|  | /* | 
|  | * ==================================================== | 
|  | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | * | 
|  | * Developed at SunPro, a Sun Microsystems, Inc. business. | 
|  | * Permission to use, copy, modify, and distribute this | 
|  | * software is freely granted, provided that this notice | 
|  | * is preserved. | 
|  | * ==================================================== | 
|  | */ | 
|  |  | 
|  | /* | 
|  | Long double expansions are | 
|  | Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> | 
|  | and are incorporated herein by permission of the author.  The author | 
|  | reserves the right to distribute this material elsewhere under different | 
|  | copying permissions.  These modifications are distributed here under the | 
|  | following terms: | 
|  |  | 
|  | This library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Lesser General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2.1 of the License, or (at your option) any later version. | 
|  |  | 
|  | This library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Lesser General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Lesser General Public | 
|  | License along with this library; if not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | /* __ieee754_asin(x) | 
|  | * Method : | 
|  | *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... | 
|  | *	we approximate asin(x) on [0,0.5] by | 
|  | *		asin(x) = x + x*x^2*R(x^2) | 
|  | *      Between .5 and .625 the approximation is | 
|  | *              asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x) | 
|  | *	For x in [0.625,1] | 
|  | *		asin(x) = pi/2-2*asin(sqrt((1-x)/2)) | 
|  | *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; | 
|  | *	then for x>0.98 | 
|  | *		asin(x) = pi/2 - 2*(s+s*z*R(z)) | 
|  | *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) | 
|  | *	For x<=0.98, let pio4_hi = pio2_hi/2, then | 
|  | *		f = hi part of s; | 
|  | *		c = sqrt(z) - f = (z-f*f)/(s+f) 	...f+c=sqrt(z) | 
|  | *	and | 
|  | *		asin(x) = pi/2 - 2*(s+s*z*R(z)) | 
|  | *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) | 
|  | *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) | 
|  | * | 
|  | * Special cases: | 
|  | *	if x is NaN, return x itself; | 
|  | *	if |x|>1, return NaN with invalid signal. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "quadmath-imp.h" | 
|  |  | 
|  | static const __float128 | 
|  | one = 1, | 
|  | huge = 1.0e+4932Q, | 
|  | pio2_hi = 1.5707963267948966192313216916397514420986Q, | 
|  | pio2_lo = 4.3359050650618905123985220130216759843812E-35Q, | 
|  | pio4_hi = 7.8539816339744830961566084581987569936977E-1Q, | 
|  |  | 
|  | /* coefficient for R(x^2) */ | 
|  |  | 
|  | /* asin(x) = x + x^3 pS(x^2) / qS(x^2) | 
|  | 0 <= x <= 0.5 | 
|  | peak relative error 1.9e-35  */ | 
|  | pS0 = -8.358099012470680544198472400254596543711E2Q, | 
|  | pS1 =  3.674973957689619490312782828051860366493E3Q, | 
|  | pS2 = -6.730729094812979665807581609853656623219E3Q, | 
|  | pS3 =  6.643843795209060298375552684423454077633E3Q, | 
|  | pS4 = -3.817341990928606692235481812252049415993E3Q, | 
|  | pS5 =  1.284635388402653715636722822195716476156E3Q, | 
|  | pS6 = -2.410736125231549204856567737329112037867E2Q, | 
|  | pS7 =  2.219191969382402856557594215833622156220E1Q, | 
|  | pS8 = -7.249056260830627156600112195061001036533E-1Q, | 
|  | pS9 =  1.055923570937755300061509030361395604448E-3Q, | 
|  |  | 
|  | qS0 = -5.014859407482408326519083440151745519205E3Q, | 
|  | qS1 =  2.430653047950480068881028451580393430537E4Q, | 
|  | qS2 = -4.997904737193653607449250593976069726962E4Q, | 
|  | qS3 =  5.675712336110456923807959930107347511086E4Q, | 
|  | qS4 = -3.881523118339661268482937768522572588022E4Q, | 
|  | qS5 =  1.634202194895541569749717032234510811216E4Q, | 
|  | qS6 = -4.151452662440709301601820849901296953752E3Q, | 
|  | qS7 =  5.956050864057192019085175976175695342168E2Q, | 
|  | qS8 = -4.175375777334867025769346564600396877176E1Q, | 
|  | /* 1.000000000000000000000000000000000000000E0 */ | 
|  |  | 
|  | /* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x) | 
|  | -0.0625 <= x <= 0.0625 | 
|  | peak relative error 3.3e-35  */ | 
|  | rS0 = -5.619049346208901520945464704848780243887E0Q, | 
