| /* A pass for lowering trees to RTL. |
| Copyright (C) 2004-2024 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "target.h" |
| #include "rtl.h" |
| #include "tree.h" |
| #include "gimple.h" |
| #include "cfghooks.h" |
| #include "tree-pass.h" |
| #include "memmodel.h" |
| #include "tm_p.h" |
| #include "ssa.h" |
| #include "optabs.h" |
| #include "regs.h" /* For reg_renumber. */ |
| #include "emit-rtl.h" |
| #include "recog.h" |
| #include "cgraph.h" |
| #include "diagnostic.h" |
| #include "fold-const.h" |
| #include "varasm.h" |
| #include "stor-layout.h" |
| #include "stmt.h" |
| #include "print-tree.h" |
| #include "cfgrtl.h" |
| #include "cfganal.h" |
| #include "cfgbuild.h" |
| #include "cfgcleanup.h" |
| #include "dojump.h" |
| #include "explow.h" |
| #include "calls.h" |
| #include "expr.h" |
| #include "internal-fn.h" |
| #include "tree-eh.h" |
| #include "gimple-iterator.h" |
| #include "gimple-expr.h" |
| #include "gimple-walk.h" |
| #include "tree-cfg.h" |
| #include "tree-dfa.h" |
| #include "tree-ssa.h" |
| #include "except.h" |
| #include "gimple-pretty-print.h" |
| #include "toplev.h" |
| #include "debug.h" |
| #include "tree-inline.h" |
| #include "value-prof.h" |
| #include "tree-ssa-live.h" |
| #include "tree-outof-ssa.h" |
| #include "cfgloop.h" |
| #include "insn-attr.h" /* For INSN_SCHEDULING. */ |
| #include "stringpool.h" |
| #include "attribs.h" |
| #include "asan.h" |
| #include "tree-ssa-address.h" |
| #include "output.h" |
| #include "builtins.h" |
| #include "opts.h" |
| |
| /* Some systems use __main in a way incompatible with its use in gcc, in these |
| cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to |
| give the same symbol without quotes for an alternative entry point. You |
| must define both, or neither. */ |
| #ifndef NAME__MAIN |
| #define NAME__MAIN "__main" |
| #endif |
| |
| /* This variable holds information helping the rewriting of SSA trees |
| into RTL. */ |
| struct ssaexpand SA; |
| |
| /* This variable holds the currently expanded gimple statement for purposes |
| of comminucating the profile info to the builtin expanders. */ |
| gimple *currently_expanding_gimple_stmt; |
| |
| static rtx expand_debug_expr (tree); |
| |
| static bool defer_stack_allocation (tree, bool); |
| |
| static void record_alignment_for_reg_var (unsigned int); |
| |
| /* Return an expression tree corresponding to the RHS of GIMPLE |
| statement STMT. */ |
| |
| tree |
| gimple_assign_rhs_to_tree (gimple *stmt) |
| { |
| tree t; |
| switch (gimple_assign_rhs_class (stmt)) |
| { |
| case GIMPLE_TERNARY_RHS: |
| t = build3 (gimple_assign_rhs_code (stmt), |
| TREE_TYPE (gimple_assign_lhs (stmt)), |
| gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), |
| gimple_assign_rhs3 (stmt)); |
| break; |
| case GIMPLE_BINARY_RHS: |
| t = build2 (gimple_assign_rhs_code (stmt), |
| TREE_TYPE (gimple_assign_lhs (stmt)), |
| gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt)); |
| break; |
| case GIMPLE_UNARY_RHS: |
| t = build1 (gimple_assign_rhs_code (stmt), |
| TREE_TYPE (gimple_assign_lhs (stmt)), |
| gimple_assign_rhs1 (stmt)); |
| break; |
| case GIMPLE_SINGLE_RHS: |
| { |
| t = gimple_assign_rhs1 (stmt); |
| /* Avoid modifying this tree in place below. */ |
| if ((gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (t) |
| && gimple_location (stmt) != EXPR_LOCATION (t)) |
| || (gimple_block (stmt) && currently_expanding_to_rtl |
| && EXPR_P (t))) |
| t = copy_node (t); |
| break; |
| } |
| default: |
| gcc_unreachable (); |
| } |
| |
| if (gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (t)) |
| SET_EXPR_LOCATION (t, gimple_location (stmt)); |
| |
| return t; |
| } |
| |
| |
| #ifndef STACK_ALIGNMENT_NEEDED |
| #define STACK_ALIGNMENT_NEEDED 1 |
| #endif |
| |
| #define SSAVAR(x) (TREE_CODE (x) == SSA_NAME ? SSA_NAME_VAR (x) : x) |
| |
| /* Choose either CUR or NEXT as the leader DECL for a partition. |
| Prefer ignored decls, to simplify debug dumps and reduce ambiguity |
| out of the same user variable being in multiple partitions (this is |
| less likely for compiler-introduced temps). */ |
| |
| static tree |
| leader_merge (tree cur, tree next) |
| { |
| if (cur == NULL || cur == next) |
| return next; |
| |
| if (DECL_P (cur) && DECL_IGNORED_P (cur)) |
| return cur; |
| |
| if (DECL_P (next) && DECL_IGNORED_P (next)) |
| return next; |
| |
| return cur; |
| } |
| |
| /* Associate declaration T with storage space X. If T is no |
| SSA name this is exactly SET_DECL_RTL, otherwise make the |
| partition of T associated with X. */ |
| static inline void |
| set_rtl (tree t, rtx x) |
| { |
| gcc_checking_assert (!x |
| || !(TREE_CODE (t) == SSA_NAME || is_gimple_reg (t)) |
| || (use_register_for_decl (t) |
| ? (REG_P (x) |
| || (GET_CODE (x) == CONCAT |
| && (REG_P (XEXP (x, 0)) |
| || SUBREG_P (XEXP (x, 0))) |
| && (REG_P (XEXP (x, 1)) |
| || SUBREG_P (XEXP (x, 1)))) |
| /* We need to accept PARALLELs for RESUT_DECLs |
| because of vector types with BLKmode returned |
| in multiple registers, but they are supposed |
| to be uncoalesced. */ |
| || (GET_CODE (x) == PARALLEL |
| && SSAVAR (t) |
| && TREE_CODE (SSAVAR (t)) == RESULT_DECL |
| && (GET_MODE (x) == BLKmode |
| || !flag_tree_coalesce_vars))) |
| : (MEM_P (x) || x == pc_rtx |
| || (GET_CODE (x) == CONCAT |
| && MEM_P (XEXP (x, 0)) |
| && MEM_P (XEXP (x, 1)))))); |
| /* Check that the RTL for SSA_NAMEs and gimple-reg PARM_DECLs and |
| RESULT_DECLs has the expected mode. For memory, we accept |
| unpromoted modes, since that's what we're likely to get. For |
| PARM_DECLs and RESULT_DECLs, we'll have been called by |
| set_parm_rtl, which will give us the default def, so we don't |
| have to compute it ourselves. For RESULT_DECLs, we accept mode |
| mismatches too, as long as we have BLKmode or are not coalescing |
| across variables, so that we don't reject BLKmode PARALLELs or |
| unpromoted REGs. */ |
| gcc_checking_assert (!x || x == pc_rtx || TREE_CODE (t) != SSA_NAME |
| || (SSAVAR (t) |
| && TREE_CODE (SSAVAR (t)) == RESULT_DECL |
| && (promote_ssa_mode (t, NULL) == BLKmode |
| || !flag_tree_coalesce_vars)) |
| || !use_register_for_decl (t) |
| || GET_MODE (x) == promote_ssa_mode (t, NULL)); |
| |
| if (x) |
| { |
| bool skip = false; |
| tree cur = NULL_TREE; |
| rtx xm = x; |
| |
| retry: |
| if (MEM_P (xm)) |
| cur = MEM_EXPR (xm); |
| else if (REG_P (xm)) |
| cur = REG_EXPR (xm); |
| else if (SUBREG_P (xm)) |
| { |
| gcc_assert (subreg_lowpart_p (xm)); |
| xm = SUBREG_REG (xm); |
| goto retry; |
| } |
| else if (GET_CODE (xm) == CONCAT) |
| { |
| xm = XEXP (xm, 0); |
| goto retry; |
| } |
| else if (GET_CODE (xm) == PARALLEL) |
| { |
| xm = XVECEXP (xm, 0, 0); |
| gcc_assert (GET_CODE (xm) == EXPR_LIST); |
| xm = XEXP (xm, 0); |
| goto retry; |
| } |
| else if (xm == pc_rtx) |
| skip = true; |
| else |
| gcc_unreachable (); |
| |
| tree next = skip ? cur : leader_merge (cur, SSAVAR (t) ? SSAVAR (t) : t); |
| |
| if (cur != next) |
| { |
| if (MEM_P (x)) |
| set_mem_attributes (x, |
| next && TREE_CODE (next) == SSA_NAME |
| ? TREE_TYPE (next) |
| : next, true); |
| else |
| set_reg_attrs_for_decl_rtl (next, x); |
| } |
| } |
| |
| if (TREE_CODE (t) == SSA_NAME) |
| { |
| int part = var_to_partition (SA.map, t); |
| if (part != NO_PARTITION) |
| { |
| if (SA.partition_to_pseudo[part]) |
| gcc_assert (SA.partition_to_pseudo[part] == x); |
| else if (x != pc_rtx) |
| SA.partition_to_pseudo[part] = x; |
| } |
| /* For the benefit of debug information at -O0 (where |
| vartracking doesn't run) record the place also in the base |
| DECL. For PARMs and RESULTs, do so only when setting the |
| default def. */ |
| if (x && x != pc_rtx && SSA_NAME_VAR (t) |
| && (VAR_P (SSA_NAME_VAR (t)) |
| || SSA_NAME_IS_DEFAULT_DEF (t))) |
| { |
| tree var = SSA_NAME_VAR (t); |
| /* If we don't yet have something recorded, just record it now. */ |
| if (!DECL_RTL_SET_P (var)) |
| SET_DECL_RTL (var, x); |
| /* If we have it set already to "multiple places" don't |
| change this. */ |
| else if (DECL_RTL (var) == pc_rtx) |
| ; |
| /* If we have something recorded and it's not the same place |
| as we want to record now, we have multiple partitions for the |
| same base variable, with different places. We can't just |
| randomly chose one, hence we have to say that we don't know. |
| This only happens with optimization, and there var-tracking |
| will figure out the right thing. */ |
| else if (DECL_RTL (var) != x) |
| SET_DECL_RTL (var, pc_rtx); |
| } |
| } |
| else |
| SET_DECL_RTL (t, x); |
| } |
| |
| /* This structure holds data relevant to one variable that will be |
| placed in a stack slot. */ |
| class stack_var |
| { |
| public: |
| /* The Variable. */ |
| tree decl; |
| |
| /* Initially, the size of the variable. Later, the size of the partition, |
| if this variable becomes it's partition's representative. */ |
| poly_uint64 size; |
| |
| /* The *byte* alignment required for this variable. Or as, with the |
| size, the alignment for this partition. */ |
| unsigned int alignb; |
| |
| /* The partition representative. */ |
| size_t representative; |
| |
| /* The next stack variable in the partition, or EOC. */ |
| size_t next; |
| |
| /* The numbers of conflicting stack variables. */ |
| bitmap conflicts; |
| }; |
| |
| #define EOC ((size_t)-1) |
| |
| /* We have an array of such objects while deciding allocation. */ |
| static class stack_var *stack_vars; |
| static size_t stack_vars_alloc; |
| static size_t stack_vars_num; |
| static hash_map<tree, size_t> *decl_to_stack_part; |
| |
| /* Conflict bitmaps go on this obstack. This allows us to destroy |
| all of them in one big sweep. */ |
