|  | /* Quad-precision floating point sine on <-pi/4,pi/4>. | 
|  | Copyright (C) 1999-2018 Free Software Foundation, Inc. | 
|  | This file is part of the GNU C Library. | 
|  | Contributed by Jakub Jelinek <jj@ultra.linux.cz> | 
|  |  | 
|  | The GNU C Library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Lesser General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2.1 of the License, or (at your option) any later version. | 
|  |  | 
|  | The GNU C Library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Lesser General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Lesser General Public | 
|  | License along with the GNU C Library; if not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "quadmath-imp.h" | 
|  |  | 
|  | static const __float128 c[] = { | 
|  | #define ONE c[0] | 
|  | 1.00000000000000000000000000000000000E+00Q, /* 3fff0000000000000000000000000000 */ | 
|  |  | 
|  | /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 ) | 
|  | x in <0,1/256>  */ | 
|  | #define SCOS1 c[1] | 
|  | #define SCOS2 c[2] | 
|  | #define SCOS3 c[3] | 
|  | #define SCOS4 c[4] | 
|  | #define SCOS5 c[5] | 
|  | -5.00000000000000000000000000000000000E-01Q, /* bffe0000000000000000000000000000 */ | 
|  | 4.16666666666666666666666666556146073E-02Q, /* 3ffa5555555555555555555555395023 */ | 
|  | -1.38888888888888888888309442601939728E-03Q, /* bff56c16c16c16c16c16a566e42c0375 */ | 
|  | 2.48015873015862382987049502531095061E-05Q, /* 3fefa01a01a019ee02dcf7da2d6d5444 */ | 
|  | -2.75573112601362126593516899592158083E-07Q, /* bfe927e4f5dce637cb0b54908754bde0 */ | 
|  |  | 
|  | /* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 ) | 
|  | x in <0,0.1484375>  */ | 
|  | #define SIN1 c[6] | 
|  | #define SIN2 c[7] | 
|  | #define SIN3 c[8] | 
|  | #define SIN4 c[9] | 
|  | #define SIN5 c[10] | 
|  | #define SIN6 c[11] | 
|  | #define SIN7 c[12] | 
|  | #define SIN8 c[13] | 
|  | -1.66666666666666666666666666666666538e-01Q, /* bffc5555555555555555555555555550 */ | 
|  | 8.33333333333333333333333333307532934e-03Q, /* 3ff811111111111111111111110e7340 */ | 
|  | -1.98412698412698412698412534478712057e-04Q, /* bff2a01a01a01a01a01a019e7a626296 */ | 
|  | 2.75573192239858906520896496653095890e-06Q, /* 3fec71de3a556c7338fa38527474b8f5 */ | 
|  | -2.50521083854417116999224301266655662e-08Q, /* bfe5ae64567f544e16c7de65c2ea551f */ | 
|  | 1.60590438367608957516841576404938118e-10Q, /* 3fde6124613a811480538a9a41957115 */ | 
|  | -7.64716343504264506714019494041582610e-13Q, /* bfd6ae7f3d5aef30c7bc660b060ef365 */ | 
|  | 2.81068754939739570236322404393398135e-15Q, /* 3fce9510115aabf87aceb2022a9a9180 */ | 
|  |  | 
|  | /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 ) | 
|  | x in <0,1/256>  */ | 
|  | #define SSIN1 c[14] | 
|  | #define SSIN2 c[15] | 
|  | #define SSIN3 c[16] | 
|  | #define SSIN4 c[17] | 
|  | #define SSIN5 c[18] | 
|  | -1.66666666666666666666666666666666659E-01Q, /* bffc5555555555555555555555555555 */ | 
|  | 8.33333333333333333333333333146298442E-03Q, /* 3ff81111111111111111111110fe195d */ | 
|  | -1.98412698412698412697726277416810661E-04Q, /* bff2a01a01a01a01a019e7121e080d88 */ | 
|  | 2.75573192239848624174178393552189149E-06Q, /* 3fec71de3a556c640c6aaa51aa02ab41 */ | 
|  | -2.50521016467996193495359189395805639E-08Q, /* bfe5ae644ee90c47dc71839de75b2787 */ | 
|  | }; | 
|  |  | 
|  | #define SINCOSL_COS_HI 0 | 
|  | #define SINCOSL_COS_LO 1 | 
|  | #define SINCOSL_SIN_HI 2 | 
|  | #define SINCOSL_SIN_LO 3 | 
|  | extern const __float128 __sincosq_table[]; | 
|  |  | 
|  | __float128 | 
|  | __quadmath_kernel_sinq(__float128 x, __float128 y, int iy) | 
|  | { | 
|  | __float128 h, l, z, sin_l, cos_l_m1; | 
|  | int64_t ix; | 
|  | uint32_t tix, hix, index; | 
|  | GET_FLT128_MSW64 (ix, x); | 
|  | tix = ((uint64_t)ix) >> 32; | 
|  | tix &= ~0x80000000;			/* tix = |x|'s high 32 bits */ | 
|  | if (tix < 0x3ffc3000)			/* |x| < 0.1484375 */ | 
|  | { | 
|  | /* Argument is small enough to approximate it by a Chebyshev | 
|  | polynomial of degree 17.  */ | 
|  | if (tix < 0x3fc60000)		/* |x| < 2^-57 */ | 
|  | { | 
|  | math_check_force_underflow (x); | 
|  | if (!((int)x)) return x;	/* generate inexact */ | 
|  | } | 
|  | z = x * x; | 
|  | return x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+ | 
|  | z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8))))))))); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* So that we don't have to use too large polynomial,  we find | 
|  | l and h such that x = l + h,  where fabsq(l) <= 1.0/256 with 83 | 
|  | possible values for h.  We look up cosq(h) and sinq(h) in | 
|  | pre-computed tables,  compute cosq(l) and sinq(l) using a | 
|  | Chebyshev polynomial of degree 10(11) and compute | 
|  | sinq(h+l) = sinq(h)cosq(l) + cosq(h)sinq(l).  */ | 
|  | index = 0x3ffe - (tix >> 16); | 
|  | hix = (tix + (0x200 << index)) & (0xfffffc00 << index); | 
|  | x = fabsq (x); | 
|  | switch (index) | 
|  | { | 
|  | case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break; | 
|  | case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break; | 
|  | default: | 
|  | case 2: index = (hix - 0x3ffc3000) >> 10; break; | 
|  | } | 
|  |  | 
|  | SET_FLT128_WORDS64(h, ((uint64_t)hix) << 32, 0); | 
|  | if (iy) | 
|  | l = (ix < 0 ? -y : y) - (h - x); | 
|  | else | 
|  | l = x - h; | 
|  | z = l * l; | 
|  | sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5))))); | 
|  | cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5)))); | 
|  | z = __sincosq_table [index + SINCOSL_SIN_HI] | 
|  | + (__sincosq_table [index + SINCOSL_SIN_LO] | 
|  | + (__sincosq_table [index + SINCOSL_SIN_HI] * cos_l_m1) | 
|  | + (__sincosq_table [index + SINCOSL_COS_HI] * sin_l)); | 
|  | return (ix < 0) ? -z : z; | 
|  | } | 
|  | } |