* r17 */ \ |
| &rs6000_reg_names[18][0], /* r18 */ \ |
| &rs6000_reg_names[19][0], /* r19 */ \ |
| &rs6000_reg_names[20][0], /* r20 */ \ |
| &rs6000_reg_names[21][0], /* r21 */ \ |
| &rs6000_reg_names[22][0], /* r22 */ \ |
| &rs6000_reg_names[23][0], /* r23 */ \ |
| &rs6000_reg_names[24][0], /* r24 */ \ |
| &rs6000_reg_names[25][0], /* r25 */ \ |
| &rs6000_reg_names[26][0], /* r26 */ \ |
| &rs6000_reg_names[27][0], /* r27 */ \ |
| &rs6000_reg_names[28][0], /* r28 */ \ |
| &rs6000_reg_names[29][0], /* r29 */ \ |
| &rs6000_reg_names[30][0], /* r30 */ \ |
| &rs6000_reg_names[31][0], /* r31 */ \ |
| \ |
| &rs6000_reg_names[32][0], /* fr0 */ \ |
| &rs6000_reg_names[33][0], /* fr1 */ \ |
| &rs6000_reg_names[34][0], /* fr2 */ \ |
| &rs6000_reg_names[35][0], /* fr3 */ \ |
| &rs6000_reg_names[36][0], /* fr4 */ \ |
| &rs6000_reg_names[37][0], /* fr5 */ \ |
| &rs6000_reg_names[38][0], /* fr6 */ \ |
| &rs6000_reg_names[39][0], /* fr7 */ \ |
| &rs6000_reg_names[40][0], /* fr8 */ \ |
| &rs6000_reg_names[41][0], /* fr9 */ \ |
| &rs6000_reg_names[42][0], /* fr10 */ \ |
| &rs6000_reg_names[43][0], /* fr11 */ \ |
| &rs6000_reg_names[44][0], /* fr12 */ \ |
| &rs6000_reg_names[45][0], /* fr13 */ \ |
| &rs6000_reg_names[46][0], /* fr14 */ \ |
| &rs6000_reg_names[47][0], /* fr15 */ \ |
| &rs6000_reg_names[48][0], /* fr16 */ \ |
| &rs6000_reg_names[49][0], /* fr17 */ \ |
| &rs6000_reg_names[50][0], /* fr18 */ \ |
| &rs6000_reg_names[51][0], /* fr19 */ \ |
| &rs6000_reg_names[52][0], /* fr20 */ \ |
| &rs6000_reg_names[53][0], /* fr21 */ \ |
| &rs6000_reg_names[54][0], /* fr22 */ \ |
| &rs6000_reg_names[55][0], /* fr23 */ \ |
| &rs6000_reg_names[56][0], /* fr24 */ \ |
| &rs6000_reg_names[57][0], /* fr25 */ \ |
| &rs6000_reg_names[58][0], /* fr26 */ \ |
| &rs6000_reg_names[59][0], /* fr27 */ \ |
| &rs6000_reg_names[60][0], /* fr28 */ \ |
| &rs6000_reg_names[61][0], /* fr29 */ \ |
| &rs6000_reg_names[62][0], /* fr30 */ \ |
| &rs6000_reg_names[63][0], /* fr31 */ \ |
| \ |
| &rs6000_reg_names[64][0], /* vr0 */ \ |
| &rs6000_reg_names[65][0], /* vr1 */ \ |
| &rs6000_reg_names[66][0], /* vr2 */ \ |
| &rs6000_reg_names[67][0], /* vr3 */ \ |
| &rs6000_reg_names[68][0], /* vr4 */ \ |
| &rs6000_reg_names[69][0], /* vr5 */ \ |
| &rs6000_reg_names[70][0], /* vr6 */ \ |
| &rs6000_reg_names[71][0], /* vr7 */ \ |
| &rs6000_reg_names[72][0], /* vr8 */ \ |
| &rs6000_reg_names[73][0], /* vr9 */ \ |
| &rs6000_reg_names[74][0], /* vr10 */ \ |
| &rs6000_reg_names[75][0], /* vr11 */ \ |
| &rs6000_reg_names[76][0], /* vr12 */ \ |
| &rs6000_reg_names[77][0], /* vr13 */ \ |
| &rs6000_reg_names[78][0], /* vr14 */ \ |
| &rs6000_reg_names[79][0], /* vr15 */ \ |
| &rs6000_reg_names[80][0], /* vr16 */ \ |
| &rs6000_reg_names[81][0], /* vr17 */ \ |
| &rs6000_reg_names[82][0], /* vr18 */ \ |
| &rs6000_reg_names[83][0], /* vr19 */ \ |
| &rs6000_reg_names[84][0], /* vr20 */ \ |
| &rs6000_reg_names[85][0], /* vr21 */ \ |
| &rs6000_reg_names[86][0], /* vr22 */ \ |
| &rs6000_reg_names[87][0], /* vr23 */ \ |
| &rs6000_reg_names[88][0], /* vr24 */ \ |
| &rs6000_reg_names[89][0], /* vr25 */ \ |
| &rs6000_reg_names[90][0], /* vr26 */ \ |
| &rs6000_reg_names[91][0], /* vr27 */ \ |
| &rs6000_reg_names[92][0], /* vr28 */ \ |
| &rs6000_reg_names[93][0], /* vr29 */ \ |
| &rs6000_reg_names[94][0], /* vr30 */ \ |
| &rs6000_reg_names[95][0], /* vr31 */ \ |
| \ |
| &rs6000_reg_names[96][0], /* lr */ \ |
| &rs6000_reg_names[97][0], /* ctr */ \ |
| &rs6000_reg_names[98][0], /* ca */ \ |
| &rs6000_reg_names[99][0], /* ap */ \ |
| \ |
| &rs6000_reg_names[100][0], /* cr0 */ \ |
| &rs6000_reg_names[101][0], /* cr1 */ \ |
| &rs6000_reg_names[102][0], /* cr2 */ \ |
| &rs6000_reg_names[103][0], /* cr3 */ \ |
| &rs6000_reg_names[104][0], /* cr4 */ \ |
| &rs6000_reg_names[105][0], /* cr5 */ \ |
| &rs6000_reg_names[106][0], /* cr6 */ \ |
| &rs6000_reg_names[107][0], /* cr7 */ \ |
| \ |
| &rs6000_reg_names[108][0], /* vrsave */ \ |
| &rs6000_reg_names[109][0], /* vscr */ \ |