| static bitmap_obstack stack_var_bitmap_obstack; |
| |
| /* An array of indices such that stack_vars[stack_vars_sorted[i]].size |
| is non-decreasing. */ |
| static size_t *stack_vars_sorted; |
| |
| /* The phase of the stack frame. This is the known misalignment of |
| virtual_stack_vars_rtx from PREFERRED_STACK_BOUNDARY. That is, |
| (frame_offset+frame_phase) % PREFERRED_STACK_BOUNDARY == 0. */ |
| static int frame_phase; |
| |
| /* Used during expand_used_vars to remember if we saw any decls for |
| which we'd like to enable stack smashing protection. */ |
| static bool has_protected_decls; |
| |
| /* Used during expand_used_vars. Remember if we say a character buffer |
| smaller than our cutoff threshold. Used for -Wstack-protector. */ |
| static bool has_short_buffer; |
| |
| /* Compute the byte alignment to use for DECL. Ignore alignment |
| we can't do with expected alignment of the stack boundary. */ |
| |
| static unsigned int |
| align_local_variable (tree decl, bool really_expand) |
| { |
| unsigned int align; |
| |
| if (TREE_CODE (decl) == SSA_NAME) |
| { |
| tree type = TREE_TYPE (decl); |
| machine_mode mode = TYPE_MODE (type); |
| |
| align = TYPE_ALIGN (type); |
| if (mode != BLKmode |
| && align < GET_MODE_ALIGNMENT (mode)) |
| align = GET_MODE_ALIGNMENT (mode); |
| } |
| else |
| align = LOCAL_DECL_ALIGNMENT (decl); |
| |
| if (hwasan_sanitize_stack_p ()) |
| align = MAX (align, (unsigned) HWASAN_TAG_GRANULE_SIZE * BITS_PER_UNIT); |
| |
| if (TREE_CODE (decl) != SSA_NAME && really_expand) |
| /* Don't change DECL_ALIGN when called from estimated_stack_frame_size. |
| That is done before IPA and could bump alignment based on host |
| backend even for offloaded code which wants different |
| LOCAL_DECL_ALIGNMENT. */ |
| SET_DECL_ALIGN (decl, align); |
| |
| return align / BITS_PER_UNIT; |
| } |
| |
| /* Align given offset BASE with ALIGN. Truncate up if ALIGN_UP is true, |
| down otherwise. Return truncated BASE value. */ |
| |
| static inline unsigned HOST_WIDE_INT |
| align_base (HOST_WIDE_INT base, unsigned HOST_WIDE_INT align, bool align_up) |
| { |
| return align_up ? (base + align - 1) & -align : base & -align; |
| } |
| |
| /* Allocate SIZE bytes at byte alignment ALIGN from the stack frame. |
| Return the frame offset. */ |
| |
| static poly_int64 |
| alloc_stack_frame_space (poly_int64 size, unsigned HOST_WIDE_INT align) |
| { |
| poly_int64 offset, new_frame_offset; |
| |
| if (FRAME_GROWS_DOWNWARD) |
| { |
| new_frame_offset |
| = aligned_lower_bound (frame_offset - frame_phase - size, |
| align) + frame_phase; |
| offset = new_frame_offset; |
| } |
| else |
| { |
| new_frame_offset |
| = aligned_upper_bound (frame_offset - frame_phase, |
| align) + frame_phase; |
| offset = new_frame_offset; |
| new_frame_offset += size; |
| } |
| frame_offset = new_frame_offset; |
| |
| if (frame_offset_overflow (frame_offset, cfun->decl)) |
| frame_offset = offset = 0; |
| |
| return offset; |
| } |
| |
| /* Ensure that the stack is aligned to ALIGN bytes. |
| Return the new frame offset. */ |
| static poly_int64 |
| align_frame_offset (unsigned HOST_WIDE_INT align) |
| { |
| return alloc_stack_frame_space (0, align); |
| } |
| |
| /* Accumulate DECL into STACK_VARS. */ |
| |
| static void |
| add_stack_var (tree decl, bool really_expand) |
| { |
| class stack_var *v; |
| |
| if (stack_vars_num >= stack_vars_alloc) |
| { |
| if (stack_vars_alloc) |
| stack_vars_alloc = stack_vars_alloc * 3 / 2; |
| else |
| stack_vars_alloc = 32; |
| stack_vars |
| = XRESIZEVEC (class stack_var, stack_vars, stack_vars_alloc); |
| } |
| if (!decl_to_stack_part) |
| decl_to_stack_part = new hash_map<tree, size_t>; |
| |
| v = &stack_vars[stack_vars_num]; |
| decl_to_stack_part->put (decl, stack_vars_num); |
| |
| v->decl = decl; |
| tree size = TREE_CODE (decl) == SSA_NAME |
| ? TYPE_SIZE_UNIT (TREE_TYPE (decl)) |
| : DECL_SIZE_UNIT (decl); |
| v->size = tree_to_poly_uint64 (size); |
| /* Ensure that all variables have size, so that &a != &b for any two |
| variables that are simultaneously live. */ |
| if (known_eq (v->size, 0U)) |
| v->size = 1; |
| v->alignb = align_local_variable (decl, really_expand); |
| /* An alignment of zero can mightily confuse us later. */ |
| gcc_assert (v->alignb != 0); |
| |
| /* All variables are initially in their own partition. */ |
| v->representative = stack_vars_num; |
| v->next = EOC; |
| |
| /* All variables initially conflict with no other. */ |
| v->conflicts = NULL; |
| |
| /* Ensure that this decl doesn't get put onto the list twice. */ |
| set_rtl (decl, pc_rtx); |
| |
| stack_vars_num++; |
| } |
| |
| /* Make the decls associated with luid's X and Y conflict. */ |
| |
| static void |
| add_stack_var_conflict (size_t x, size_t y) |
| { |
| class stack_var *a = &stack_vars[x]; |
| class stack_var *b = &stack_vars[y]; |
| if (x == y) |
| return; |
| if (!a->conflicts) |
| a->conflicts = BITMAP_ALLOC (&stack_var_bitmap_obstack); |
| if (!b->conflicts) |
| b->conflicts = BITMAP_ALLOC (&stack_var_bitmap_obstack); |
| bitmap_set_bit (a->conflicts, y); |
| bitmap_set_bit (b->conflicts, x); |
| } |
| |
| /* Check whether the decls associated with luid's X and Y conflict. */ |
| |
| static bool |
| stack_var_conflict_p (size_t x, size_t y) |
| { |
| class stack_var *a = &stack_vars[x]; |
| class stack_var *b = &stack_vars[y]; |
| if (x == y) |
| return false; |
| /* Partitions containing an SSA name result from gimple registers |
| with things like unsupported modes. They are top-level and |
| hence conflict with everything else. */ |
| if (TREE_CODE (a->decl) == SSA_NAME || TREE_CODE (b->decl) == SSA_NAME) |
| return true; |
| |
| if (!a->conflicts || !b->conflicts) |
| return false; |
| return bitmap_bit_p (a->conflicts, y); |
| } |
| |
| /* Callback for walk_stmt_ops. If OP is a decl touched by add_stack_var |
| enter its partition number into bitmap DATA. */ |
| |
| static bool |
| visit_op (gimple *, tree op, tree, void *data) |
| { |
| bitmap active = (bitmap)data; |
| op = get_base_address (op); |
| if (op |
| && DECL_P (op) |
| && DECL_RTL_IF_SET (op) == pc_rtx) |
| { |
| size_t *v = decl_to_stack_part->get (op); |
| if (v) |
| bitmap_set_bit (active, *v); |
| } |
| return false; |
| } |
| |
| /* Callback for walk_stmt_ops. If OP is a decl touched by add_stack_var |
| record conflicts between it and all currently active other partitions |
| from bitmap DATA. */ |
| |
| static bool |
| visit_conflict (gimple *, tree op, tree, void *data) |
| { |
| bitmap active = (bitmap)data; |
| op = get_base_address (op); |
| if (op |
| && DECL_P (op) |
| && DECL_RTL_IF_SET (op) == pc_rtx) |
| { |
| size_t *v = decl_to_stack_part->get (op); |
| if (v && bitmap_set_bit (active, *v)) |
| { |
| size_t num = *v; |
| bitmap_iterator bi; |
| unsigned i; |
| gcc_assert (num < stack_vars_num); |
| EXECUTE_IF_SET_IN_BITMAP (active, 0, i, bi) |
| add_stack_var_conflict (num, i); |
| } |
| } |
| return false; |
| } |
| |
| /* Helper function for add_scope_conflicts_1. For USE on |
| a stmt, if it is a SSA_NAME and in its SSA_NAME_DEF_STMT is known to be |
| based on some ADDR_EXPR, invoke VISIT on that ADDR_EXPR. */ |
| |
| static inline void |
| add_scope_conflicts_2 (tree use, bitmap work, |
| walk_stmt_load_store_addr_fn visit) |
| { |
| if (TREE_CODE (use) == SSA_NAME |
| && (POINTER_TYPE_P (TREE_TYPE (use)) |
| || INTEGRAL_TYPE_P (TREE_TYPE (use)))) |
| { |
| gimple *g = SSA_NAME_DEF_STMT (use); |
| if (is_gimple_assign (g)) |
| if (tree op = gimple_assign_rhs1 (g)) |
| if (TREE_CODE (op) == ADDR_EXPR) |
| visit (g, TREE_OPERAND (op, 0), op, work); |
| } |
| } |
| |
| /* Helper routine for add_scope_conflicts, calculating the active partitions |
| at the end of BB, leaving the result in WORK. We're called to generate |
| conflicts when FOR_CONFLICT is true, otherwise we're just tracking |
| liveness. */ |
| |
| static void |
| add_scope_conflicts_1 (basic_block bb, bitmap work, bool for_conflict) |
| { |
| edge e; |
| edge_iterator ei; |
| gimple_stmt_iterator gsi; |
| walk_stmt_load_store_addr_fn visit; |
| use_operand_p use_p; |
| ssa_op_iter iter; |
| |
| bitmap_clear (work); |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| bitmap_ior_into (work, (bitmap)e->src->aux); |
| |
| visit = visit_op; |
| |
| for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple *stmt = gsi_stmt (gsi); |
| gphi *phi = as_a <gphi *> (stmt); |
| walk_stmt_load_store_addr_ops (stmt, work, NULL, NULL, visit); |
| FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE) |
| add_scope_conflicts_2 (USE_FROM_PTR (use_p), work, visit); |
| } |
| for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple *stmt = gsi_stmt (gsi); |
| |
| if (gimple_clobber_p (stmt)) |
| { |
| tree lhs = gimple_assign_lhs (stmt); |
| size_t *v; |
| /* Nested function lowering might introduce LHSs |
| that are COMPONENT_REFs. */ |
| if (!VAR_P (lhs)) |
| continue; |
| if (DECL_RTL_IF_SET (lhs) == pc_rtx |
| && (v = decl_to_stack_part->get (lhs))) |
| bitmap_clear_bit (work, *v); |
| } |
| else if (!is_gimple_debug (stmt)) |
| { |
| if (for_conflict && visit == visit_op) |
| { |
| /* If this is the first real instruction in this BB we need |
| to add conflicts for everything live at this point now. |
| Unlike classical liveness for named objects we can't |
| rely on seeing a def/use of the names we're interested in. |
| There might merely be indirect loads/stores. We'd not add any |
| conflicts for such partitions. */ |
| bitmap_iterator bi; |
| unsigned i; |
| EXECUTE_IF_SET_IN_BITMAP (work, 0, i, bi) |
| { |
| class stack_var *a = &stack_vars[i]; |
| if (!a->conflicts) |
| a->conflicts = BITMAP_ALLOC (&stack_var_bitmap_obstack); |
