| // Copyright 2014 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | package runtime | 
 |  | 
 | import ( | 
 | 	"internal/goarch" | 
 | 	"runtime/internal/atomic" | 
 | 	"unsafe" | 
 | ) | 
 |  | 
 | // For gccgo, use go:linkname to export compiler-called functions. | 
 | // | 
 | //go:linkname requireitab | 
 | //go:linkname assertitab | 
 | //go:linkname panicdottype | 
 | //go:linkname ifaceE2E2 | 
 | //go:linkname ifaceI2E2 | 
 | //go:linkname ifaceE2I2 | 
 | //go:linkname ifaceI2I2 | 
 | //go:linkname ifaceE2T2P | 
 | //go:linkname ifaceI2T2P | 
 | //go:linkname ifaceE2T2 | 
 | //go:linkname ifaceI2T2 | 
 | //go:linkname ifaceT2Ip | 
 | // Temporary for C code to call: | 
 | //go:linkname getitab | 
 |  | 
 | // The gccgo itab structure is different than the gc one. | 
 | // | 
 | // Both gccgo and gc represent empty interfaces the same way: | 
 | // a two field struct, where the first field points to a type descriptor | 
 | // (a *_type) and the second field is the data pointer. | 
 | // | 
 | // Non-empty interfaces are also two-field structs, and the second | 
 | // field is the data pointer. However, for gccgo, the first field, the | 
 | // itab field, is different. The itab field points to the interface | 
 | // method table, which is the implemention of a specific interface | 
 | // type for a specific dynamic non-interface type.  An interface | 
 | // method table is a list of pointer values. The first pointer is the | 
 | // type descriptor (a *_type) for the dynamic type. The subsequent | 
 | // pointers are pointers to function code, which implement the methods | 
 | // required by the interface. The pointers are sorted by name. | 
 | // | 
 | // The method pointers in the itab are C function pointers, not Go | 
 | // function pointers; they may be called directly, and they have no | 
 | // closures. The receiver is always passed as a pointer, and it is | 
 | // always the same pointer stored in the interface value. A value | 
 | // method starts by copying the receiver value out of the pointer into | 
 | // a local variable. | 
 | // | 
 | // A method call on an interface value is by definition calling a | 
 | // method at a known index m in the list of methods. Given a non-empty | 
 | // interface value i, the call i.m(args) looks like | 
 | //     i.itab[m+1](i.iface, args) | 
 |  | 
 | // Both an empty interface and a non-empty interface have a data | 
 | // pointer field. The meaning of this field is determined by the | 
 | // kindDirectIface bit in the `kind` field of the type descriptor of | 
 | // the value stored in the interface. If kindDirectIface is set, then | 
 | // the data pointer field in the interface value is exactly the value | 
 | // stored in the interface. Otherwise, the data pointer field is a | 
 | // pointer to memory that holds the value. It follows from this that | 
 | // kindDirectIface can only be set for a type whose representation is | 
 | // simply a pointer. In the current gccgo implementation, this is set | 
 | // for types that are pointer-shaped, including unsafe.Pointer, channels, | 
 | // maps, functions, single-field structs and single-element arrays whose | 
 | // single field is simply a pointer-shaped type. | 
 |  | 
 | // For a nil interface value both fields in the interface struct are nil. | 
 |  | 
 | // itabs are statically allocated or persistently allocated. They are | 
 | // never freed. For itabs allocated at run time, they are cached in | 
