|  | // Copyright 2010 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package math | 
|  |  | 
|  | // The original C code, the long comment, and the constants | 
|  | // below are from http://netlib.sandia.gov/cephes/cprob/gamma.c. | 
|  | // The go code is a simplified version of the original C. | 
|  | // | 
|  | //      tgamma.c | 
|  | // | 
|  | //      Gamma function | 
|  | // | 
|  | // SYNOPSIS: | 
|  | // | 
|  | // double x, y, tgamma(); | 
|  | // extern int signgam; | 
|  | // | 
|  | // y = tgamma( x ); | 
|  | // | 
|  | // DESCRIPTION: | 
|  | // | 
|  | // Returns gamma function of the argument. The result is | 
|  | // correctly signed, and the sign (+1 or -1) is also | 
|  | // returned in a global (extern) variable named signgam. | 
|  | // This variable is also filled in by the logarithmic gamma | 
|  | // function lgamma(). | 
|  | // | 
|  | // Arguments |x| <= 34 are reduced by recurrence and the function | 
|  | // approximated by a rational function of degree 6/7 in the | 
|  | // interval (2,3).  Large arguments are handled by Stirling's | 
|  | // formula. Large negative arguments are made positive using | 
|  | // a reflection formula. | 
|  | // | 
|  | // ACCURACY: | 
|  | // | 
|  | //                      Relative error: | 
|  | // arithmetic   domain     # trials      peak         rms | 
|  | //    DEC      -34, 34      10000       1.3e-16     2.5e-17 | 
|  | //    IEEE    -170,-33      20000       2.3e-15     3.3e-16 | 
|  | //    IEEE     -33,  33     20000       9.4e-16     2.2e-16 | 
|  | //    IEEE      33, 171.6   20000       2.3e-15     3.2e-16 | 
|  | // | 
|  | // Error for arguments outside the test range will be larger | 
|  | // owing to error amplification by the exponential function. | 
|  | // | 
|  | // Cephes Math Library Release 2.8:  June, 2000 | 
|  | // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier | 
|  | // | 
|  | // The readme file at http://netlib.sandia.gov/cephes/ says: | 
|  | //    Some software in this archive may be from the book _Methods and | 
|  | // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster | 
|  | // International, 1989) or from the Cephes Mathematical Library, a | 
|  | // commercial product. In either event, it is copyrighted by the author. | 
|  | // What you see here may be used freely but it comes with no support or | 
|  | // guarantee. | 
|  | // | 
|  | //   The two known misprints in the book are repaired here in the | 
|  | // source listings for the gamma function and the incomplete beta | 
|  | // integral. | 
|  | // | 
|  | //   Stephen L. Moshier | 
|  | //   moshier@na-net.ornl.gov | 
|  |  | 
|  | var _gamP = [...]float64{ | 
|  | 1.60119522476751861407e-04, | 
|  | 1.19135147006586384913e-03, | 
|  | 1.04213797561761569935e-02, | 
|  | 4.76367800457137231464e-02, | 
|  | 2.07448227648435975150e-01, | 
|  | 4.94214826801497100753e-01, | 
|  | 9.99999999999999996796e-01, | 
|  | } | 
|  | var _gamQ = [...]float64{ | 
|  | -2.31581873324120129819e-05, | 
|  | 5.39605580493303397842e-04, | 
|  | -4.45641913851797240494e-03, | 
|  | 1.18139785222060435552e-02, | 
|  | 3.58236398605498653373e-02, | 
|  | -2.34591795718243348568e-01, | 
|  | 7.14304917030273074085e-02, | 
|  | 1.00000000000000000320e+00, | 
|  | } | 
|  | var _gamS = [...]float64{ | 
|  | 7.87311395793093628397e-04, | 
|  | -2.29549961613378126380e-04, | 
|  | -2.68132617805781232825e-03, | 
|  | 3.47222221605458667310e-03, | 
|  | 8.33333333333482257126e-02, | 
|  | } | 
|  |  | 