| bitmap_ior_into (a->conflicts, work); |
| } |
| visit = visit_conflict; |
| } |
| walk_stmt_load_store_addr_ops (stmt, work, visit, visit, visit); |
| FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE) |
| add_scope_conflicts_2 (USE_FROM_PTR (use_p), work, visit); |
| } |
| } |
| } |
| |
| /* Generate stack partition conflicts between all partitions that are |
| simultaneously live. */ |
| |
| static void |
| add_scope_conflicts (void) |
| { |
| basic_block bb; |
| bool changed; |
| bitmap work = BITMAP_ALLOC (NULL); |
| int *rpo; |
| int n_bbs; |
| |
| /* We approximate the live range of a stack variable by taking the first |
| mention of its name as starting point(s), and by the end-of-scope |
| death clobber added by gimplify as ending point(s) of the range. |
| This overapproximates in the case we for instance moved an address-taken |
| operation upward, without also moving a dereference to it upwards. |
| But it's conservatively correct as a variable never can hold values |
| before its name is mentioned at least once. |
| |
| We then do a mostly classical bitmap liveness algorithm. */ |
| |
| FOR_ALL_BB_FN (bb, cfun) |
| bb->aux = BITMAP_ALLOC (&stack_var_bitmap_obstack); |
| |
| rpo = XNEWVEC (int, last_basic_block_for_fn (cfun)); |
| n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false); |
| |
| changed = true; |
| while (changed) |
| { |
| int i; |
| changed = false; |
| for (i = 0; i < n_bbs; i++) |
| { |
| bitmap active; |
| bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]); |
| active = (bitmap)bb->aux; |
| add_scope_conflicts_1 (bb, work, false); |
| if (bitmap_ior_into (active, work)) |
| changed = true; |
| } |
| } |
| |
| FOR_EACH_BB_FN (bb, cfun) |
| add_scope_conflicts_1 (bb, work, true); |
| |
| free (rpo); |
| BITMAP_FREE (work); |
| FOR_ALL_BB_FN (bb, cfun) |
| BITMAP_FREE (bb->aux); |
| } |
| |
| /* A subroutine of partition_stack_vars. A comparison function for qsort, |
| sorting an array of indices by the properties of the object. */ |
| |
| static int |
| stack_var_cmp (const void *a, const void *b) |
| { |
| size_t ia = *(const size_t *)a; |
| size_t ib = *(const size_t *)b; |
| unsigned int aligna = stack_vars[ia].alignb; |
| unsigned int alignb = stack_vars[ib].alignb; |
| poly_int64 sizea = stack_vars[ia].size; |
| poly_int64 sizeb = stack_vars[ib].size; |
| tree decla = stack_vars[ia].decl; |
| tree declb = stack_vars[ib].decl; |
| bool largea, largeb; |
| unsigned int uida, uidb; |
| |
| /* Primary compare on "large" alignment. Large comes first. */ |
| largea = (aligna * BITS_PER_UNIT > MAX_SUPPORTED_STACK_ALIGNMENT); |
| largeb = (alignb * BITS_PER_UNIT > MAX_SUPPORTED_STACK_ALIGNMENT); |
| if (largea != largeb) |
| return (int)largeb - (int)largea; |
| |
| /* Secondary compare on size, decreasing */ |
| int diff = compare_sizes_for_sort (sizeb, sizea); |
| if (diff != 0) |
| return diff; |
| |
| /* Tertiary compare on true alignment, decreasing. */ |
| if (aligna < alignb) |
| return -1; |
| if (aligna > alignb) |
| return 1; |
| |
| /* Final compare on ID for sort stability, increasing. |
| Two SSA names are compared by their version, SSA names come before |
| non-SSA names, and two normal decls are compared by their DECL_UID. */ |
| if (TREE_CODE (decla) == SSA_NAME) |
| { |
| if (TREE_CODE (declb) == SSA_NAME) |
| uida = SSA_NAME_VERSION (decla), uidb = SSA_NAME_VERSION (declb); |
| else |
| return -1; |
| } |
| else if (TREE_CODE (declb) == SSA_NAME) |
| return 1; |
| else |
| uida = DECL_UID (decla), uidb = DECL_UID (declb); |
| if (uida < uidb) |
| return 1; |
| if (uida > uidb) |
| return -1; |
| return 0; |
| } |
| |
| struct part_traits : unbounded_int_hashmap_traits <size_t, bitmap> {}; |
| typedef hash_map<size_t, bitmap, part_traits> part_hashmap; |
| |
| /* If the points-to solution *PI points to variables that are in a partition |
| together with other variables add all partition members to the pointed-to |
| variables bitmap. */ |
| |
| static void |
| add_partitioned_vars_to_ptset (struct pt_solution *pt, |
| part_hashmap *decls_to_partitions, |
| hash_set<bitmap> *visited, bitmap temp) |
| { |
| bitmap_iterator bi; |
| unsigned i; |
| bitmap *part; |
| |
| if (pt->anything |
| || pt->vars == NULL |
| /* The pointed-to vars bitmap is shared, it is enough to |
| visit it once. */ |
| || visited->add (pt->vars)) |
| return; |
| |
| bitmap_clear (temp); |
| |
| /* By using a temporary bitmap to store all members of the partitions |
| we have to add we make sure to visit each of the partitions only |
| once. */ |
| EXECUTE_IF_SET_IN_BITMAP (pt->vars, 0, i, bi) |
| if ((!temp |
| || !bitmap_bit_p (temp, i)) |
| && (part = decls_to_partitions->get (i))) |
| bitmap_ior_into (temp, *part); |
| if (!bitmap_empty_p (temp)) |
| bitmap_ior_into (pt->vars, temp); |
| } |
| |
| /* Update points-to sets based on partition info, so we can use them on RTL. |
| The bitmaps representing stack partitions will be saved until expand, |
| where partitioned decls used as bases in memory expressions will be |
| rewritten. |
| |
| It is not necessary to update TBAA info on accesses to the coalesced |
| storage since our memory model doesn't allow TBAA to be used for |
| WAW or WAR dependences. For RAW when the write is to an old object |
| the new object would not have been initialized at the point of the |
| read, invoking undefined behavior. */ |
| |
| static void |
| update_alias_info_with_stack_vars (void) |
| { |
| part_hashmap *decls_to_partitions = NULL; |
| size_t i, j; |
| tree var = NULL_TREE; |
| |
| for (i = 0; i < stack_vars_num; i++) |
| { |
| bitmap part = NULL; |
| tree name; |
| struct ptr_info_def *pi; |
| |
| /* Not interested in partitions with single variable. */ |
| if (stack_vars[i].representative != i |
| || stack_vars[i].next == EOC) |
| continue; |
| |
| if (!decls_to_partitions) |
| { |
| decls_to_partitions = new part_hashmap; |
| cfun->gimple_df->decls_to_pointers = new hash_map<tree, tree>; |
| } |
| |
| /* Create an SSA_NAME that points to the partition for use |
| as base during alias-oracle queries on RTL for bases that |
| have been partitioned. */ |
| if (var == NULL_TREE) |
| var = create_tmp_var (ptr_type_node); |
| name = make_ssa_name (var); |
| |
| /* Create bitmaps representing partitions. They will be used for |
| points-to sets later, so use GGC alloc. */ |
| part = BITMAP_GGC_ALLOC (); |
| for (j = i; j != EOC; j = stack_vars[j].next) |
| { |
| tree decl = stack_vars[j].decl; |
| unsigned int uid = DECL_PT_UID (decl); |
| bitmap_set_bit (part, uid); |
| decls_to_partitions->put (uid, part); |
| cfun->gimple_df->decls_to_pointers->put (decl, name); |
| if (TREE_ADDRESSABLE (decl)) |
| TREE_ADDRESSABLE (name) = 1; |
| } |
| |
| /* Make the SSA name point to all partition members. */ |
| pi = get_ptr_info (name); |
| pt_solution_set (&pi->pt, part, false); |
| } |
| |
| /* Make all points-to sets that contain one member of a partition |
| contain all members of the partition. */ |
| if (decls_to_partitions) |
| { |
| unsigned i; |
| tree name; |
| hash_set<bitmap> visited; |
| bitmap temp = BITMAP_ALLOC (&stack_var_bitmap_obstack); |
| |
| FOR_EACH_SSA_NAME (i, name, cfun) |
| { |
| struct ptr_info_def *pi; |
| |
| if (POINTER_TYPE_P (TREE_TYPE (name)) |
| && ((pi = SSA_NAME_PTR_INFO (name)) != NULL)) |
| add_partitioned_vars_to_ptset (&pi->pt, decls_to_partitions, |
| &visited, temp); |
| } |
| |
| add_partitioned_vars_to_ptset (&cfun->gimple_df->escaped, |
| decls_to_partitions, &visited, temp); |
| add_partitioned_vars_to_ptset (&cfun->gimple_df->escaped_return, |
| decls_to_partitions, &visited, temp); |
| delete decls_to_partitions; |
| BITMAP_FREE (temp); |
| } |
| } |
| |
| /* A subroutine of partition_stack_vars. The UNION portion of a UNION/FIND |
| partitioning algorithm. Partitions A and B are known to be non-conflicting. |
| Merge them into a single partition A. */ |
| |
| static void |
| union_stack_vars (size_t a, size_t b) |
| { |
| class stack_var *vb = &stack_vars[b]; |
| bitmap_iterator bi; |
| unsigned u; |
| |
| gcc_assert (stack_vars[b].next == EOC); |
| /* Add B to A's partition. */ |
| stack_vars[b].next = stack_vars[a].next; |
| stack_vars[b].representative = a; |
| stack_vars[a].next = b; |
| |
| /* Make sure A is big enough to hold B. */ |
| stack_vars[a].size = upper_bound (stack_vars[a].size, stack_vars[b].size); |
| |
| /* Update the required alignment of partition A to account for B. */ |
| if (stack_vars[a].alignb < stack_vars[b].alignb) |
| stack_vars[a].alignb = stack_vars[b].alignb; |
| |
| /* Update the interference graph and merge the conflicts. */ |
| if (vb->conflicts) |
| { |
| EXECUTE_IF_SET_IN_BITMAP (vb->conflicts, 0, u, bi) |
| add_stack_var_conflict (a, stack_vars[u].representative); |
| BITMAP_FREE (vb->conflicts); |
| } |
| } |
| |
| /* A subroutine of expand_used_vars. Binpack the variables into |
| partitions constrained by the interference graph. The overall |
| algorithm used is as follows: |
| |
| Sort the objects by size in descending order. |
| For each object A { |
| S = size(A) |
| O = 0 |
| loop { |
| Look for the largest non-conflicting object B with size <= S. |
| UNION (A, B) |
| } |
| } |
| */ |
| |
| static void |
| partition_stack_vars (void) |
| { |
| size_t si, sj, n = stack_vars_num; |
| |
| stack_vars_sorted = XNEWVEC (size_t, stack_vars_num); |
| for (si = 0; si < n; ++si) |
| stack_vars_sorted[si] = si; |
| |
| if (n == 1) |
| return; |
| |
| qsort (stack_vars_sorted, n, sizeof (size_t), stack_var_cmp); |
| |
| for (si = 0; si < n; ++si) |
| { |
| size_t i = stack_vars_sorted[si]; |
| unsigned int ialign = stack_vars[i].alignb; |