 | // itabTable, so we reuse the same itab for the same (interface, concrete) | 
 | // type pair. The gc runtime prepopulates the cache with statically | 
 | // allocated itabs. Currently we don't do that as we don't have a way to | 
 | // find all the statically allocated itabs. | 
 |  | 
 | const itabInitSize = 512 | 
 |  | 
 | var ( | 
 | 	itabLock      mutex                               // lock for accessing itab table | 
 | 	itabTable     = &itabTableInit                    // pointer to current table | 
 | 	itabTableInit = itabTableType{size: itabInitSize} // starter table | 
 | ) | 
 |  | 
 | // Cache entry type of itab table. | 
 | // For gccgo, this is not the data type we used in the interface header. | 
 | type itab struct { | 
 | 	inter   *interfacetype | 
 | 	methods [2]unsafe.Pointer // method table. variable sized. first entry is the type descriptor. | 
 | } | 
 |  | 
 | func (m *itab) _type() *_type { | 
 | 	return (*_type)(m.methods[0]) | 
 | } | 
 |  | 
 | // Note: change the formula in the mallocgc call in itabAdd if you change these fields. | 
 | type itabTableType struct { | 
 | 	size    uintptr             // length of entries array. Always a power of 2. | 
 | 	count   uintptr             // current number of filled entries. | 
 | 	entries [itabInitSize]*itab // really [size] large | 
 | } | 
 |  | 
 | func itabHashFunc(inter *interfacetype, typ *_type) uintptr { | 
 | 	// compiler has provided some good hash codes for us. | 
 | 	return uintptr(inter.typ.hash ^ typ.hash) | 
 | } | 
 |  | 
 | // find finds the given interface/type pair in t. | 
 | // Returns nil if the given interface/type pair isn't present. | 
 | func (t *itabTableType) find(inter *interfacetype, typ *_type) *itab { | 
 | 	// Implemented using quadratic probing. | 
 | 	// Probe sequence is h(i) = h0 + i*(i+1)/2 mod 2^k. | 
 | 	// We're guaranteed to hit all table entries using this probe sequence. | 
 | 	mask := t.size - 1 | 
 | 	h := itabHashFunc(inter, typ) & mask | 
 | 	for i := uintptr(1); ; i++ { | 
 | 		p := (**itab)(add(unsafe.Pointer(&t.entries), h*goarch.PtrSize)) | 
 | 		// Use atomic read here so if we see m != nil, we also see | 
 | 		// the initializations of the fields of m. | 
 | 		// m := *p | 
 | 		m := (*itab)(atomic.Loadp(unsafe.Pointer(p))) | 
 | 		if m == nil { | 
 | 			return nil | 
 | 		} | 
 | 		if m.inter == inter && m._type() == typ { | 
 | 			return m | 
 | 		} | 
 | 		h += i | 
 | 		h &= mask | 
 | 	} | 
 | } | 
 |  | 
 | // itabAdd adds the given itab to the itab hash table. | 
 | // itabLock must be held. | 
 | func itabAdd(m *itab) { | 
 | 	// Bugs can lead to calling this while mallocing is set, | 
 | 	// typically because this is called while panicing. | 
 | 	// Crash reliably, rather than only when we need to grow | 
 | 	// the hash table. | 
 | 	if getg().m.mallocing != 0 { | 
 | 		throw("malloc deadlock") | 
 | 	} | 
 |  | 
 | 	t := itabTable | 
 | 	if t.count >= 3*(t.size/4) { // 75% load factor | 
 | 		// Grow hash table. | 
 | 		// t2 = new(itabTableType) + some additional entries | 
 | 		// We lie and tell malloc we want pointer-free memory because | 
 | 		// all the pointed-to values are not in the heap. | 
 | 		t2 := (*itabTableType)(mallocgc((2+2*t.size)*goarch.PtrSize, nil, true)) | 
 | 		t2.size = t.size * 2 | 
 |  | 
 | 		// Copy over entries. | 
 | 		// Note: while copying, other threads may look for an itab and | 