|  | rS1 =  4.460504162777731472539175700169871920352E1Q, | 
|  | rS2 = -1.317669505315409261479577040530751477488E2Q, | 
|  | rS3 =  1.626532582423661989632442410808596009227E2Q, | 
|  | rS4 = -3.144806644195158614904369445440583873264E1Q, | 
|  | rS5 = -9.806674443470740708765165604769099559553E1Q, | 
|  | rS6 =  5.708468492052010816555762842394927806920E1Q, | 
|  | rS7 =  1.396540499232262112248553357962639431922E1Q, | 
|  | rS8 = -1.126243289311910363001762058295832610344E1Q, | 
|  | rS9 = -4.956179821329901954211277873774472383512E-1Q, | 
|  | rS10 =  3.313227657082367169241333738391762525780E-1Q, | 
|  |  | 
|  | sS0 = -4.645814742084009935700221277307007679325E0Q, | 
|  | sS1 =  3.879074822457694323970438316317961918430E1Q, | 
|  | sS2 = -1.221986588013474694623973554726201001066E2Q, | 
|  | sS3 =  1.658821150347718105012079876756201905822E2Q, | 
|  | sS4 = -4.804379630977558197953176474426239748977E1Q, | 
|  | sS5 = -1.004296417397316948114344573811562952793E2Q, | 
|  | sS6 =  7.530281592861320234941101403870010111138E1Q, | 
|  | sS7 =  1.270735595411673647119592092304357226607E1Q, | 
|  | sS8 = -1.815144839646376500705105967064792930282E1Q, | 
|  | sS9 = -7.821597334910963922204235247786840828217E-2Q, | 
|  | /*  1.000000000000000000000000000000000000000E0 */ | 
|  |  | 
|  | asinr5625 =  5.9740641664535021430381036628424864397707E-1Q; | 
|  |  | 
|  |  | 
|  |  | 
|  | __float128 | 
|  | asinq (__float128 x) | 
|  | { | 
|  | __float128 t, w, p, q, c, r, s; | 
|  | int32_t ix, sign, flag; | 
|  | ieee854_float128 u; | 
|  |  | 
|  | flag = 0; | 
|  | u.value = x; | 
|  | sign = u.words32.w0; | 
|  | ix = sign & 0x7fffffff; | 
|  | u.words32.w0 = ix;    /* |x| */ | 
|  | if (ix >= 0x3fff0000)	/* |x|>= 1 */ | 
|  | { | 
|  | if (ix == 0x3fff0000 | 
|  | && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0) | 
|  | /* asin(1)=+-pi/2 with inexact */ | 
|  | return x * pio2_hi + x * pio2_lo; | 
|  | return (x - x) / (x - x);	/* asin(|x|>1) is NaN */ | 
|  | } | 
|  | else if (ix < 0x3ffe0000) /* |x| < 0.5 */ | 
|  | { | 
|  | if (ix < 0x3fc60000) /* |x| < 2**-57 */ | 
|  | { | 
|  | math_check_force_underflow (x); | 
|  | __float128 force_inexact = huge + x; | 
|  | math_force_eval (force_inexact); | 
|  | return x;		/* return x with inexact if x!=0 */ | 
|  | } | 
|  | else | 
|  | { | 
|  | t = x * x; | 
|  | /* Mark to use pS, qS later on.  */ | 
|  | flag = 1; | 
|  | } | 
|  | } | 
|  | else if (ix < 0x3ffe4000) /* 0.625 */ | 
|  | { | 
|  | t = u.value - 0.5625; | 
|  | p = ((((((((((rS10 * t | 
|  | + rS9) * t | 
|  | + rS8) * t | 
|  | + rS7) * t | 
|  | + rS6) * t | 
|  | + rS5) * t | 
|  | + rS4) * t | 
|  | + rS3) * t | 
|  | + rS2) * t | 
|  | + rS1) * t | 
|  | + rS0) * t; | 
|  |  | 
|  | q = ((((((((( t | 
|  | + sS9) * t | 
|  | + sS8) * t | 
|  | + sS7) * t | 
|  | + sS6) * t | 
|  | + sS5) * t | 
|  | + sS4) * t | 
|  | + sS3) * t | 
|  | + sS2) * t | 
|  | + sS1) * t | 
|  | + sS0; | 
|  | t = asinr5625 + p / q; | 
|  | if ((sign & 0x80000000) == 0) | 
|  | return t; | 
|  | else | 
|  | return -t; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* 1 > |x| >= 0.625 */ | 
|  | w = one - u.value; | 
|  | t = w * 0.5; | 
|  | } | 
|  |  | 
|  | p = (((((((((pS9 * t | 
|  | + pS8) * t | 
|  | + pS7) * t | 
|  | + pS6) * t | 
|  | + pS5) * t | 
|  | + pS4) * t | 
|  | + pS3) * t | 
|  | + pS2) * t | 
|  | + pS1) * t | 
|  | + pS0) * t; | 
|  |  | 
|  | q = (((((((( t | 
|  | + qS8) * t | 
|  | + qS7) * t | 
|  | + qS6) * t | 
|  | + qS5) * t | 
|  | + qS4) * t | 
|  | + qS3) * t | 
|  | + qS2) * t | 
|  | + qS1) * t | 
|  | + qS0; | 
|  |  | 
|  | if (flag) /* 2^-57 < |x| < 0.5 */ | 
|  | { | 
|  | w = p / q; | 
|  | return x + x * w; | 
|  | } | 
|  |  | 
|  | s = sqrtq (t); | 
|  | if (ix >= 0x3ffef333) /* |x| > 0.975 */ | 
|  | { | 
|  | w = p / q; | 
|  | t = pio2_hi - (2.0 * (s + s * w) - pio2_lo); | 
|  | } | 
|  | else | 
|  | { | 
|  | u.value = s; | 
|  | u.words32.w3 = 0; | 
|  | u.words32.w2 = 0; | 
|  | w = u.value; | 
|  | c = (t - w * w) / (s + w); | 
|  | r = p / q; | 
|  | p = 2.0 * s * r - (pio2_lo - 2.0 * c); | 
|  | q = pio4_hi - 2.0 * w; | 
|  | t = pio4_hi - (p - q); | 
|  | } | 
|  |  | 
|  | if ((sign & 0x80000000) == 0) | 
|  | return t; | 
|  | else | 
|  | return -t; | 
|  | } |