| poly_int64 isize = stack_vars[i].size; |
| |
| /* Ignore objects that aren't partition representatives. If we |
| see a var that is not a partition representative, it must |
| have been merged earlier. */ |
| if (stack_vars[i].representative != i) |
| continue; |
| |
| for (sj = si + 1; sj < n; ++sj) |
| { |
| size_t j = stack_vars_sorted[sj]; |
| unsigned int jalign = stack_vars[j].alignb; |
| poly_int64 jsize = stack_vars[j].size; |
| |
| /* Ignore objects that aren't partition representatives. */ |
| if (stack_vars[j].representative != j) |
| continue; |
| |
| /* Do not mix objects of "small" (supported) alignment |
| and "large" (unsupported) alignment. */ |
| if ((ialign * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT) |
| != (jalign * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT)) |
| break; |
| |
| /* For Address Sanitizer do not mix objects with different |
| sizes, as the shorter vars wouldn't be adequately protected. |
| Don't do that for "large" (unsupported) alignment objects, |
| those aren't protected anyway. */ |
| if (asan_sanitize_stack_p () |
| && maybe_ne (isize, jsize) |
| && ialign * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT) |
| break; |
| |
| /* Ignore conflicting objects. */ |
| if (stack_var_conflict_p (i, j)) |
| continue; |
| |
| /* UNION the objects, placing J at OFFSET. */ |
| union_stack_vars (i, j); |
| } |
| } |
| |
| update_alias_info_with_stack_vars (); |
| } |
| |
| /* A debugging aid for expand_used_vars. Dump the generated partitions. */ |
| |
| static void |
| dump_stack_var_partition (void) |
| { |
| size_t si, i, j, n = stack_vars_num; |
| |
| for (si = 0; si < n; ++si) |
| { |
| i = stack_vars_sorted[si]; |
| |
| /* Skip variables that aren't partition representatives, for now. */ |
| if (stack_vars[i].representative != i) |
| continue; |
| |
| fprintf (dump_file, "Partition " HOST_SIZE_T_PRINT_UNSIGNED ": size ", |
| (fmt_size_t) i); |
| print_dec (stack_vars[i].size, dump_file); |
| fprintf (dump_file, " align %u\n", stack_vars[i].alignb); |
| |
| for (j = i; j != EOC; j = stack_vars[j].next) |
| { |
| fputc ('\t', dump_file); |
| print_generic_expr (dump_file, stack_vars[j].decl, dump_flags); |
| } |
| fputc ('\n', dump_file); |
| } |
| } |
| |
| /* Assign rtl to DECL at BASE + OFFSET. */ |
| |
| static void |
| expand_one_stack_var_at (tree decl, rtx base, unsigned base_align, |
| poly_int64 offset) |
| { |
| unsigned align; |
| rtx x; |
| |
| /* If this fails, we've overflowed the stack frame. Error nicely? */ |
| gcc_assert (known_eq (offset, trunc_int_for_mode (offset, Pmode))); |
| |
| if (hwasan_sanitize_stack_p ()) |
| x = targetm.memtag.add_tag (base, offset, |
| hwasan_current_frame_tag ()); |
| else |
| x = plus_constant (Pmode, base, offset); |
| |
| x = gen_rtx_MEM (TREE_CODE (decl) == SSA_NAME |
| ? TYPE_MODE (TREE_TYPE (decl)) |
| : DECL_MODE (decl), x); |
| |
| /* Set alignment we actually gave this decl if it isn't an SSA name. |
| If it is we generate stack slots only accidentally so it isn't as |
| important, we'll simply set the alignment directly on the MEM. */ |
| |
| if (stack_vars_base_reg_p (base)) |
| offset -= frame_phase; |
| align = known_alignment (offset); |
| align *= BITS_PER_UNIT; |
| if (align == 0 || align > base_align) |
| align = base_align; |
| |
| if (TREE_CODE (decl) != SSA_NAME) |
| { |
| /* One would think that we could assert that we're not decreasing |
| alignment here, but (at least) the i386 port does exactly this |
| via the MINIMUM_ALIGNMENT hook. */ |
| |
| SET_DECL_ALIGN (decl, align); |
| DECL_USER_ALIGN (decl) = 0; |
| } |
| |
| set_rtl (decl, x); |
| |
| set_mem_align (x, align); |
| } |
| |
| class stack_vars_data |
| { |
| public: |
| /* Vector of offset pairs, always end of some padding followed |
| by start of the padding that needs Address Sanitizer protection. |
| The vector is in reversed, highest offset pairs come first. */ |
| auto_vec<HOST_WIDE_INT> asan_vec; |
| |
| /* Vector of partition representative decls in between the paddings. */ |
| auto_vec<tree> asan_decl_vec; |
| |
| /* Base pseudo register for Address Sanitizer protected automatic vars. */ |
| rtx asan_base; |
| |
| /* Alignment needed for the Address Sanitizer protected automatic vars. */ |
| unsigned int asan_alignb; |
| }; |
| |
| /* A subroutine of expand_used_vars. Give each partition representative |
| a unique location within the stack frame. Update each partition member |
| with that location. */ |
| static void |
| expand_stack_vars (bool (*pred) (size_t), class stack_vars_data *data) |
| { |
| size_t si, i, j, n = stack_vars_num; |
| poly_uint64 large_size = 0, large_alloc = 0; |
| rtx large_base = NULL; |
| rtx large_untagged_base = NULL; |
| unsigned large_align = 0; |
| bool large_allocation_done = false; |
| tree decl; |
| |
| /* Determine if there are any variables requiring "large" alignment. |
| Since these are dynamically allocated, we only process these if |
| no predicate involved. */ |
| large_align = stack_vars[stack_vars_sorted[0]].alignb * BITS_PER_UNIT; |
| if (pred == NULL && large_align > MAX_SUPPORTED_STACK_ALIGNMENT) |
| { |
| /* Find the total size of these variables. */ |
| for (si = 0; si < n; ++si) |
| { |
| unsigned alignb; |
| |
| i = stack_vars_sorted[si]; |
| alignb = stack_vars[i].alignb; |
| |
| /* All "large" alignment decls come before all "small" alignment |
| decls, but "large" alignment decls are not sorted based on |
| their alignment. Increase large_align to track the largest |
| required alignment. */ |
| if ((alignb * BITS_PER_UNIT) > large_align) |
| large_align = alignb * BITS_PER_UNIT; |
| |
| /* Stop when we get to the first decl with "small" alignment. */ |
| if (alignb * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT) |
| break; |
| |
| /* Skip variables that aren't partition representatives. */ |
| if (stack_vars[i].representative != i) |
| continue; |
| |
| /* Skip variables that have already had rtl assigned. See also |
| add_stack_var where we perpetrate this pc_rtx hack. */ |
| decl = stack_vars[i].decl; |
| if (TREE_CODE (decl) == SSA_NAME |
| ? SA.partition_to_pseudo[var_to_partition (SA.map, decl)] != NULL_RTX |
| : DECL_RTL (decl) != pc_rtx) |
| continue; |
| |
| large_size = aligned_upper_bound (large_size, alignb); |
| large_size += stack_vars[i].size; |
| } |
| } |
| |
| for (si = 0; si < n; ++si) |
| { |
| rtx base; |
| unsigned base_align, alignb; |
| poly_int64 offset = 0; |
| |
| i = stack_vars_sorted[si]; |
| |
| /* Skip variables that aren't partition representatives, for now. */ |
| if (stack_vars[i].representative != i) |
| continue; |
| |
| /* Skip variables that have already had rtl assigned. See also |
| add_stack_var where we perpetrate this pc_rtx hack. */ |
| decl = stack_vars[i].decl; |
| if (TREE_CODE (decl) == SSA_NAME |
| ? SA.partition_to_pseudo[var_to_partition (SA.map, decl)] != NULL_RTX |
| : DECL_RTL (decl) != pc_rtx) |
| continue; |
| |
| /* Check the predicate to see whether this variable should be |
| allocated in this pass. */ |
| if (pred && !pred (i)) |
| continue; |
| |
| base = (hwasan_sanitize_stack_p () |
| ? hwasan_frame_base () |
| : virtual_stack_vars_rtx); |
| alignb = stack_vars[i].alignb; |
| if (alignb * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT) |
| { |
| poly_int64 hwasan_orig_offset; |
| if (hwasan_sanitize_stack_p ()) |
| { |
| /* There must be no tag granule "shared" between different |
| objects. This means that no HWASAN_TAG_GRANULE_SIZE byte |
| chunk can have more than one object in it. |
| |
| We ensure this by forcing the end of the last bit of data to |
| be aligned to HWASAN_TAG_GRANULE_SIZE bytes here, and setting |
| the start of each variable to be aligned to |
| HWASAN_TAG_GRANULE_SIZE bytes in `align_local_variable`. |
| |
| We can't align just one of the start or end, since there are |
| untagged things stored on the stack which we do not align to |
| HWASAN_TAG_GRANULE_SIZE bytes. If we only aligned the start |
| or the end of tagged objects then untagged objects could end |
| up sharing the first granule of a tagged object or sharing the |
| last granule of a tagged object respectively. */ |
| hwasan_orig_offset = align_frame_offset (HWASAN_TAG_GRANULE_SIZE); |
| gcc_assert (stack_vars[i].alignb >= HWASAN_TAG_GRANULE_SIZE); |
| } |
| /* ASAN description strings don't yet have a syntax for expressing |
| polynomial offsets. */ |
| HOST_WIDE_INT prev_offset; |
| if (asan_sanitize_stack_p () |
| && pred |
| && frame_offset.is_constant (&prev_offset) |
| && stack_vars[i].size.is_constant ()) |
| { |
| if (data->asan_vec.is_empty ()) |
| { |
| align_frame_offset (ASAN_RED_ZONE_SIZE); |
| prev_offset = frame_offset.to_constant (); |
| } |
| prev_offset = align_base (prev_offset, |
| ASAN_MIN_RED_ZONE_SIZE, |
| !FRAME_GROWS_DOWNWARD); |
| tree repr_decl = NULL_TREE; |
| unsigned HOST_WIDE_INT size |
| = asan_var_and_redzone_size (stack_vars[i].size.to_constant ()); |
| if (data->asan_vec.is_empty ()) |
| size = MAX (size, ASAN_RED_ZONE_SIZE); |
| |
| unsigned HOST_WIDE_INT alignment = MAX (alignb, |
| ASAN_MIN_RED_ZONE_SIZE); |
| offset = alloc_stack_frame_space (size, alignment); |
| |
| data->asan_vec.safe_push (prev_offset); |
| /* Allocating a constant amount of space from a constant |
| starting offset must give a constant result. */ |
| data->asan_vec.safe_push ((offset + stack_vars[i].size) |
| .to_constant ()); |
| /* Find best representative of the partition. |
| Prefer those with DECL_NAME, even better |
| satisfying asan_protect_stack_decl predicate. */ |
| for (j = i; j != EOC; j = stack_vars[j].next) |
| if (asan_protect_stack_decl (stack_vars[j].decl) |