 | 		// fail to find it. That's ok, they will then try to get the itab lock | 
 | 		// and as a consequence wait until this copying is complete. | 
 | 		iterate_itabs(t2.add) | 
 | 		if t2.count != t.count { | 
 | 			throw("mismatched count during itab table copy") | 
 | 		} | 
 | 		// Publish new hash table. Use an atomic write: see comment in getitab. | 
 | 		atomicstorep(unsafe.Pointer(&itabTable), unsafe.Pointer(t2)) | 
 | 		// Adopt the new table as our own. | 
 | 		t = itabTable | 
 | 		// Note: the old table can be GC'ed here. | 
 | 	} | 
 | 	t.add(m) | 
 | } | 
 |  | 
 | // add adds the given itab to itab table t. | 
 | // itabLock must be held. | 
 | func (t *itabTableType) add(m *itab) { | 
 | 	// See comment in find about the probe sequence. | 
 | 	// Insert new itab in the first empty spot in the probe sequence. | 
 | 	mask := t.size - 1 | 
 | 	h := itabHashFunc(m.inter, m._type()) & mask | 
 | 	for i := uintptr(1); ; i++ { | 
 | 		p := (**itab)(add(unsafe.Pointer(&t.entries), h*goarch.PtrSize)) | 
 | 		m2 := *p | 
 | 		if m2 == m { | 
 | 			// A given itab may be used in more than one module | 
 | 			// and thanks to the way global symbol resolution works, the | 
 | 			// pointed-to itab may already have been inserted into the | 
 | 			// global 'hash'. | 
 | 			return | 
 | 		} | 
 | 		if m2 == nil { | 
 | 			// Use atomic write here so if a reader sees m, it also | 
 | 			// sees the correctly initialized fields of m. | 
 | 			// NoWB is ok because m is not in heap memory. | 
 | 			// *p = m | 
 | 			atomic.StorepNoWB(unsafe.Pointer(p), unsafe.Pointer(m)) | 
 | 			t.count++ | 
 | 			return | 
 | 		} | 
 | 		h += i | 
 | 		h &= mask | 
 | 	} | 
 | } | 
 |  | 
 | // init fills in the m.methods array with all the code pointers for | 
 | // the m.inter/m._type pair. If the type does not implement the interface, | 
 | // it sets m.methods[1] to nil and returns the name of an interface function that is missing. | 
 | // It is ok to call this multiple times on the same m, even concurrently. | 
 | func (m *itab) init() string { | 
 | 	inter := m.inter | 
 | 	typ := m._type() | 
 | 	ni := len(inter.methods) + 1 | 
 | 	methods := (*[1 << 16]unsafe.Pointer)(unsafe.Pointer(&m.methods[0]))[:ni:ni] | 
 | 	var m1 unsafe.Pointer | 
 |  | 
 | 	ri := 0 | 
 | 	for li := range inter.methods { | 
 | 		lhsMethod := &inter.methods[li] | 
 | 		var rhsMethod *method | 
 |  | 
 | 		for { | 
 | 			if ri >= len(typ.methods) { | 
 | 				m.methods[1] = nil | 
 | 				return *lhsMethod.name | 
 | 			} | 
 |  | 
 | 			rhsMethod = &typ.methods[ri] | 
 | 			if (lhsMethod.name == rhsMethod.name || *lhsMethod.name == *rhsMethod.name) && | 
 | 				(lhsMethod.pkgPath == rhsMethod.pkgPath || *lhsMethod.pkgPath == *rhsMethod.pkgPath) { | 
 | 				break | 
 | 			} | 
 |  | 
 | 			ri++ | 
 | 		} | 
 |  | 
 | 		if !eqtype(lhsMethod.typ, rhsMethod.mtyp) { | 
 | 			m.methods[1] = nil | 
 | 			return *lhsMethod.name | 
 | 		} | 
 |  | 
 | 		if li == 0 { | 
 | 			m1 = rhsMethod.tfn // we'll set m.methods[1] at the end | 
 | 		} else { | 
 | 			methods[li+1] = rhsMethod.tfn | 
 | 		} | 
 | 		ri++ | 
 | 	} | 
 | 	m.methods[1] = m1 | 
 | 	return "" | 
 | } | 
 |  | 
 | func iterate_itabs(fn func(*itab)) { | 
 | 	// Note: only runs during stop the world or with itabLock held, | 
 | 	// so no other locks/atomics needed. | 
 | 	t := itabTable | 
 | 	for i := uintptr(0); i < t.size; i++ { | 
 | 		m := *(**itab)(add(unsafe.Pointer(&t.entries), i*goarch.PtrSize)) | 