| \ |
| &rs6000_reg_names[110][0] /* sfp */ \ |
| } |
| |
| /* Table of additional register names to use in user input. */ |
| |
| #define ADDITIONAL_REGISTER_NAMES \ |
| {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \ |
| {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \ |
| {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \ |
| {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \ |
| {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \ |
| {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \ |
| {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \ |
| {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \ |
| {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \ |
| {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \ |
| {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \ |
| {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \ |
| {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \ |
| {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \ |
| {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \ |
| {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \ |
| {"v0", 64}, {"v1", 65}, {"v2", 66}, {"v3", 67}, \ |
| {"v4", 68}, {"v5", 69}, {"v6", 70}, {"v7", 71}, \ |
| {"v8", 72}, {"v9", 73}, {"v10", 74}, {"v11", 75}, \ |
| {"v12", 76}, {"v13", 77}, {"v14", 78}, {"v15", 79}, \ |
| {"v16", 80}, {"v17", 81}, {"v18", 82}, {"v19", 83}, \ |
| {"v20", 84}, {"v21", 85}, {"v22", 86}, {"v23", 87}, \ |
| {"v24", 88}, {"v25", 89}, {"v26", 90}, {"v27", 91}, \ |
| {"v28", 92}, {"v29", 93}, {"v30", 94}, {"v31", 95}, \ |
| {"vrsave", 108}, {"vscr", 109}, \ |
| /* no additional names for: lr, ctr, ap */ \ |
| {"cr0", 100},{"cr1", 101},{"cr2", 102},{"cr3", 103}, \ |
| {"cr4", 104},{"cr5", 105},{"cr6", 106},{"cr7", 107}, \ |
| {"cc", 100},{"sp", 1}, {"toc", 2}, \ |
| /* CA is only part of XER, but we do not model the other parts (yet). */ \ |
| {"xer", 98}, \ |
| /* VSX registers overlaid on top of FR, Altivec registers */ \ |
| {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \ |
| {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \ |
| {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \ |
| {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \ |
| {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \ |
| {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \ |
| {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \ |
| {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \ |
| {"vs32", 64}, {"vs33", 65}, {"vs34", 66}, {"vs35", 67}, \ |
| {"vs36", 68}, {"vs37", 69}, {"vs38", 70}, {"vs39", 71}, \ |
| {"vs40", 72}, {"vs41", 73}, {"vs42", 74}, {"vs43", 75}, \ |
| {"vs44", 76}, {"vs45", 77}, {"vs46", 78}, {"vs47", 79}, \ |
| {"vs48", 80}, {"vs49", 81}, {"vs50", 82}, {"vs51", 83}, \ |
| {"vs52", 84}, {"vs53", 85}, {"vs54", 86}, {"vs55", 87}, \ |
| {"vs56", 88}, {"vs57", 89}, {"vs58", 90}, {"vs59", 91}, \ |
| {"vs60", 92}, {"vs61", 93}, {"vs62", 94}, {"vs63", 95}, \ |
| } |
| |
| /* This is how to output an element of a case-vector that is relative. */ |
| |
| #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ |
| do { char buf[100]; \ |
| fputs ("\t.long ", FILE); \ |
| ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \ |
| assemble_name (FILE, buf); \ |
| putc ('-', FILE); \ |
| ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \ |
| assemble_name (FILE, buf); \ |
| putc ('\n', FILE); \ |
| } while (0) |
| |
| /* This is how to output an element of a case-vector |
| that is non-relative. */ |
| #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ |
| rs6000_output_addr_vec_elt ((FILE), (VALUE)) |
| |
| /* This is how to output an assembler line |
| that says to advance the location counter |
| to a multiple of 2**LOG bytes. */ |
| |
| #define ASM_OUTPUT_ALIGN(FILE,LOG) \ |
| if ((LOG) != 0) \ |
| fprintf (FILE, "\t.align %d\n", (LOG)) |
| |
| /* How to align the given loop. */ |