| && DECL_NAME (stack_vars[j].decl)) |
| { |
| repr_decl = stack_vars[j].decl; |
| break; |
| } |
| else if (repr_decl == NULL_TREE |
| && DECL_P (stack_vars[j].decl) |
| && DECL_NAME (stack_vars[j].decl)) |
| repr_decl = stack_vars[j].decl; |
| if (repr_decl == NULL_TREE) |
| repr_decl = stack_vars[i].decl; |
| data->asan_decl_vec.safe_push (repr_decl); |
| |
| /* Make sure a representative is unpoison if another |
| variable in the partition is handled by |
| use-after-scope sanitization. */ |
| if (asan_handled_variables != NULL |
| && !asan_handled_variables->contains (repr_decl)) |
| { |
| for (j = i; j != EOC; j = stack_vars[j].next) |
| if (asan_handled_variables->contains (stack_vars[j].decl)) |
| break; |
| if (j != EOC) |
| asan_handled_variables->add (repr_decl); |
| } |
| |
| data->asan_alignb = MAX (data->asan_alignb, alignb); |
| if (data->asan_base == NULL) |
| data->asan_base = gen_reg_rtx (Pmode); |
| base = data->asan_base; |
| |
| if (!STRICT_ALIGNMENT) |
| base_align = crtl->max_used_stack_slot_alignment; |
| else |
| base_align = MAX (crtl->max_used_stack_slot_alignment, |
| GET_MODE_ALIGNMENT (SImode) |
| << ASAN_SHADOW_SHIFT); |
| } |
| else |
| { |
| offset = alloc_stack_frame_space (stack_vars[i].size, alignb); |
| base_align = crtl->max_used_stack_slot_alignment; |
| |
| if (hwasan_sanitize_stack_p ()) |
| { |
| /* Align again since the point of this alignment is to handle |
| the "end" of the object (i.e. smallest address after the |
| stack object). For FRAME_GROWS_DOWNWARD that requires |
| aligning the stack before allocating, but for a frame that |
| grows upwards that requires aligning the stack after |
| allocation. |
| |
| Use `frame_offset` to record the offset value rather than |
| `offset` since the `frame_offset` describes the extent |
| allocated for this particular variable while `offset` |
| describes the address that this variable starts at. */ |
| align_frame_offset (HWASAN_TAG_GRANULE_SIZE); |
| hwasan_record_stack_var (virtual_stack_vars_rtx, base, |
| hwasan_orig_offset, frame_offset); |
| } |
| } |
| } |
| else |
| { |
| /* Large alignment is only processed in the last pass. */ |
| if (pred) |
| continue; |
| |
| /* If there were any variables requiring "large" alignment, allocate |
| space. */ |
| if (maybe_ne (large_size, 0U) && ! large_allocation_done) |
| { |
| poly_int64 loffset; |
| rtx large_allocsize; |
| |
| large_allocsize = gen_int_mode (large_size, Pmode); |
| get_dynamic_stack_size (&large_allocsize, 0, large_align, NULL); |
| loffset = alloc_stack_frame_space |
| (rtx_to_poly_int64 (large_allocsize), |
| PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT); |
| large_base = get_dynamic_stack_base (loffset, large_align, base); |
| large_allocation_done = true; |
| } |
| |
| gcc_assert (large_base != NULL); |
| large_alloc = aligned_upper_bound (large_alloc, alignb); |
| offset = large_alloc; |
| large_alloc += stack_vars[i].size; |
| if (hwasan_sanitize_stack_p ()) |
| { |
| /* An object with a large alignment requirement means that the |
| alignment requirement is greater than the required alignment |
| for tags. */ |
| if (!large_untagged_base) |
| large_untagged_base |
| = targetm.memtag.untagged_pointer (large_base, NULL_RTX); |
| /* Ensure the end of the variable is also aligned correctly. */ |
| poly_int64 align_again |
| = aligned_upper_bound (large_alloc, HWASAN_TAG_GRANULE_SIZE); |
| /* For large allocations we always allocate a chunk of space |
| (which is addressed by large_untagged_base/large_base) and |
| then use positive offsets from that. Hence the farthest |
| offset is `align_again` and the nearest offset from the base |
| is `offset`. */ |
| hwasan_record_stack_var (large_untagged_base, large_base, |
| offset, align_again); |
| } |
| |
| base = large_base; |
| base_align = large_align; |
| } |
| |
| /* Create rtl for each variable based on their location within the |
| partition. */ |
| for (j = i; j != EOC; j = stack_vars[j].next) |
| { |
| expand_one_stack_var_at (stack_vars[j].decl, |
| base, base_align, offset); |
| } |
| if (hwasan_sanitize_stack_p ()) |
| hwasan_increment_frame_tag (); |
| } |
| |
| gcc_assert (known_eq (large_alloc, large_size)); |
| } |
| |
| /* Take into account all sizes of partitions and reset DECL_RTLs. */ |
| static poly_uint64 |
| account_stack_vars (void) |
| { |
| size_t si, j, i, n = stack_vars_num; |
| poly_uint64 size = 0; |
| |
| for (si = 0; si < n; ++si) |
| { |
| i = stack_vars_sorted[si]; |
| |
| /* Skip variables that aren't partition representatives, for now. */ |
| if (stack_vars[i].representative != i) |
| continue; |
| |
| size += stack_vars[i].size; |
| for (j = i; j != EOC; j = stack_vars[j].next) |
| set_rtl (stack_vars[j].decl, NULL); |
| } |
| return size; |
| } |
| |
| /* Record the RTL assignment X for the default def of PARM. */ |
| |
| extern void |
| set_parm_rtl (tree parm, rtx x) |
| { |
| gcc_assert (TREE_CODE (parm) == PARM_DECL |
| || TREE_CODE (parm) == RESULT_DECL); |
| |
| if (x && !MEM_P (x)) |
| { |
| unsigned int align = MINIMUM_ALIGNMENT (TREE_TYPE (parm), |
| TYPE_MODE (TREE_TYPE (parm)), |
| TYPE_ALIGN (TREE_TYPE (parm))); |
| |
| /* If the variable alignment is very large we'll dynamicaly |
| allocate it, which means that in-frame portion is just a |
| pointer. ??? We've got a pseudo for sure here, do we |
| actually dynamically allocate its spilling area if needed? |
| ??? Isn't it a problem when Pmode alignment also exceeds |
| MAX_SUPPORTED_STACK_ALIGNMENT, as can happen on cris and lm32? */ |
| if (align > MAX_SUPPORTED_STACK_ALIGNMENT) |
| align = GET_MODE_ALIGNMENT (Pmode); |
| |
| record_alignment_for_reg_var (align); |
| } |
| |
| tree ssa = ssa_default_def (cfun, parm); |
| if (!ssa) |
| return set_rtl (parm, x); |
| |
| int part = var_to_partition (SA.map, ssa); |
| gcc_assert (part != NO_PARTITION); |
| |
| bool changed = bitmap_bit_p (SA.partitions_for_parm_default_defs, part); |
| gcc_assert (changed); |
| |
| set_rtl (ssa, x); |
| gcc_assert (DECL_RTL (parm) == x); |
| } |
| |
| /* A subroutine of expand_one_var. Called to immediately assign rtl |
| to a variable to be allocated in the stack frame. */ |
| |
| static void |
| expand_one_stack_var_1 (tree var) |
| { |
| poly_uint64 size; |
| poly_int64 offset; |
| unsigned byte_align; |
| |
| if (TREE_CODE (var) == SSA_NAME) |
| { |
| tree type = TREE_TYPE (var); |
| size = tree_to_poly_uint64 (TYPE_SIZE_UNIT (type)); |
| } |
| else |
| size = tree_to_poly_uint64 (DECL_SIZE_UNIT (var)); |
| |
| byte_align = align_local_variable (var, true); |
| |
| /* We handle highly aligned variables in expand_stack_vars. */ |
| gcc_assert (byte_align * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT); |
| |
| rtx base; |
| if (hwasan_sanitize_stack_p ()) |
| { |
| /* Allocate zero bytes to align the stack. */ |
| poly_int64 hwasan_orig_offset |
| = align_frame_offset (HWASAN_TAG_GRANULE_SIZE); |
| offset = alloc_stack_frame_space (size, byte_align); |
| align_frame_offset (HWASAN_TAG_GRANULE_SIZE); |
| base = hwasan_frame_base (); |
| /* Use `frame_offset` to automatically account for machines where the |
| frame grows upwards. |
| |
| `offset` will always point to the "start" of the stack object, which |
| will be the smallest address, for ! FRAME_GROWS_DOWNWARD this is *not* |
| the "furthest" offset from the base delimiting the current stack |
| object. `frame_offset` will always delimit the extent that the frame. |
| */ |
| hwasan_record_stack_var (virtual_stack_vars_rtx, base, |
| hwasan_orig_offset, frame_offset); |
| } |
| else |
| { |
| offset = alloc_stack_frame_space (size, byte_align); |
| base = virtual_stack_vars_rtx; |
| } |
| |
| expand_one_stack_var_at (var, base, |
| crtl->max_used_stack_slot_alignment, offset); |
| |
| if (hwasan_sanitize_stack_p ()) |
| hwasan_increment_frame_tag (); |
| } |
| |
| /* Wrapper for expand_one_stack_var_1 that checks SSA_NAMEs are |
| already assigned some MEM. */ |
| |
| static void |
| expand_one_stack_var (tree var) |
| { |
| if (TREE_CODE (var) == SSA_NAME) |
| { |
| int part = var_to_partition (SA.map, var); |
| if (part != NO_PARTITION) |
| { |
| rtx x = SA.partition_to_pseudo[part]; |
| gcc_assert (x); |
| gcc_assert (MEM_P (x)); |
| return; |
| } |
| } |
| |
| return expand_one_stack_var_1 (var); |
| } |
| |
| /* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL |
| that will reside in a hard register. */ |
| |
| static void |
| expand_one_hard_reg_var (tree var) |
| { |
| rest_of_decl_compilation (var, 0, 0); |
| } |
| |
| /* Record the alignment requirements of some variable assigned to a |
| pseudo. */ |
| |
| static void |
| record_alignment_for_reg_var (unsigned int align) |
| { |
| if (SUPPORTS_STACK_ALIGNMENT |
| && crtl->stack_alignment_estimated < align) |
| { |
| /* stack_alignment_estimated shouldn't change after stack |
| realign decision made */ |
| gcc_assert (!crtl->stack_realign_processed); |
| crtl->stack_alignment_estimated = align; |
| } |
| |
| /* stack_alignment_needed > PREFERRED_STACK_BOUNDARY is permitted. |
| So here we only make sure stack_alignment_needed >= align. */ |
| if (crtl->stack_alignment_needed < align) |
| crtl->stack_alignment_needed = align; |
| if (crtl->max_used_stack_slot_alignment < align) |
| crtl->max_used_stack_slot_alignment = align; |
| } |
| |
| /* Create RTL for an SSA partition. */ |
| |
| static void |
| expand_one_ssa_partition (tree var) |
| { |
| int part = var_to_partition (SA.map, var); |
| gcc_assert (part != NO_PARTITION); |
| |
| if (SA.partition_to_pseudo[part]) |
| return; |
| |
| unsigned int align = MINIMUM_ALIGNMENT (TREE_TYPE (var), |
| TYPE_MODE (TREE_TYPE (var)), |