 | 		if m != nil { | 
 | 			fn(m) | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | // Return the interface method table for a value of type rhs converted | 
 | // to an interface of type lhs. | 
 | func getitab(lhs, rhs *_type, canfail bool) unsafe.Pointer { | 
 | 	if rhs == nil { | 
 | 		return nil | 
 | 	} | 
 |  | 
 | 	if lhs.kind&kindMask != kindInterface { | 
 | 		throw("getitab called for non-interface type") | 
 | 	} | 
 |  | 
 | 	lhsi := (*interfacetype)(unsafe.Pointer(lhs)) | 
 |  | 
 | 	if len(lhsi.methods) == 0 { | 
 | 		throw("getitab called for empty interface type") | 
 | 	} | 
 |  | 
 | 	if rhs.uncommontype == nil || len(rhs.methods) == 0 { | 
 | 		if canfail { | 
 | 			return nil | 
 | 		} | 
 | 		panic(&TypeAssertionError{nil, rhs, lhs, *lhsi.methods[0].name}) | 
 | 	} | 
 |  | 
 | 	var m *itab | 
 |  | 
 | 	// First, look in the existing table to see if we can find the itab we need. | 
 | 	// This is by far the most common case, so do it without locks. | 
 | 	// Use atomic to ensure we see any previous writes done by the thread | 
 | 	// that updates the itabTable field (with atomic.Storep in itabAdd). | 
 | 	t := (*itabTableType)(atomic.Loadp(unsafe.Pointer(&itabTable))) | 
 | 	if m = t.find(lhsi, rhs); m != nil { | 
 | 		goto finish | 
 | 	} | 
 |  | 
 | 	// Not found.  Grab the lock and try again. | 
 | 	lockInit(&itabLock, lockRankItab) | 
 | 	lock(&itabLock) | 
 | 	if m = itabTable.find(lhsi, rhs); m != nil { | 
 | 		unlock(&itabLock) | 
 | 		goto finish | 
 | 	} | 
 |  | 
 | 	// Entry doesn't exist yet. Make a new entry & add it. | 
 | 	m = (*itab)(persistentalloc(unsafe.Sizeof(itab{})+uintptr(len(lhsi.methods)-1)*goarch.PtrSize, 0, &memstats.other_sys)) | 
 | 	m.inter = lhsi | 
 | 	m.methods[0] = unsafe.Pointer(rhs) | 
 | 	m.init() | 
 | 	itabAdd(m) | 
 | 	unlock(&itabLock) | 
 | finish: | 
 | 	if m.methods[1] != nil { | 
 | 		return unsafe.Pointer(&m.methods[0]) | 
 | 	} | 
 | 	if canfail { | 
 | 		return nil | 
 | 	} | 
 | 	// this can only happen if the conversion | 
 | 	// was already done once using the , ok form | 
 | 	// and we have a cached negative result. | 
 | 	// The cached result doesn't record which | 
 | 	// interface function was missing, so initialize | 
 | 	// the itab again to get the missing function name. | 
 | 	panic(&TypeAssertionError{nil, rhs, lhs, m.init()}) | 
 | } | 
 |  | 
 | // Return the interface method table for a value of type rhs converted | 
 | // to an interface of type lhs.  Panics if the conversion is impossible. | 
 | func requireitab(lhs, rhs *_type) unsafe.Pointer { | 
 | 	return getitab(lhs, rhs, false) | 
 | } | 
 |  | 
 | // Return the interface method table for a value of type rhs converted | 
 | // to an interface of type lhs.  Panics if the conversion is | 
 | // impossible or if the rhs type is nil. | 
 | func assertitab(lhs, rhs *_type) unsafe.Pointer { | 
 | 	if rhs == nil { | 
 | 		panic(&TypeAssertionError{nil, nil, lhs, ""}) | 
 | 	} | 
 |  | 
 | 	if lhs.kind&kindMask != kindInterface { | 
 | 		throw("assertitab called for non-interface type") | 
 | 	} | 
 |  | 
 | 	lhsi := (*interfacetype)(unsafe.Pointer(lhs)) | 
 |  | 
 | 	if len(lhsi.methods) == 0 { | 
 | 		return unsafe.Pointer(rhs) | 
 | 	} | 
 |  | 
 | 	return getitab(lhs, rhs, false) | 
 | } | 
 |  | 
 | // panicdottype is called when doing an i.(T) conversion and the conversion fails. | 
 | func panicdottype(lhs, rhs, inter *_type) { | 