| #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL) |
| |
| /* Alignment guaranteed by __builtin_malloc. */ |
| /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT. |
| However, specifying the stronger guarantee currently leads to |
| a regression in SPEC CPU2006 437.leslie3d. The stronger |
| guarantee should be implemented here once that's fixed. */ |
| #define MALLOC_ABI_ALIGNMENT (64) |
| |
| /* Pick up the return address upon entry to a procedure. Used for |
| dwarf2 unwind information. This also enables the table driven |
| mechanism. */ |
| |
| #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO) |
| #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO) |
| |
| /* Describe how we implement __builtin_eh_return. */ |
| #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM) |
| #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10) |
| |
| /* Print operand X (an rtx) in assembler syntax to file FILE. |
| CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. |
| For `%' followed by punctuation, CODE is the punctuation and X is null. */ |
| |
| #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) |
| |
| /* Define which CODE values are valid. */ |
| |
| #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&') |
| |
| /* Print a memory address as an operand to reference that memory location. */ |
| |
| #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR) |
| |
| /* For switching between functions with different target attributes. */ |
| #define SWITCHABLE_TARGET 1 |
| |
| /* uncomment for disabling the corresponding default options */ |
| /* #define MACHINE_no_sched_interblock */ |
| /* #define MACHINE_no_sched_speculative */ |
| /* #define MACHINE_no_sched_speculative_load */ |
| |
| /* General flags. */ |
| extern int frame_pointer_needed; |
| |
| enum rs6000_builtin_type_index |
| { |
| RS6000_BTI_NOT_OPAQUE, |
| RS6000_BTI_opaque_V4SI, |
| RS6000_BTI_V16QI, /* __vector signed char */ |
| RS6000_BTI_V1TI, |
| RS6000_BTI_V2DI, |
| RS6000_BTI_V2DF, |
| RS6000_BTI_V4HI, |
| RS6000_BTI_V4SI, |
| RS6000_BTI_V4SF, |
| RS6000_BTI_V8HI, |
| RS6000_BTI_unsigned_V16QI, /* __vector unsigned char */ |
| RS6000_BTI_unsigned_V1TI, |
| RS6000_BTI_unsigned_V8HI, |
| RS6000_BTI_unsigned_V4SI, |
| RS6000_BTI_unsigned_V2DI, |
| RS6000_BTI_bool_char, /* __bool char */ |
| RS6000_BTI_bool_short, /* __bool short */ |
| RS6000_BTI_bool_int, /* __bool int */ |
| RS6000_BTI_bool_long_long, /* __bool long long */ |
| RS6000_BTI_pixel, /* __pixel (16 bits arranged as 4 |
| channels of 1, 5, 5, and 5 bits |
| respectively as packed with the |
| vpkpx insn. __pixel is only |
| meaningful as a vector type. |
| There is no corresponding scalar |
| __pixel data type.) */ |
| RS6000_BTI_bool_V16QI, /* __vector __bool char */ |
| RS6000_BTI_bool_V8HI, /* __vector __bool short */ |
| RS6000_BTI_bool_V4SI, /* __vector __bool int */ |
| RS6000_BTI_bool_V2DI, /* __vector __bool long */ |
| RS6000_BTI_bool_V1TI, /* __vector __bool 128-bit */ |
| RS6000_BTI_pixel_V8HI, /* __vector __pixel */ |
| RS6000_BTI_long, /* long_integer_type_node */ |
| RS6000_BTI_unsigned_long, /* long_unsigned_type_node */ |
| RS6000_BTI_long_long, /* long_long_integer_type_node */ |
| RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */ |
| RS6000_BTI_INTQI, /* (signed) intQI_type_node */ |
| RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */ |
| RS6000_BTI_INTHI, /* intHI_type_node */ |
| RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */ |
| RS6000_BTI_INTSI, /* intSI_type_node (signed) */ |
| RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */ |
| RS6000_BTI_INTDI, /* intDI_type_node */ |
| RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */ |
| RS6000_BTI_INTTI, /* intTI_type_node */ |
| RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */ |
| RS6000_BTI_float, /* float_type_node */ |
| RS6000_BTI_double, /* double_type_node */ |
| RS6000_BTI_long_double, /* long_double_type_node */ |