| TYPE_ALIGN (TREE_TYPE (var))); |
| |
| /* If the variable alignment is very large we'll dynamicaly allocate |
| it, which means that in-frame portion is just a pointer. */ |
| if (align > MAX_SUPPORTED_STACK_ALIGNMENT) |
| align = GET_MODE_ALIGNMENT (Pmode); |
| |
| record_alignment_for_reg_var (align); |
| |
| if (!use_register_for_decl (var)) |
| { |
| if (defer_stack_allocation (var, true)) |
| add_stack_var (var, true); |
| else |
| expand_one_stack_var_1 (var); |
| return; |
| } |
| |
| machine_mode reg_mode = promote_ssa_mode (var, NULL); |
| rtx x = gen_reg_rtx (reg_mode); |
| |
| set_rtl (var, x); |
| |
| /* For a promoted variable, X will not be used directly but wrapped in a |
| SUBREG with SUBREG_PROMOTED_VAR_P set, which means that the RTL land |
| will assume that its upper bits can be inferred from its lower bits. |
| Therefore, if X isn't initialized on every path from the entry, then |
| we must do it manually in order to fulfill the above assumption. */ |
| if (reg_mode != TYPE_MODE (TREE_TYPE (var)) |
| && bitmap_bit_p (SA.partitions_for_undefined_values, part)) |
| emit_move_insn (x, CONST0_RTX (reg_mode)); |
| } |
| |
| /* Record the association between the RTL generated for partition PART |
| and the underlying variable of the SSA_NAME VAR. */ |
| |
| static void |
| adjust_one_expanded_partition_var (tree var) |
| { |
| if (!var) |
| return; |
| |
| tree decl = SSA_NAME_VAR (var); |
| |
| int part = var_to_partition (SA.map, var); |
| if (part == NO_PARTITION) |
| return; |
| |
| rtx x = SA.partition_to_pseudo[part]; |
| |
| gcc_assert (x); |
| |
| set_rtl (var, x); |
| |
| if (!REG_P (x)) |
| return; |
| |
| /* Note if the object is a user variable. */ |
| if (decl && !DECL_ARTIFICIAL (decl)) |
| mark_user_reg (x); |
| |
| if (POINTER_TYPE_P (decl ? TREE_TYPE (decl) : TREE_TYPE (var))) |
| mark_reg_pointer (x, get_pointer_alignment (var)); |
| } |
| |
| /* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL |
| that will reside in a pseudo register. */ |
| |
| static void |
| expand_one_register_var (tree var) |
| { |
| if (TREE_CODE (var) == SSA_NAME) |
| { |
| int part = var_to_partition (SA.map, var); |
| if (part != NO_PARTITION) |
| { |
| rtx x = SA.partition_to_pseudo[part]; |
| gcc_assert (x); |
| gcc_assert (REG_P (x)); |
| return; |
| } |
| gcc_unreachable (); |
| } |
| |
| tree decl = var; |
| tree type = TREE_TYPE (decl); |
| machine_mode reg_mode = promote_decl_mode (decl, NULL); |
| rtx x = gen_reg_rtx (reg_mode); |
| |
| set_rtl (var, x); |
| |
| /* Note if the object is a user variable. */ |
| if (!DECL_ARTIFICIAL (decl)) |
| mark_user_reg (x); |
| |
| if (POINTER_TYPE_P (type)) |
| mark_reg_pointer (x, get_pointer_alignment (var)); |
| } |
| |
| /* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL that |
| has some associated error, e.g. its type is error-mark. We just need |
| to pick something that won't crash the rest of the compiler. */ |
| |
| static void |
| expand_one_error_var (tree var) |
| { |
| machine_mode mode = DECL_MODE (var); |
| rtx x; |
| |
| if (mode == BLKmode) |
| x = gen_rtx_MEM (BLKmode, const0_rtx); |
| else if (mode == VOIDmode) |
| x = const0_rtx; |
| else |
| x = gen_reg_rtx (mode); |
| |
| SET_DECL_RTL (var, x); |
| } |
| |
| /* A subroutine of expand_one_var. VAR is a variable that will be |
| allocated to the local stack frame. Return true if we wish to |
| add VAR to STACK_VARS so that it will be coalesced with other |
| variables. Return false to allocate VAR immediately. |
| |
| This function is used to reduce the number of variables considered |
| for coalescing, which reduces the size of the quadratic problem. */ |
| |
| static bool |
| defer_stack_allocation (tree var, bool toplevel) |
| { |
| tree size_unit = TREE_CODE (var) == SSA_NAME |
| ? TYPE_SIZE_UNIT (TREE_TYPE (var)) |
| : DECL_SIZE_UNIT (var); |
| poly_uint64 size; |
| |
| /* Whether the variable is small enough for immediate allocation not to be |
| a problem with regard to the frame size. */ |
| bool smallish |
| = (poly_int_tree_p (size_unit, &size) |
| && (estimated_poly_value (size) |
| < param_min_size_for_stack_sharing)); |
| |
| /* If stack protection is enabled, *all* stack variables must be deferred, |
| so that we can re-order the strings to the top of the frame. |
| Similarly for Address Sanitizer. */ |
| if (flag_stack_protect || asan_sanitize_stack_p ()) |
| return true; |
| |
| unsigned int align = TREE_CODE (var) == SSA_NAME |
| ? TYPE_ALIGN (TREE_TYPE (var)) |
| : DECL_ALIGN (var); |
| |
| /* We handle "large" alignment via dynamic allocation. We want to handle |
| this extra complication in only one place, so defer them. */ |
| if (align > MAX_SUPPORTED_STACK_ALIGNMENT) |
| return true; |
| |
| bool ignored = TREE_CODE (var) == SSA_NAME |
| ? !SSAVAR (var) || DECL_IGNORED_P (SSA_NAME_VAR (var)) |
| : DECL_IGNORED_P (var); |
| |
| /* When optimization is enabled, DECL_IGNORED_P variables originally scoped |
| might be detached from their block and appear at toplevel when we reach |
| here. We want to coalesce them with variables from other blocks when |
| the immediate contribution to the frame size would be noticeable. */ |
| if (toplevel && optimize > 0 && ignored && !smallish) |
| return true; |
| |
| /* Variables declared in the outermost scope automatically conflict |
| with every other variable. The only reason to want to defer them |
| at all is that, after sorting, we can more efficiently pack |
| small variables in the stack frame. Continue to defer at -O2. */ |
| if (toplevel && optimize < 2) |
| return false; |
| |
| /* Without optimization, *most* variables are allocated from the |
| stack, which makes the quadratic problem large exactly when we |
| want compilation to proceed as quickly as possible. On the |
| other hand, we don't want the function's stack frame size to |
| get completely out of hand. So we avoid adding scalars and |
| "small" aggregates to the list at all. */ |
| if (optimize == 0 && smallish) |
| return false; |
| |
| return true; |
| } |
| |
| /* A subroutine of expand_used_vars. Expand one variable according to |
| its flavor. Variables to be placed on the stack are not actually |
| expanded yet, merely recorded. |
| When REALLY_EXPAND is false, only add stack values to be allocated. |
| Return stack usage this variable is supposed to take. |
| */ |
| |
| static poly_uint64 |
| expand_one_var (tree var, bool toplevel, bool really_expand, |
| bitmap forced_stack_var = NULL) |
| { |
| unsigned int align = BITS_PER_UNIT; |
| tree origvar = var; |
| |
| var = SSAVAR (var); |
| |
| if (TREE_TYPE (var) != error_mark_node && VAR_P (var)) |
| { |
| if (is_global_var (var)) |
| return 0; |
| |
| /* Because we don't know if VAR will be in register or on stack, |
| we conservatively assume it will be on stack even if VAR is |
| eventually put into register after RA pass. For non-automatic |
| variables, which won't be on stack, we collect alignment of |
| type and ignore user specified alignment. Similarly for |
| SSA_NAMEs for which use_register_for_decl returns true. */ |
| if (TREE_STATIC (var) |
| || DECL_EXTERNAL (var) |
| || (TREE_CODE (origvar) == SSA_NAME && use_register_for_decl (var))) |
| align = MINIMUM_ALIGNMENT (TREE_TYPE (var), |
| TYPE_MODE (TREE_TYPE (var)), |
| TYPE_ALIGN (TREE_TYPE (var))); |
| else if (DECL_HAS_VALUE_EXPR_P (var) |
| || (DECL_RTL_SET_P (var) && MEM_P (DECL_RTL (var)))) |
| /* Don't consider debug only variables with DECL_HAS_VALUE_EXPR_P set |
| or variables which were assigned a stack slot already by |
| expand_one_stack_var_at - in the latter case DECL_ALIGN has been |
| changed from the offset chosen to it. */ |
| align = crtl->stack_alignment_estimated; |
| else |
| align = MINIMUM_ALIGNMENT (var, DECL_MODE (var), DECL_ALIGN (var)); |
| |
| /* If the variable alignment is very large we'll dynamicaly allocate |
| it, which means that in-frame portion is just a pointer. */ |
| if (align > MAX_SUPPORTED_STACK_ALIGNMENT) |
| align = GET_MODE_ALIGNMENT (Pmode); |
| } |
| |
| record_alignment_for_reg_var (align); |
| |
| poly_uint64 size; |
| if (TREE_CODE (origvar) == SSA_NAME) |
| { |
| gcc_assert (!VAR_P (var) |
| || (!DECL_EXTERNAL (var) |
| && !DECL_HAS_VALUE_EXPR_P (var) |
| && !TREE_STATIC (var) |
| && TREE_TYPE (var) != error_mark_node |
| && !DECL_HARD_REGISTER (var) |
| && really_expand)); |
| } |
| if (!VAR_P (var) && TREE_CODE (origvar) != SSA_NAME) |
| ; |
| else if (DECL_EXTERNAL (var)) |
| ; |
| else if (DECL_HAS_VALUE_EXPR_P (var)) |
| ; |
| else if (TREE_STATIC (var)) |
| ; |
| else if (TREE_CODE (origvar) != SSA_NAME && DECL_RTL_SET_P (var)) |
| ; |
| else if (TREE_TYPE (var) == error_mark_node) |
| { |
| if (really_expand) |
| expand_one_error_var (var); |
| } |
| else if (VAR_P (var) && DECL_HARD_REGISTER (var)) |
| { |
| if (really_expand) |
| { |
| expand_one_hard_reg_var (var); |
| if (!DECL_HARD_REGISTER (var)) |
| /* Invalid register specification. */ |
| expand_one_error_var (var); |
| } |
| } |
| else if (use_register_for_decl (var) |
| && (!forced_stack_var |
| || !bitmap_bit_p (forced_stack_var, DECL_UID (var)))) |
| { |
| if (really_expand) |
| expand_one_register_var (origvar); |
| } |
| else if (!poly_int_tree_p (DECL_SIZE_UNIT (var), &size) |
| || !valid_constant_size_p (DECL_SIZE_UNIT (var))) |
| { |
| /* Reject variables which cover more than half of the address-space. */ |
| if (really_expand) |
| { |
| if (DECL_NONLOCAL_FRAME (var)) |
| error_at (DECL_SOURCE_LOCATION (current_function_decl), |
| "total size of local objects is too large"); |
| else |
| error_at (DECL_SOURCE_LOCATION (var), |
| "size of variable %q+D is too large", var); |