|  | // Gamma function computed by Stirling's formula. | 
|  | // The pair of results must be multiplied together to get the actual answer. | 
|  | // The multiplication is left to the caller so that, if careful, the caller can avoid | 
|  | // infinity for 172 <= x <= 180. | 
|  | // The polynomial is valid for 33 <= x <= 172; larger values are only used | 
|  | // in reciprocal and produce denormalized floats. The lower precision there | 
|  | // masks any imprecision in the polynomial. | 
|  | func stirling(x float64) (float64, float64) { | 
|  | if x > 200 { | 
|  | return Inf(1), 1 | 
|  | } | 
|  | const ( | 
|  | SqrtTwoPi   = 2.506628274631000502417 | 
|  | MaxStirling = 143.01608 | 
|  | ) | 
|  | w := 1 / x | 
|  | w = 1 + w*((((_gamS[0]*w+_gamS[1])*w+_gamS[2])*w+_gamS[3])*w+_gamS[4]) | 
|  | y1 := Exp(x) | 
|  | y2 := 1.0 | 
|  | if x > MaxStirling { // avoid Pow() overflow | 
|  | v := Pow(x, 0.5*x-0.25) | 
|  | y1, y2 = v, v/y1 | 
|  | } else { | 
|  | y1 = Pow(x, x-0.5) / y1 | 
|  | } | 
|  | return y1, SqrtTwoPi * w * y2 | 
|  | } | 
|  |  | 
|  | // Gamma returns the Gamma function of x. | 
|  | // | 
|  | // Special cases are: | 
|  | //	Gamma(+Inf) = +Inf | 
|  | //	Gamma(+0) = +Inf | 
|  | //	Gamma(-0) = -Inf | 
|  | //	Gamma(x) = NaN for integer x < 0 | 
|  | //	Gamma(-Inf) = NaN | 
|  | //	Gamma(NaN) = NaN | 
|  | func Gamma(x float64) float64 { | 
|  | const Euler = 0.57721566490153286060651209008240243104215933593992 // A001620 | 
|  | // special cases | 
|  | switch { | 
|  | case isNegInt(x) || IsInf(x, -1) || IsNaN(x): | 
|  | return NaN() | 
|  | case IsInf(x, 1): | 
|  | return Inf(1) | 
|  | case x == 0: | 
|  | if Signbit(x) { | 
|  | return Inf(-1) | 
|  | } | 
|  | return Inf(1) | 
|  | } | 
|  | q := Abs(x) | 
|  | p := Floor(q) | 
|  | if q > 33 { | 
|  | if x >= 0 { | 
|  | y1, y2 := stirling(x) | 
|  | return y1 * y2 | 
|  | } | 
|  | // Note: x is negative but (checked above) not a negative integer, | 
|  | // so x must be small enough to be in range for conversion to int64. | 
|  | // If |x| were >= 2⁶³ it would have to be an integer. | 
|  | signgam := 1 | 
|  | if ip := int64(p); ip&1 == 0 { | 
|  | signgam = -1 | 
|  | } | 
|  | z := q - p | 
|  | if z > 0.5 { | 
|  | p = p + 1 | 
|  | z = q - p | 
|  | } | 
|  | z = q * Sin(Pi*z) | 
|  | if z == 0 { | 
|  | return Inf(signgam) | 
|  | } | 
|  | sq1, sq2 := stirling(q) | 
|  | absz := Abs(z) | 
|  | d := absz * sq1 * sq2 | 
|  | if IsInf(d, 0) { | 
|  | z = Pi / absz / sq1 / sq2 | 
|  | } else { | 
|  | z = Pi / d | 
|  | } | 
|  | return float64(signgam) * z | 
|  | } | 
|  |  | 
|  | // Reduce argument | 
|  | z := 1.0 | 
|  | for x >= 3 { | 
|  | x = x - 1 | 
|  | z = z * x | 
|  | } | 
|  | for x < 0 { | 
|  | if x > -1e-09 { | 
|  | goto small | 
|  | } | 
|  | z = z / x | 
|  | x = x + 1 | 
|  | } | 
|  | for x < 2 { | 
|  | if x < 1e-09 { | 
|  | goto small | 
|  | } | 
|  | z = z / x | 
|  | x = x + 1 | 
|  | } | 
|  |  | 
|  | if x == 2 { | 
|  | return z | 
|  | } | 
|  |  | 
|  | x = x - 2 | 
|  | p = (((((x*_gamP[0]+_gamP[1])*x+_gamP[2])*x+_gamP[3])*x+_gamP[4])*x+_gamP[5])*x + _gamP[6] | 
|  | q = ((((((x*_gamQ[0]+_gamQ[1])*x+_gamQ[2])*x+_gamQ[3])*x+_gamQ[4])*x+_gamQ[5])*x+_gamQ[6])*x + _gamQ[7] | 
|  | return z * p / q | 
|  |  | 
|  | small: | 
|  | if x == 0 { | 
|  | return Inf(1) | 
|  | } | 
|  | return z / ((1 + Euler*x) * x) | 
|  | } | 
|  |  | 
|  | func isNegInt(x float64) bool { | 
|  | if x < 0 { | 
|  | _, xf := Modf(x) | 
|  | return xf == 0 | 
|  | } | 
|  | return false | 
|  | } |