 | 	panic(&TypeAssertionError{inter, rhs, lhs, ""}) | 
 | } | 
 |  | 
 | // Convert an empty interface to an empty interface, for a comma-ok | 
 | // type assertion. | 
 | func ifaceE2E2(e eface) (eface, bool) { | 
 | 	return e, e._type != nil | 
 | } | 
 |  | 
 | // Convert a non-empty interface to an empty interface, for a comma-ok | 
 | // type assertion. | 
 | func ifaceI2E2(i iface) (eface, bool) { | 
 | 	if i.tab == nil { | 
 | 		return eface{nil, nil}, false | 
 | 	} else { | 
 | 		return eface{*(**_type)(i.tab), i.data}, true | 
 | 	} | 
 | } | 
 |  | 
 | // Convert an empty interface to a non-empty interface, for a comma-ok | 
 | // type assertion. | 
 | func ifaceE2I2(inter *_type, e eface) (iface, bool) { | 
 | 	if e._type == nil { | 
 | 		return iface{nil, nil}, false | 
 | 	} else { | 
 | 		itab := getitab(inter, e._type, true) | 
 | 		if itab == nil { | 
 | 			return iface{nil, nil}, false | 
 | 		} else { | 
 | 			return iface{itab, e.data}, true | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | // Convert a non-empty interface to a non-empty interface, for a | 
 | // comma-ok type assertion. | 
 | func ifaceI2I2(inter *_type, i iface) (iface, bool) { | 
 | 	if i.tab == nil { | 
 | 		return iface{nil, nil}, false | 
 | 	} else { | 
 | 		itab := getitab(inter, *(**_type)(i.tab), true) | 
 | 		if itab == nil { | 
 | 			return iface{nil, nil}, false | 
 | 		} else { | 
 | 			return iface{itab, i.data}, true | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | // Convert an empty interface to a pointer non-interface type. | 
 | func ifaceE2T2P(t *_type, e eface) (unsafe.Pointer, bool) { | 
 | 	if !eqtype(t, e._type) { | 
 | 		return nil, false | 
 | 	} else { | 
 | 		return e.data, true | 
 | 	} | 
 | } | 
 |  | 
 | // Convert a non-empty interface to a pointer non-interface type. | 
 | func ifaceI2T2P(t *_type, i iface) (unsafe.Pointer, bool) { | 
 | 	if i.tab == nil || !eqtype(t, *(**_type)(i.tab)) { | 
 | 		return nil, false | 
 | 	} else { | 
 | 		return i.data, true | 
 | 	} | 
 | } | 
 |  | 
 | // Convert an empty interface to a non-pointer non-interface type. | 
 | func ifaceE2T2(t *_type, e eface, ret unsafe.Pointer) bool { | 
 | 	if !eqtype(t, e._type) { | 
 | 		typedmemclr(t, ret) | 
 | 		return false | 
 | 	} else { | 
 | 		if isDirectIface(t) { | 
 | 			*(*unsafe.Pointer)(ret) = e.data | 
 | 		} else { | 
 | 			typedmemmove(t, ret, e.data) | 
 | 		} | 
 | 		return true | 
 | 	} | 
 | } | 
 |  | 
 | // Convert a non-empty interface to a non-pointer non-interface type. | 
 | func ifaceI2T2(t *_type, i iface, ret unsafe.Pointer) bool { | 
 | 	if i.tab == nil || !eqtype(t, *(**_type)(i.tab)) { | 
 | 		typedmemclr(t, ret) | 
 | 		return false | 
 | 	} else { | 
 | 		if isDirectIface(t) { | 
 | 			*(*unsafe.Pointer)(ret) = i.data | 
 | 		} else { | 
 | 			typedmemmove(t, ret, i.data) | 
 | 		} | 
 | 		return true | 
 | 	} | 
 | } | 
 |  | 
 | // Return whether we can convert a type to an interface type. | 
 | func ifaceT2Ip(to, from *_type) bool { | 
 | 	if from == nil { | 
 | 		return false | 
 | 	} | 
 |  | 
 | 	if to.kind&kindMask != kindInterface { | 
 | 		throw("ifaceT2Ip called with non-interface type") | 
 | 	} | 
 | 	toi := (*interfacetype)(unsafe.Pointer(to)) | 
 |  | 
 | 	if from.uncommontype == nil || len(from.methods) == 0 { | 
 | 		return len(toi.methods) == 0 | 
 | 	} | 
 |  | 
 | 	ri := 0 | 
 | 	for li := range toi.methods { | 