| expand_one_error_var (var); |
| } |
| } |
| else if (defer_stack_allocation (var, toplevel)) |
| add_stack_var (origvar, really_expand); |
| else |
| { |
| if (really_expand) |
| { |
| if (lookup_attribute ("naked", |
| DECL_ATTRIBUTES (current_function_decl))) |
| error ("cannot allocate stack for variable %q+D, naked function", |
| var); |
| |
| expand_one_stack_var (origvar); |
| } |
| return size; |
| } |
| return 0; |
| } |
| |
| /* A subroutine of expand_used_vars. Walk down through the BLOCK tree |
| expanding variables. Those variables that can be put into registers |
| are allocated pseudos; those that can't are put on the stack. |
| |
| TOPLEVEL is true if this is the outermost BLOCK. */ |
| |
| static void |
| expand_used_vars_for_block (tree block, bool toplevel, bitmap forced_stack_vars) |
| { |
| tree t; |
| |
| /* Expand all variables at this level. */ |
| for (t = BLOCK_VARS (block); t ; t = DECL_CHAIN (t)) |
| if (TREE_USED (t) |
| && ((!VAR_P (t) && TREE_CODE (t) != RESULT_DECL) |
| || !DECL_NONSHAREABLE (t))) |
| expand_one_var (t, toplevel, true, forced_stack_vars); |
| |
| /* Expand all variables at containing levels. */ |
| for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t)) |
| expand_used_vars_for_block (t, false, forced_stack_vars); |
| } |
| |
| /* A subroutine of expand_used_vars. Walk down through the BLOCK tree |
| and clear TREE_USED on all local variables. */ |
| |
| static void |
| clear_tree_used (tree block) |
| { |
| tree t; |
| |
| for (t = BLOCK_VARS (block); t ; t = DECL_CHAIN (t)) |
| /* if (!TREE_STATIC (t) && !DECL_EXTERNAL (t)) */ |
| if ((!VAR_P (t) && TREE_CODE (t) != RESULT_DECL) |
| || !DECL_NONSHAREABLE (t)) |
| TREE_USED (t) = 0; |
| |
| for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t)) |
| clear_tree_used (t); |
| } |
| |
| /* Examine TYPE and determine a bit mask of the following features. */ |
| |
| #define SPCT_HAS_LARGE_CHAR_ARRAY 1 |
| #define SPCT_HAS_SMALL_CHAR_ARRAY 2 |
| #define SPCT_HAS_ARRAY 4 |
| #define SPCT_HAS_AGGREGATE 8 |
| |
| static unsigned int |
| stack_protect_classify_type (tree type) |
| { |
| unsigned int ret = 0; |
| tree t; |
| |
| switch (TREE_CODE (type)) |
| { |
| case ARRAY_TYPE: |
| t = TYPE_MAIN_VARIANT (TREE_TYPE (type)); |
| if (t == char_type_node |
| || t == signed_char_type_node |
| || t == unsigned_char_type_node) |
| { |
| unsigned HOST_WIDE_INT max = param_ssp_buffer_size; |
| unsigned HOST_WIDE_INT len; |
| |
| if (!TYPE_SIZE_UNIT (type) |
| || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))) |
| len = max; |
| else |
| len = tree_to_uhwi (TYPE_SIZE_UNIT (type)); |
| |
| if (len < max) |
| ret = SPCT_HAS_SMALL_CHAR_ARRAY | SPCT_HAS_ARRAY; |
| else |
| ret = SPCT_HAS_LARGE_CHAR_ARRAY | SPCT_HAS_ARRAY; |
| } |
| else |
| ret = SPCT_HAS_ARRAY; |
| break; |
| |
| case UNION_TYPE: |
| case QUAL_UNION_TYPE: |
| case RECORD_TYPE: |
| ret = SPCT_HAS_AGGREGATE; |
| for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t)) |
| if (TREE_CODE (t) == FIELD_DECL) |
| ret |= stack_protect_classify_type (TREE_TYPE (t)); |
| break; |
| |
| default: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /* Return nonzero if DECL should be segregated into the "vulnerable" upper |
| part of the local stack frame. Remember if we ever return nonzero for |
| any variable in this function. The return value is the phase number in |
| which the variable should be allocated. */ |
| |
| static int |
| stack_protect_decl_phase (tree decl) |
| { |
| unsigned int bits = stack_protect_classify_type (TREE_TYPE (decl)); |
| int ret = 0; |
| |
| if (bits & SPCT_HAS_SMALL_CHAR_ARRAY) |
| has_short_buffer = true; |
| |
| tree attribs = DECL_ATTRIBUTES (current_function_decl); |
| if (!lookup_attribute ("no_stack_protector", attribs) |
| && (flag_stack_protect == SPCT_FLAG_ALL |
| || flag_stack_protect == SPCT_FLAG_STRONG |
| || (flag_stack_protect == SPCT_FLAG_EXPLICIT |
| && lookup_attribute ("stack_protect", attribs)))) |
| { |
| if ((bits & (SPCT_HAS_SMALL_CHAR_ARRAY | SPCT_HAS_LARGE_CHAR_ARRAY)) |
| && !(bits & SPCT_HAS_AGGREGATE)) |
| ret = 1; |
| else if (bits & SPCT_HAS_ARRAY) |
| ret = 2; |
| } |
| else |
| ret = (bits & SPCT_HAS_LARGE_CHAR_ARRAY) != 0; |
| |
| if (ret) |
| has_protected_decls = true; |
| |
| return ret; |
| } |
| |
| /* Two helper routines that check for phase 1 and phase 2. These are used |
| as callbacks for expand_stack_vars. */ |
| |
| static bool |
| stack_protect_decl_phase_1 (size_t i) |
| { |
| return stack_protect_decl_phase (stack_vars[i].decl) == 1; |
| } |
| |
| static bool |
| stack_protect_decl_phase_2 (size_t i) |
| { |
| return stack_protect_decl_phase (stack_vars[i].decl) == 2; |
| } |
| |
| /* And helper function that checks for asan phase (with stack protector |
| it is phase 3). This is used as callback for expand_stack_vars. |
| Returns true if any of the vars in the partition need to be protected. */ |
| |
| static bool |
| asan_decl_phase_3 (size_t i) |
| { |
| while (i != EOC) |
| { |
| if (asan_protect_stack_decl (stack_vars[i].decl)) |
| return true; |
| i = stack_vars[i].next; |
| } |
| return false; |
| } |
| |
| /* Ensure that variables in different stack protection phases conflict |
| so that they are not merged and share the same stack slot. |
| Return true if there are any address taken variables. */ |
| |
| static bool |
| add_stack_protection_conflicts (void) |
| { |
| size_t i, j, n = stack_vars_num; |
| unsigned char *phase; |
| bool ret = false; |
| |
| phase = XNEWVEC (unsigned char, n); |
| for (i = 0; i < n; ++i) |
| { |
| phase[i] = stack_protect_decl_phase (stack_vars[i].decl); |
| if (TREE_ADDRESSABLE (stack_vars[i].decl)) |
| ret = true; |
| } |
| |
| for (i = 0; i < n; ++i) |
| { |
| unsigned char ph_i = phase[i]; |
| for (j = i + 1; j < n; ++j) |
| if (ph_i != phase[j]) |
| add_stack_var_conflict (i, j); |
| } |
| |
| XDELETEVEC (phase); |
| return ret; |
| } |
| |
| /* Create a decl for the guard at the top of the stack frame. */ |
| |
| static void |
| create_stack_guard (void) |
| { |
| tree guard = build_decl (DECL_SOURCE_LOCATION (current_function_decl), |
| VAR_DECL, NULL, ptr_type_node); |
| TREE_THIS_VOLATILE (guard) = 1; |
| TREE_USED (guard) = 1; |
| expand_one_stack_var (guard); |
| crtl->stack_protect_guard = guard; |
| } |
| |
| /* Prepare for expanding variables. */ |
| static void |
| init_vars_expansion (void) |
| { |
| /* Conflict bitmaps, and a few related temporary bitmaps, go here. */ |
| bitmap_obstack_initialize (&stack_var_bitmap_obstack); |
| |
| /* A map from decl to stack partition. */ |
| decl_to_stack_part = new hash_map<tree, size_t>; |
| |
| /* Initialize local stack smashing state. */ |
| has_protected_decls = false; |
| has_short_buffer = false; |
| if (hwasan_sanitize_stack_p ()) |
| hwasan_record_frame_init (); |
| } |
| |
| /* Free up stack variable graph data. */ |
| static void |
| fini_vars_expansion (void) |
| { |
| bitmap_obstack_release (&stack_var_bitmap_obstack); |
| if (stack_vars) |
| XDELETEVEC (stack_vars); |
| if (stack_vars_sorted) |
| XDELETEVEC (stack_vars_sorted); |
| stack_vars = NULL; |
| stack_vars_sorted = NULL; |
| stack_vars_alloc = stack_vars_num = 0; |
| delete decl_to_stack_part; |
| decl_to_stack_part = NULL; |
| } |
| |
| /* Make a fair guess for the size of the stack frame of the function |
| in NODE. This doesn't have to be exact, the result is only used in |
| the inline heuristics. So we don't want to run the full stack var |
| packing algorithm (which is quadratic in the number of stack vars). |
| Instead, we calculate the total size of all stack vars. This turns |
| out to be a pretty fair estimate -- packing of stack vars doesn't |
| happen very often. */ |
| |
| HOST_WIDE_INT |
| estimated_stack_frame_size (struct cgraph_node *node) |
| { |
| poly_int64 size = 0; |
| size_t i; |
| tree var; |
| struct function *fn = DECL_STRUCT_FUNCTION (node->decl); |
| |
| push_cfun (fn); |
| |
| init_vars_expansion (); |
| |
| FOR_EACH_LOCAL_DECL (fn, i, var) |
| if (auto_var_in_fn_p (var, fn->decl)) |
| size += expand_one_var (var, true, false); |
| |
| if (stack_vars_num > 0) |
| { |
| /* Fake sorting the stack vars for account_stack_vars (). */ |
| stack_vars_sorted = XNEWVEC (size_t, stack_vars_num); |
| for (i = 0; i < stack_vars_num; ++i) |
| stack_vars_sorted[i] = i; |
| size += account_stack_vars (); |
| } |
| |
| fini_vars_expansion (); |
| pop_cfun (); |
| return estimated_poly_value (size); |
| } |
| |
| /* Check if the current function has calls that use a return slot. */ |
| |
| static bool |
| stack_protect_return_slot_p () |
| { |
| basic_block bb; |
| |
| FOR_ALL_BB_FN (bb, cfun) |
| for (gimple_stmt_iterator gsi = gsi_start_bb (bb); |
| !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple *stmt = gsi_stmt (gsi); |
| /* This assumes that calls to internal-only functions never |
| use a return slot. */ |
| if (is_gimple_call (stmt) |
| && !gimple_call_internal_p (stmt) |
| && aggregate_value_p (TREE_TYPE (gimple_call_fntype (stmt)), |
| gimple_call_fndecl (stmt))) |
| return true; |
| } |
| return false; |
| } |
| |
| /* Expand all variables used in the function. */ |
| |
| static rtx_insn * |
| expand_used_vars (bitmap forced_stack_vars) |
| { |
| tree var, outer_block = DECL_INITIAL (current_function_decl); |
| auto_vec<tree> maybe_local_decls; |
| rtx_insn *var_end_seq = NULL; |
| unsigned i; |
| unsigned len; |
| bool gen_stack_protect_signal = false; |
| |
| /* Compute the phase of the stack frame for this function. */ |
| { |
| int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT; |
| int off = targetm.starting_frame_offset () % align; |
