| dnl Support macro file for intrinsic functions. |
| dnl Contains the generic sections of the array functions. |
| dnl This file is part of the GNU Fortran Runtime Library (libgfortran) |
| dnl Distributed under the GNU GPL with exception. See COPYING for details. |
| dnl |
| dnl Pass the implementation for a single section as the parameter to |
| dnl {MASK_}ARRAY_FUNCTION. |
| dnl The variables base, delta, and len describe the input section. |
| dnl For masked section the mask is described by mbase and mdelta. |
| dnl These should not be modified. The result should be stored in *dest. |
| dnl The names count, extent, sstride, dstride, base, dest, rank, dim |
| dnl retarray, array, pdim and mstride should not be used. |
| dnl The variable n is declared as index_type and may be used. |
| dnl Other variable declarations may be placed at the start of the code, |
| dnl The types of the array parameter and the return value are |
| dnl atype_name and rtype_name respectively. |
| dnl Execution should be allowed to continue to the end of the block. |
| dnl You should not return or break from the inner loop of the implementation. |
| dnl Care should also be taken to avoid using the names defined in iparm.m4 |
| define(START_ARRAY_FUNCTION, |
| `#include <string.h> |
| #include <assert.h> |
| |
| static inline int |
| compare_fcn (const atype_name *a, const atype_name *b, gfc_charlen_type n) |
| { |
| if (sizeof ('atype_name`) == 1) |
| return memcmp (a, b, n); |
| else |
| return memcmp_char4 (a, b, n); |
| } |
| |
| extern void name`'rtype_qual`_'atype_code (rtype * const restrict, |
| gfc_charlen_type, atype * const restrict, |
| const index_type * const restrict, gfc_charlen_type); |
| export_proto(name`'rtype_qual`_'atype_code); |
| |
| void |
| name`'rtype_qual`_'atype_code (rtype * const restrict retarray, |
| gfc_charlen_type xlen, atype * const restrict array, |
| const index_type * const restrict pdim, gfc_charlen_type string_len) |
| { |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type sstride[GFC_MAX_DIMENSIONS]; |
| index_type dstride[GFC_MAX_DIMENSIONS]; |
| const atype_name * restrict base; |
| rtype_name * restrict dest; |
| index_type rank; |
| index_type n; |
| index_type len; |
| index_type delta; |
| index_type dim; |
| int continue_loop; |
| |
| assert (xlen == string_len); |
| /* Make dim zero based to avoid confusion. */ |
| rank = GFC_DESCRIPTOR_RANK (array) - 1; |
| dim = (*pdim) - 1; |
| |
| if (unlikely (dim < 0 || dim > rank)) |
| { |
| runtime_error ("Dim argument incorrect in u_name intrinsic: " |
| "is %ld, should be between 1 and %ld", |
| (long int) dim + 1, (long int) rank + 1); |
| } |
| |
| len = GFC_DESCRIPTOR_EXTENT(array,dim); |
| if (len < 0) |
| len = 0; |
| |
| delta = GFC_DESCRIPTOR_STRIDE(array,dim) * string_len; |
| |
| for (n = 0; n < dim; n++) |
| { |
| sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * string_len; |
| extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); |
| |
| if (extent[n] < 0) |
| extent[n] = 0; |
| } |
| for (n = dim; n < rank; n++) |
| { |
| sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1) * string_len; |
| extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); |
| |
| if (extent[n] < 0) |
| extent[n] = 0; |
| } |
| |
| if (retarray->base_addr == NULL) |
| { |
| size_t alloc_size, str; |
| |
| for (n = 0; n < rank; n++) |
| { |
| if (n == 0) |
| str = 1; |
| else |
| str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; |
| |
| GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); |
| |
| } |
| |
| retarray->offset = 0; |
| retarray->dtype.rank = rank; |
| |
| alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1] |
| * string_len; |
| |
| retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name)); |
| if (alloc_size == 0) |
| { |
| /* Make sure we have a zero-sized array. */ |
| GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); |
| return; |
| |
| } |
| } |
| else |
| { |
| if (rank != GFC_DESCRIPTOR_RANK (retarray)) |
| runtime_error ("rank of return array incorrect in" |
| " u_name intrinsic: is %ld, should be %ld", |
| (long int) (GFC_DESCRIPTOR_RANK (retarray)), |
| (long int) rank); |
| |
| if (unlikely (compile_options.bounds_check)) |
| bounds_ifunction_return ((array_t *) retarray, extent, |
| "return value", "u_name"); |
| } |
| |
| for (n = 0; n < rank; n++) |
| { |
| count[n] = 0; |
| dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n) * string_len; |
| if (extent[n] <= 0) |
| return; |
| } |
| |
| base = array->base_addr; |
| dest = retarray->base_addr; |
| |
| continue_loop = 1; |
| while (continue_loop) |
| { |
| const atype_name * restrict src; |
| src = base; |
| { |
| ')dnl |
| define(START_ARRAY_BLOCK, |
| ` if (len <= 0) |
| memset (dest, '$1`, sizeof (*dest) * string_len); |
| else |
| { |
| for (n = 0; n < len; n++, src += delta) |
| { |
| ')dnl |
| define(FINISH_ARRAY_FUNCTION, |
| ` } |
| '$1` |
| memcpy (dest, retval, sizeof (*dest) * string_len); |
| } |
| } |
| /* Advance to the next element. */ |
| count[0]++; |
| base += sstride[0]; |
| dest += dstride[0]; |
| n = 0; |
| while (count[n] == extent[n]) |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| base -= sstride[n] * extent[n]; |
| dest -= dstride[n] * extent[n]; |
| n++; |
| if (n >= rank) |
| { |
| /* Break out of the loop. */ |
| continue_loop = 0; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| base += sstride[n]; |
| dest += dstride[n]; |
| } |
| } |
| } |
| }')dnl |
| define(START_MASKED_ARRAY_FUNCTION, |
| ` |
| extern void `m'name`'rtype_qual`_'atype_code (rtype * const restrict, |
| gfc_charlen_type, atype * const restrict, |
| const index_type * const restrict, |
| gfc_array_l1 * const restrict, gfc_charlen_type); |
| export_proto(`m'name`'rtype_qual`_'atype_code); |
| |
| void |
| `m'name`'rtype_qual`_'atype_code (rtype * const restrict retarray, |
| gfc_charlen_type xlen, atype * const restrict array, |
| const index_type * const restrict pdim, |
| gfc_array_l1 * const restrict mask, |
| gfc_charlen_type string_len) |
| |
| { |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type sstride[GFC_MAX_DIMENSIONS]; |
| index_type dstride[GFC_MAX_DIMENSIONS]; |
| index_type mstride[GFC_MAX_DIMENSIONS]; |
| rtype_name * restrict dest; |
| const atype_name * restrict base; |
| const GFC_LOGICAL_1 * restrict mbase; |
| index_type rank; |
| index_type dim; |
| index_type n; |
| index_type len; |
| index_type delta; |
| index_type mdelta; |
| int mask_kind; |
| |
| if (mask == NULL) |
| { |
| name`'rtype_qual`_'atype_code (retarray, xlen, array, pdim, string_len); |
| return; |
| } |
| |
| assert (xlen == string_len); |
| |
| dim = (*pdim) - 1; |
| rank = GFC_DESCRIPTOR_RANK (array) - 1; |
| |
| if (unlikely (dim < 0 || dim > rank)) |
| { |
| runtime_error ("Dim argument incorrect in u_name intrinsic: " |
| "is %ld, should be between 1 and %ld", |
| (long int) dim + 1, (long int) rank + 1); |
| } |
| |
| len = GFC_DESCRIPTOR_EXTENT(array,dim); |
| if (len <= 0) |