| RS6000_BTI_dfloat64, /* dfloat64_type_node */ |
| RS6000_BTI_dfloat128, /* dfloat128_type_node */ |
| RS6000_BTI_void, /* void_type_node */ |
| RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */ |
| RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */ |
| RS6000_BTI_const_str, /* pointer to const char * */ |
| RS6000_BTI_vector_pair, /* unsigned 256-bit types (vector pair). */ |
| RS6000_BTI_vector_quad, /* unsigned 512-bit types (vector quad). */ |
| RS6000_BTI_const_ptr_void, /* const pointer to void */ |
| RS6000_BTI_ptr_V16QI, |
| RS6000_BTI_ptr_V1TI, |
| RS6000_BTI_ptr_V2DI, |
| RS6000_BTI_ptr_V2DF, |
| RS6000_BTI_ptr_V4SI, |
| RS6000_BTI_ptr_V4SF, |
| RS6000_BTI_ptr_V8HI, |
| RS6000_BTI_ptr_unsigned_V16QI, |
| RS6000_BTI_ptr_unsigned_V1TI, |
| RS6000_BTI_ptr_unsigned_V8HI, |
| RS6000_BTI_ptr_unsigned_V4SI, |
| RS6000_BTI_ptr_unsigned_V2DI, |
| RS6000_BTI_ptr_bool_V16QI, |
| RS6000_BTI_ptr_bool_V8HI, |
| RS6000_BTI_ptr_bool_V4SI, |
| RS6000_BTI_ptr_bool_V2DI, |
| RS6000_BTI_ptr_bool_V1TI, |
| RS6000_BTI_ptr_pixel_V8HI, |
| RS6000_BTI_ptr_INTQI, |
| RS6000_BTI_ptr_UINTQI, |
| RS6000_BTI_ptr_INTHI, |
| RS6000_BTI_ptr_UINTHI, |
| RS6000_BTI_ptr_INTSI, |
| RS6000_BTI_ptr_UINTSI, |
| RS6000_BTI_ptr_INTDI, |
| RS6000_BTI_ptr_UINTDI, |
| RS6000_BTI_ptr_INTTI, |
| RS6000_BTI_ptr_UINTTI, |
| RS6000_BTI_ptr_long_integer, |
| RS6000_BTI_ptr_long_unsigned, |
| RS6000_BTI_ptr_float, |
| RS6000_BTI_ptr_double, |
| RS6000_BTI_ptr_long_double, |
| RS6000_BTI_ptr_dfloat64, |
| RS6000_BTI_ptr_dfloat128, |
| RS6000_BTI_ptr_vector_pair, |
| RS6000_BTI_ptr_vector_quad, |
| RS6000_BTI_ptr_long_long, |
| RS6000_BTI_ptr_long_long_unsigned, |
| RS6000_BTI_MAX |
| }; |
| |
| |
| #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI]) |
| #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI]) |
| #define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI]) |
| #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI]) |
| #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF]) |
| #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI]) |
| #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI]) |
| #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF]) |
| #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI]) |
| #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI]) |
| #define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI]) |
| #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI]) |
| #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI]) |
| #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI]) |
| #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char]) |
| #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short]) |
| #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int]) |
| #define bool_long_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long_long]) |
| #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel]) |
| #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI]) |
| #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI]) |
| #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI]) |
| #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI]) |
| #define bool_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V1TI]) |
| #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI]) |
| |
| #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long]) |
| #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long]) |
| #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long]) |
| #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long]) |
| #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI]) |
| #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI]) |
| #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI]) |
| #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI]) |
| #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI]) |
| #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI]) |
