blob: c3e6336bb43c6ab30eb2c55049e0f1a9bd5788b6 [file] [log] [blame]
/* { dg-require-effective-target vect_float } */
#include <stdarg.h>
#include "tree-vect.h"
#define N 16
float results1[N] = {192.00,240.00,288.00,336.00,384.00,432.00,480.00,528.00,0.00};
float results2[N] = {0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,54.00,120.00,198.00,288.00,390.00,504.00,630.00};
float a[N] = {0};
float e[N] = {0};
float b[N] = {0,3,6,9,12,15,18,21,24,27,30,33,36,39,42,45};
float c[N] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
__attribute__ ((noinline))
int main1 ()
{
int i;
for (i = 0; i < N/2; i++)
{
a[i] = b[i+N/2] * c[i+N/2] - b[i] * c[i];
e[i+N/2] = b[i] * c[i+N/2] + b[i+N/2] * c[i];
}
/* check results: */
for (i=0; i<N; i++)
{
if (a[i] != results1[i] || e[i] != results2[i])
abort();
}
for (i = 1; i <=N-4; i++)
{
a[i+3] = b[i-1];
}
/* check results: */
for (i = 1; i <=N-4; i++)
{
if (a[i+3] != b[i-1])
abort ();
}
return 0;
}
int main (void)
{
check_vect ();
return main1 ();
}
/* { dg-final { scan-tree-dump-times "vectorized 2 loops" 1 "vect" } } */
/* { dg-final { scan-tree-dump-times "Vectorizing an unaligned access" 0 "vect" { target { { vect_aligned_arrays } && {! vect_sizes_32B_16B} } } } } */
/* { dg-final { scan-tree-dump-times "Vectorizing an unaligned access" 1 "vect" { target { {! vect_aligned_arrays } && {vect_sizes_32B_16B} } } } } */