| return; |
| |
| mbase = mask->base_addr; |
| |
| mask_kind = GFC_DESCRIPTOR_SIZE (mask); |
| |
| if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 |
| #ifdef HAVE_GFC_LOGICAL_16 |
| || mask_kind == 16 |
| #endif |
| ) |
| mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); |
| else |
| runtime_error ("Funny sized logical array"); |
| |
| delta = GFC_DESCRIPTOR_STRIDE(array,dim) * string_len; |
| mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim); |
| |
| for (n = 0; n < dim; n++) |
| { |
| sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * string_len; |
| mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); |
| extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); |
| |
| if (extent[n] < 0) |
| extent[n] = 0; |
| |
| } |
| for (n = dim; n < rank; n++) |
| { |
| sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1) * string_len; |
| mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1); |
| extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); |
| |
| if (extent[n] < 0) |
| extent[n] = 0; |
| } |
| |
| if (retarray->base_addr == NULL) |
| { |
| size_t alloc_size, str; |
| |
| for (n = 0; n < rank; n++) |
| { |
| if (n == 0) |
| str = 1; |
| else |
| str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; |
| |
| GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); |
| |
| } |
| |
| alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1] |
| * string_len; |
| |
| retarray->offset = 0; |
| retarray->dtype.rank = rank; |
| |
| if (alloc_size == 0) |
| { |
| /* Make sure we have a zero-sized array. */ |
| GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); |
| return; |
| } |
| else |
| retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name)); |
| |
| } |
| else |
| { |
| if (rank != GFC_DESCRIPTOR_RANK (retarray)) |
| runtime_error ("rank of return array incorrect in u_name intrinsic"); |
| |
| if (unlikely (compile_options.bounds_check)) |
| { |
| bounds_ifunction_return ((array_t *) retarray, extent, |
| "return value", "u_name"); |
| bounds_equal_extents ((array_t *) mask, (array_t *) array, |
| "MASK argument", "u_name"); |
| } |
| } |
| |
| for (n = 0; n < rank; n++) |
| { |
| count[n] = 0; |
| dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n) * string_len; |
| if (extent[n] <= 0) |
| return; |
| } |
| |
| dest = retarray->base_addr; |
| base = array->base_addr; |
| |
| while (base) |
| { |
| const atype_name * restrict src; |
| const GFC_LOGICAL_1 * restrict msrc; |
| |
| src = base; |
| msrc = mbase; |
| { |
| ')dnl |
| define(START_MASKED_ARRAY_BLOCK, |
| ` for (n = 0; n < len; n++, src += delta, msrc += mdelta) |
| { |
| ')dnl |
| define(FINISH_MASKED_ARRAY_FUNCTION, |
| ` } |
| memcpy (dest, retval, sizeof (*dest) * string_len); |
| } |
| /* Advance to the next element. */ |
| count[0]++; |
| base += sstride[0]; |
| mbase += mstride[0]; |
| dest += dstride[0]; |
| n = 0; |
| while (count[n] == extent[n]) |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| base -= sstride[n] * extent[n]; |
| mbase -= mstride[n] * extent[n]; |
| dest -= dstride[n] * extent[n]; |
| n++; |
| if (n >= rank) |
| { |
| /* Break out of the loop. */ |
| base = NULL; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| base += sstride[n]; |
| mbase += mstride[n]; |
| dest += dstride[n]; |
| } |
| } |
| } |
| }')dnl |
| define(SCALAR_ARRAY_FUNCTION, |
| ` |
| void `s'name`'rtype_qual`_'atype_code (rtype * const restrict, |
| gfc_charlen_type, atype * const restrict, |