| #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI]) |
| #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI]) |
| #define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI]) |
| #define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI]) |
| #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float]) |
| #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double]) |
| #define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double]) |
| #define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64]) |
| #define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128]) |
| #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void]) |
| #define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float]) |
| #define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float]) |
| #define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str]) |
| #define vector_pair_type_node (rs6000_builtin_types[RS6000_BTI_vector_pair]) |
| #define vector_quad_type_node (rs6000_builtin_types[RS6000_BTI_vector_quad]) |
| #define pcvoid_type_node (rs6000_builtin_types[RS6000_BTI_const_ptr_void]) |
| #define ptr_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V16QI]) |
| #define ptr_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V1TI]) |
| #define ptr_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V2DI]) |
| #define ptr_V2DF_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V2DF]) |
| #define ptr_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V4SI]) |
| #define ptr_V4SF_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V4SF]) |
| #define ptr_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V8HI]) |
| #define ptr_unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V16QI]) |
| #define ptr_unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V1TI]) |
| #define ptr_unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V8HI]) |
| #define ptr_unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V4SI]) |
| #define ptr_unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V2DI]) |
| #define ptr_bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V16QI]) |
| #define ptr_bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V8HI]) |
| #define ptr_bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V4SI]) |
| #define ptr_bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V2DI]) |
| #define ptr_bool_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V1TI]) |
| #define ptr_pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_pixel_V8HI]) |
| #define ptr_intQI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTQI]) |
| #define ptr_uintQI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTQI]) |
| #define ptr_intHI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTHI]) |
| #define ptr_uintHI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTHI]) |
| #define ptr_intSI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTSI]) |
| #define ptr_uintSI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTSI]) |
| #define ptr_intDI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTDI]) |
| #define ptr_uintDI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTDI]) |
| #define ptr_intTI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTTI]) |
| #define ptr_uintTI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTTI]) |
| #define ptr_long_integer_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_integer]) |
| #define ptr_long_unsigned_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_unsigned]) |
| #define ptr_float_type_node (rs6000_builtin_types[RS6000_BTI_ptr_float]) |
| #define ptr_double_type_node (rs6000_builtin_types[RS6000_BTI_ptr_double]) |
| #define ptr_long_double_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_double]) |
| #define ptr_dfloat64_type_node (rs6000_builtin_types[RS6000_BTI_ptr_dfloat64]) |
| #define ptr_dfloat128_type_node (rs6000_builtin_types[RS6000_BTI_ptr_dfloat128]) |
