| // Copyright 2018 Ulf Adams |
| // |
| // The contents of this file may be used under the terms of the Apache License, |
| // Version 2.0. |
| // |
| // (See accompanying file LICENSE-Apache or copy at |
| // http://www.apache.org/licenses/LICENSE-2.0) |
| // |
| // Alternatively, the contents of this file may be used under the terms of |
| // the Boost Software License, Version 1.0. |
| // (See accompanying file LICENSE-Boost or copy at |
| // https://www.boost.org/LICENSE_1_0.txt) |
| // |
| // Unless required by applicable law or agreed to in writing, this software |
| // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. |
| #ifndef RYU_COMMON_H |
| #define RYU_COMMON_H |
| |
| |
| #if defined(_M_IX86) || defined(_M_ARM) |
| #define RYU_32_BIT_PLATFORM |
| #endif |
| |
| // Returns the number of decimal digits in v, which must not contain more than 9 digits. |
| static inline uint32_t decimalLength9(const uint32_t v) { |
| // Function precondition: v is not a 10-digit number. |
| // (f2s: 9 digits are sufficient for round-tripping.) |
| // (d2fixed: We print 9-digit blocks.) |
| assert(v < 1000000000); |
| if (v >= 100000000) { return 9; } |
| if (v >= 10000000) { return 8; } |
| if (v >= 1000000) { return 7; } |
| if (v >= 100000) { return 6; } |
| if (v >= 10000) { return 5; } |
| if (v >= 1000) { return 4; } |
| if (v >= 100) { return 3; } |
| if (v >= 10) { return 2; } |
| return 1; |
| } |
| |
| // Returns e == 0 ? 1 : [log_2(5^e)]; requires 0 <= e <= 3528. |
| static inline int32_t log2pow5(const int32_t e) { |
| // This approximation works up to the point that the multiplication overflows at e = 3529. |
| // If the multiplication were done in 64 bits, it would fail at 5^4004 which is just greater |
| // than 2^9297. |
| assert(e >= 0); |
| assert(e <= 3528); |
| return (int32_t) ((((uint32_t) e) * 1217359) >> 19); |
| } |
| |
| // Returns e == 0 ? 1 : ceil(log_2(5^e)); requires 0 <= e <= 3528. |
| static inline int32_t pow5bits(const int32_t e) { |
| // This approximation works up to the point that the multiplication overflows at e = 3529. |
| // If the multiplication were done in 64 bits, it would fail at 5^4004 which is just greater |
| // than 2^9297. |
| assert(e >= 0); |
| assert(e <= 3528); |
| return (int32_t) (((((uint32_t) e) * 1217359) >> 19) + 1); |
| } |
| |
| // Returns e == 0 ? 1 : ceil(log_2(5^e)); requires 0 <= e <= 3528. |
| static inline int32_t ceil_log2pow5(const int32_t e) { |
| return log2pow5(e) + 1; |
| } |
| |
| // Returns floor(log_10(2^e)); requires 0 <= e <= 1650. |
| static inline uint32_t log10Pow2(const int32_t e) { |
| // The first value this approximation fails for is 2^1651 which is just greater than 10^297. |
| assert(e >= 0); |
| assert(e <= 1650); |
| return (((uint32_t) e) * 78913) >> 18; |
| } |
| |
| // Returns floor(log_10(5^e)); requires 0 <= e <= 2620. |
| static inline uint32_t log10Pow5(const int32_t e) { |
| // The first value this approximation fails for is 5^2621 which is just greater than 10^1832. |
| assert(e >= 0); |
| assert(e <= 2620); |
| return (((uint32_t) e) * 732923) >> 20; |
| } |
| |
| static inline uint32_t float_to_bits(const float f) { |
| uint32_t bits = 0; |
| memcpy(&bits, &f, sizeof(float)); |
| return bits; |
| } |
| |
| static inline uint64_t double_to_bits(const double d) { |
| uint64_t bits = 0; |
| memcpy(&bits, &d, sizeof(double)); |
| return bits; |
| } |
| |
| #endif // RYU_COMMON_H |