 | 		toMethod := &toi.methods[li] | 
 | 		var fromMethod *method | 
 | 		for { | 
 | 			if ri >= len(from.methods) { | 
 | 				return false | 
 | 			} | 
 |  | 
 | 			fromMethod = &from.methods[ri] | 
 | 			if (toMethod.name == fromMethod.name || *toMethod.name == *fromMethod.name) && | 
 | 				(toMethod.pkgPath == fromMethod.pkgPath || *toMethod.pkgPath == *fromMethod.pkgPath) { | 
 | 				break | 
 | 			} | 
 |  | 
 | 			ri++ | 
 | 		} | 
 |  | 
 | 		if !eqtype(fromMethod.mtyp, toMethod.typ) { | 
 | 			return false | 
 | 		} | 
 |  | 
 | 		ri++ | 
 | 	} | 
 |  | 
 | 	return true | 
 | } | 
 |  | 
 | //go:linkname reflect_ifaceE2I reflect.ifaceE2I | 
 | func reflect_ifaceE2I(inter *interfacetype, e eface, dst *iface) { | 
 | 	t := e._type | 
 | 	if t == nil { | 
 | 		panic(TypeAssertionError{nil, nil, &inter.typ, ""}) | 
 | 	} | 
 | 	dst.tab = requireitab((*_type)(unsafe.Pointer(inter)), t) | 
 | 	dst.data = e.data | 
 | } | 
 |  | 
 | //go:linkname reflectlite_ifaceE2I internal_1reflectlite.ifaceE2I | 
 | func reflectlite_ifaceE2I(inter *interfacetype, e eface, dst *iface) { | 
 | 	t := e._type | 
 | 	if t == nil { | 
 | 		panic(TypeAssertionError{nil, nil, &inter.typ, ""}) | 
 | 	} | 
 | 	dst.tab = requireitab((*_type)(unsafe.Pointer(inter)), t) | 
 | 	dst.data = e.data | 
 | } | 
 |  | 
 | // staticuint64s is used to avoid allocating in convTx for small integer values. | 
 | var staticuint64s = [...]uint64{ | 
 | 	0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, | 
 | 	0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, | 
 | 	0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, | 
 | 	0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, | 
 | 	0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, | 
 | 	0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, | 
 | 	0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, | 
 | 	0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, | 
 | 	0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, | 
 | 	0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, | 
 | 	0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, | 
 | 	0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, | 
 | 	0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, | 
 | 	0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, | 
 | 	0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, | 
 | 	0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, | 
 | 	0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, | 
 | 	0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, | 
 | 	0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, | 
 | 	0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, | 
 | 	0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, | 
 | 	0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, | 
 | 	0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, | 
 | 	0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, | 
 | 	0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, | 
 | 	0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, | 
 | 	0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, | 
 | 	0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, | 
 | 	0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, | 
 | 	0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, | 
 | 	0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, | 
 | 	0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff, | 
 | } |