| #define ptr_vector_pair_type_node (rs6000_builtin_types[RS6000_BTI_ptr_vector_pair]) |
| #define ptr_vector_quad_type_node (rs6000_builtin_types[RS6000_BTI_ptr_vector_quad]) |
| #define ptr_long_long_integer_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_long]) |
| #define ptr_long_long_unsigned_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_long_unsigned]) |
| |
| extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX]; |
| |
| #ifndef USED_FOR_TARGET |
| extern GTY(()) tree altivec_builtin_mask_for_load; |
| extern GTY(()) section *toc_section; |
| |
| /* A C structure for machine-specific, per-function data. |
| This is added to the cfun structure. */ |
| typedef struct GTY(()) machine_function |
| { |
| /* Flags if __builtin_return_address (n) with n >= 1 was used. */ |
| int ra_needs_full_frame; |
| /* Flags if __builtin_return_address (0) was used. */ |
| int ra_need_lr; |
| /* Cache lr_save_p after expansion of builtin_eh_return. */ |
| int lr_save_state; |
| /* Whether we need to save the TOC to the reserved stack location in the |
| function prologue. */ |
| bool save_toc_in_prologue; |
| /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4 |
| varargs save area. */ |
| HOST_WIDE_INT varargs_save_offset; |
| /* Alternative internal arg pointer for -fsplit-stack. */ |
| rtx split_stack_arg_pointer; |
| bool split_stack_argp_used; |
| /* Flag if r2 setup is needed with ELFv2 ABI. */ |
| bool r2_setup_needed; |
| /* The number of components we use for separate shrink-wrapping. */ |
| int n_components; |
| /* The components already handled by separate shrink-wrapping, which should |
| not be considered by the prologue and epilogue. */ |
| bool gpr_is_wrapped_separately[32]; |
| bool fpr_is_wrapped_separately[32]; |
| bool lr_is_wrapped_separately; |
| bool toc_is_wrapped_separately; |
| bool mma_return_type_error; |
| /* Indicate global entry is emitted, only useful when the function requires |
| global entry. It helps to control the patchable area before and after |
| local entry. */ |
| bool global_entry_emitted; |
| } machine_function; |
| #endif |
| |
| |
| #define TARGET_SUPPORTS_WIDE_INT 1 |
| |
| #if (GCC_VERSION >= 3000) |
| #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128 |
| #endif |
| |
| /* Whether a given VALUE is a valid 16 or 34-bit signed integer. */ |
| #define SIGNED_INTEGER_NBIT_P(VALUE, N) \ |
| IN_RANGE ((VALUE), \ |
| -(HOST_WIDE_INT_1 << ((N)-1)), \ |
| (HOST_WIDE_INT_1 << ((N)-1)) - 1) |
| |
| #define SIGNED_INTEGER_16BIT_P(VALUE) SIGNED_INTEGER_NBIT_P (VALUE, 16) |
| #define SIGNED_INTEGER_34BIT_P(VALUE) SIGNED_INTEGER_NBIT_P (VALUE, 34) |
| |
| /* Like SIGNED_INTEGER_16BIT_P and SIGNED_INTEGER_34BIT_P, but with an extra |
| argument that gives a length to validate a range of addresses, to allow for |
| splitting insns into several insns, each of which has an offsettable |
| address. */ |
| #define SIGNED_16BIT_OFFSET_EXTRA_P(VALUE, EXTRA) \ |
| IN_RANGE ((VALUE), \ |
| -(HOST_WIDE_INT_1 << 15), \ |
| (HOST_WIDE_INT_1 << 15) - 1 - (EXTRA)) |
| |
| #define SIGNED_34BIT_OFFSET_EXTRA_P(VALUE, EXTRA) \ |
| IN_RANGE ((VALUE), \ |
| -(HOST_WIDE_INT_1 << 33), \ |
| (HOST_WIDE_INT_1 << 33) - 1 - (EXTRA)) |
| |
| /* Define this if some processing needs to be done before outputting the |
| assembler code. On the PowerPC, we remember if the current insn is a normal |
| prefixed insn where we need to emit a 'p' before the insn. */ |
| #define FINAL_PRESCAN_INSN(INSN, OPERANDS, NOPERANDS) \ |
| do \ |
| { \ |
| if (TARGET_PREFIXED) \ |
| rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS); \ |
| } \ |
| while (0) |
| |
| /* Do anything special before emitting an opcode. We use it to emit a 'p' for |
| prefixed insns that is set in FINAL_PRESCAN_INSN. */ |
| #define ASM_OUTPUT_OPCODE(STREAM, OPCODE) \ |
| do \ |
| { \ |
| if (TARGET_PREFIXED) \ |
| rs6000_asm_output_opcode (STREAM); \ |
| } \ |
| while (0) |