| const index_type * const restrict, |
| GFC_LOGICAL_4 *, gfc_charlen_type); |
| |
| export_proto(`s'name`'rtype_qual`_'atype_code); |
| |
| void |
| `s'name`'rtype_qual`_'atype_code (rtype * const restrict retarray, |
| gfc_charlen_type xlen, atype * const restrict array, |
| const index_type * const restrict pdim, |
| GFC_LOGICAL_4 *mask, gfc_charlen_type string_len) |
| |
| { |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type dstride[GFC_MAX_DIMENSIONS]; |
| rtype_name * restrict dest; |
| index_type rank; |
| index_type n; |
| index_type dim; |
| |
| |
| if (mask == NULL || *mask) |
| { |
| name`'rtype_qual`_'atype_code (retarray, xlen, array, pdim, string_len); |
| return; |
| } |
| /* Make dim zero based to avoid confusion. */ |
| dim = (*pdim) - 1; |
| rank = GFC_DESCRIPTOR_RANK (array) - 1; |
| |
| if (unlikely (dim < 0 || dim > rank)) |
| { |
| runtime_error ("Dim argument incorrect in u_name intrinsic: " |
| "is %ld, should be between 1 and %ld", |
| (long int) dim + 1, (long int) rank + 1); |
| } |
| |
| for (n = 0; n < dim; n++) |
| { |
| extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); |
| |
| if (extent[n] <= 0) |
| extent[n] = 0; |
| } |
| |
| for (n = dim; n < rank; n++) |
| { |
| extent[n] = |
| GFC_DESCRIPTOR_EXTENT(array,n + 1); |
| |
| if (extent[n] <= 0) |
| extent[n] = 0; |
| } |
| |
| if (retarray->base_addr == NULL) |
| { |
| size_t alloc_size, str; |
| |
| for (n = 0; n < rank; n++) |
| { |
| if (n == 0) |
| str = 1; |
| else |
| str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; |
| |
| GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); |
| |
| } |
| |
| retarray->offset = 0; |
| retarray->dtype.rank = rank; |
| |
| alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1] |
| * string_len; |
| |
| if (alloc_size == 0) |
| { |
| /* Make sure we have a zero-sized array. */ |
| GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); |
| return; |
| } |
| else |
| retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name)); |
| } |
| else |
| { |
| if (rank != GFC_DESCRIPTOR_RANK (retarray)) |
| runtime_error ("rank of return array incorrect in" |
| " u_name intrinsic: is %ld, should be %ld", |
| (long int) (GFC_DESCRIPTOR_RANK (retarray)), |
| (long int) rank); |
| |
| if (unlikely (compile_options.bounds_check)) |
| { |
| for (n=0; n < rank; n++) |
| { |
| index_type ret_extent; |
| |
| ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n); |
| if (extent[n] != ret_extent) |
| runtime_error ("Incorrect extent in return value of" |
| " u_name intrinsic in dimension %ld:" |
| " is %ld, should be %ld", (long int) n + 1, |
| (long int) ret_extent, (long int) extent[n]); |
| } |
| } |
| } |
| |
| for (n = 0; n < rank; n++) |
| { |
| count[n] = 0; |
| dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n) * string_len; |
| } |
| |
| dest = retarray->base_addr; |
| |
| while(1) |
| { |
| memset (dest, '$1`, sizeof (*dest) * string_len); |
| count[0]++; |
| dest += dstride[0]; |
| n = 0; |
| while (count[n] == extent[n]) |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| dest -= dstride[n] * extent[n]; |
| n++; |
| if (n >= rank) |
| return; |
| else |
| { |
| count[n]++; |
| dest += dstride[n]; |
| } |
| } |
| } |
| }')dnl |
| define(ARRAY_FUNCTION, |
| `START_ARRAY_FUNCTION($1) |
| $2 |
| START_ARRAY_BLOCK($1) |
| $3 |
| FINISH_ARRAY_FUNCTION($4)')dnl |
| define(MASKED_ARRAY_FUNCTION, |
| `START_MASKED_ARRAY_FUNCTION |
| $2 |
| START_MASKED_ARRAY_BLOCK |
| $3 |
| FINISH_MASKED_ARRAY_FUNCTION')dnl |