| frame_phase = off ? align - off : 0; |
| } |
| |
| /* Set TREE_USED on all variables in the local_decls. */ |
| FOR_EACH_LOCAL_DECL (cfun, i, var) |
| TREE_USED (var) = 1; |
| /* Clear TREE_USED on all variables associated with a block scope. */ |
| clear_tree_used (DECL_INITIAL (current_function_decl)); |
| |
| init_vars_expansion (); |
| |
| if (targetm.use_pseudo_pic_reg ()) |
| pic_offset_table_rtx = gen_reg_rtx (Pmode); |
| |
| for (i = 0; i < SA.map->num_partitions; i++) |
| { |
| if (bitmap_bit_p (SA.partitions_for_parm_default_defs, i)) |
| continue; |
| |
| tree var = partition_to_var (SA.map, i); |
| |
| gcc_assert (!virtual_operand_p (var)); |
| |
| expand_one_ssa_partition (var); |
| } |
| |
| if (flag_stack_protect == SPCT_FLAG_STRONG) |
| gen_stack_protect_signal = stack_protect_return_slot_p (); |
| |
| /* At this point all variables on the local_decls with TREE_USED |
| set are not associated with any block scope. Lay them out. */ |
| |
| len = vec_safe_length (cfun->local_decls); |
| FOR_EACH_LOCAL_DECL (cfun, i, var) |
| { |
| bool expand_now = false; |
| |
| /* Expanded above already. */ |
| if (is_gimple_reg (var)) |
| { |
| TREE_USED (var) = 0; |
| goto next; |
| } |
| /* We didn't set a block for static or extern because it's hard |
| to tell the difference between a global variable (re)declared |
| in a local scope, and one that's really declared there to |
| begin with. And it doesn't really matter much, since we're |
| not giving them stack space. Expand them now. */ |
| else if (TREE_STATIC (var) || DECL_EXTERNAL (var)) |
| expand_now = true; |
| |
| /* Expand variables not associated with any block now. Those created by |
| the optimizers could be live anywhere in the function. Those that |
| could possibly have been scoped originally and detached from their |
| block will have their allocation deferred so we coalesce them with |
| others when optimization is enabled. */ |
| else if (TREE_USED (var)) |
| expand_now = true; |
| |
| /* Finally, mark all variables on the list as used. We'll use |
| this in a moment when we expand those associated with scopes. */ |
| TREE_USED (var) = 1; |
| |
| if (expand_now) |
| expand_one_var (var, true, true, forced_stack_vars); |
| |
| next: |
| if (DECL_ARTIFICIAL (var) && !DECL_IGNORED_P (var)) |
| { |
| rtx rtl = DECL_RTL_IF_SET (var); |
| |
| /* Keep artificial non-ignored vars in cfun->local_decls |
| chain until instantiate_decls. */ |
| if (rtl && (MEM_P (rtl) || GET_CODE (rtl) == CONCAT)) |
| add_local_decl (cfun, var); |
| else if (rtl == NULL_RTX) |
| /* If rtl isn't set yet, which can happen e.g. with |
| -fstack-protector, retry before returning from this |
| function. */ |
| maybe_local_decls.safe_push (var); |
| } |
| } |
| |
| /* We duplicated some of the decls in CFUN->LOCAL_DECLS. |
| |
| +-----------------+-----------------+ |
| | ...processed... | ...duplicates...| |
| +-----------------+-----------------+ |
| ^ |
| +-- LEN points here. |
| |
| We just want the duplicates, as those are the artificial |
| non-ignored vars that we want to keep until instantiate_decls. |
| Move them down and truncate the array. */ |
| if (!vec_safe_is_empty (cfun->local_decls)) |
| cfun->local_decls->block_remove (0, len); |
| |
| /* At this point, all variables within the block tree with TREE_USED |
| set are actually used by the optimized function. Lay them out. */ |
| expand_used_vars_for_block (outer_block, true, forced_stack_vars); |
| |
| tree attribs = DECL_ATTRIBUTES (current_function_decl); |
| if (stack_vars_num > 0) |
| { |
| bool has_addressable_vars = false; |
| |
| add_scope_conflicts (); |
| |
| /* If stack protection is enabled, we don't share space between |
| vulnerable data and non-vulnerable data. */ |
| if (flag_stack_protect != 0 |
| && !lookup_attribute ("no_stack_protector", attribs) |
| && (flag_stack_protect != SPCT_FLAG_EXPLICIT |
| || (flag_stack_protect == SPCT_FLAG_EXPLICIT |
| && lookup_attribute ("stack_protect", attribs)))) |
| has_addressable_vars = add_stack_protection_conflicts (); |
| |
| if (flag_stack_protect == SPCT_FLAG_STRONG && has_addressable_vars) |
| gen_stack_protect_signal = true; |
| |
| /* Now that we have collected all stack variables, and have computed a |
| minimal interference graph, attempt to save some stack space. */ |
| partition_stack_vars (); |
| if (dump_file) |
| dump_stack_var_partition (); |
| } |
| |
| |
| if (!lookup_attribute ("no_stack_protector", attribs)) |
| switch (flag_stack_protect) |
| { |
| case SPCT_FLAG_ALL: |
| create_stack_guard (); |
| break; |
| |
| case SPCT_FLAG_STRONG: |
| if (gen_stack_protect_signal |
| || cfun->calls_alloca |
| || has_protected_decls |
| || lookup_attribute ("stack_protect", attribs)) |
| create_stack_guard (); |
| break; |
| |
| case SPCT_FLAG_DEFAULT: |
| if (cfun->calls_alloca |
| || has_protected_decls |
| || lookup_attribute ("stack_protect", attribs)) |
| create_stack_guard (); |
| break; |
| |
| case SPCT_FLAG_EXPLICIT: |
| if (lookup_attribute ("stack_protect", attribs)) |
| create_stack_guard (); |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Assign rtl to each variable based on these partitions. */ |
| if (stack_vars_num > 0) |
| { |
| class stack_vars_data data; |
| |
| data.asan_base = NULL_RTX; |
| data.asan_alignb = 0; |
| |
| /* Reorder decls to be protected by iterating over the variables |
| array multiple times, and allocating out of each phase in turn. */ |
| /* ??? We could probably integrate this into the qsort we did |
| earlier, such that we naturally see these variables first, |
| and thus naturally allocate things in the right order. */ |
| if (has_protected_decls) |
| { |
| /* Phase 1 contains only character arrays. */ |
| expand_stack_vars (stack_protect_decl_phase_1, &data); |
| |
| /* Phase 2 contains other kinds of arrays. */ |
| if (!lookup_attribute ("no_stack_protector", attribs) |
| && (flag_stack_protect == SPCT_FLAG_ALL |
| || flag_stack_protect == SPCT_FLAG_STRONG |
| || (flag_stack_protect == SPCT_FLAG_EXPLICIT |
| && lookup_attribute ("stack_protect", attribs)))) |
| expand_stack_vars (stack_protect_decl_phase_2, &data); |
| } |
| |
| if (asan_sanitize_stack_p ()) |
| /* Phase 3, any partitions that need asan protection |
| in addition to phase 1 and 2. */ |
| expand_stack_vars (asan_decl_phase_3, &data); |
| |
| /* ASAN description strings don't yet have a syntax for expressing |
| polynomial offsets. */ |
| HOST_WIDE_INT prev_offset; |
| if (!data.asan_vec.is_empty () |
| && frame_offset.is_constant (&prev_offset)) |
| { |
| HOST_WIDE_INT offset, sz, redzonesz; |
| redzonesz = ASAN_RED_ZONE_SIZE; |
| sz = data.asan_vec[0] - prev_offset; |
| if (data.asan_alignb > ASAN_RED_ZONE_SIZE |
| && data.asan_alignb <= 4096 |
| && sz + ASAN_RED_ZONE_SIZE >= (int) data.asan_alignb) |
| redzonesz = ((sz + ASAN_RED_ZONE_SIZE + data.asan_alignb - 1) |
| & ~(data.asan_alignb - HOST_WIDE_INT_1)) - sz; |
| /* Allocating a constant amount of space from a constant |
| starting offset must give a constant result. */ |
| offset = (alloc_stack_frame_space (redzonesz, ASAN_RED_ZONE_SIZE) |
| .to_constant ()); |
| data.asan_vec.safe_push (prev_offset); |
| data.asan_vec.safe_push (offset); |
| /* Leave space for alignment if STRICT_ALIGNMENT. */ |
| if (STRICT_ALIGNMENT) |
| alloc_stack_frame_space ((GET_MODE_ALIGNMENT (SImode) |
| << ASAN_SHADOW_SHIFT) |
| / BITS_PER_UNIT, 1); |
| |
| var_end_seq |
| = asan_emit_stack_protection (virtual_stack_vars_rtx, |
| data.asan_base, |
| data.asan_alignb, |
| data.asan_vec.address (), |
| data.asan_decl_vec.address (), |
| data.asan_vec.length ()); |
| } |
| |
| expand_stack_vars (NULL, &data); |
| } |
| |
| if (hwasan_sanitize_stack_p ()) |
| hwasan_emit_prologue (); |
| if (asan_sanitize_allocas_p () && cfun->calls_alloca) |
| var_end_seq = asan_emit_allocas_unpoison (virtual_stack_dynamic_rtx, |
| virtual_stack_vars_rtx, |
| var_end_seq); |
| else if (hwasan_sanitize_allocas_p () && cfun->calls_alloca) |
| /* When using out-of-line instrumentation we only want to emit one function |
| call for clearing the tags in a region of shadow stack. When there are |
| alloca calls in this frame we want to emit a call using the |
| virtual_stack_dynamic_rtx, but when not we use the hwasan_frame_extent |
| rtx we created in expand_stack_vars. */ |
| var_end_seq = hwasan_emit_untag_frame (virtual_stack_dynamic_rtx, |
| virtual_stack_vars_rtx); |
| else if (hwasan_sanitize_stack_p ()) |
| /* If no variables were stored on the stack, `hwasan_get_frame_extent` |
| will return NULL_RTX and hence `hwasan_emit_untag_frame` will return |
| NULL (i.e. an empty sequence). */ |
| var_end_seq = hwasan_emit_untag_frame (hwasan_get_frame_extent (), |
| virtual_stack_vars_rtx); |
| |
| fini_vars_expansion (); |
| |
| /* If there were any artificial non-ignored vars without rtl |
| found earlier, see if deferred stack allocation hasn't assigned |
| rtl to them. */ |
| FOR_EACH_VEC_ELT_REVERSE (maybe_local_decls, i, var) |
| { |
| rtx rtl = DECL_RTL_IF_SET (var); |
| |
| /* Keep artificial non-ignored vars in cfun->local_decls |
| chain until instantiate_decls. */ |
| if (rtl && (MEM_P (rtl) || GET_CODE (rtl) == CONCAT)) |
| add_local_decl (cfun, var); |
| } |
| |
| /* If the target requires that FRAME_OFFSET be aligned, do it. */ |
| if (STACK_ALIGNMENT_NEEDED) |
| { |
| HOST_WIDE_INT align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT; |
| if (FRAME_GROWS_DOWNWARD) |
| frame_offset = aligned_lower_bound (frame_offset, align); |
| else |
| frame_offset = aligned_upper_bound (frame_offset, align); |
| } |
| |
| return var_end_seq; |
| } |
| |
| |
| /* If we need to produce a detailed dump, print the tree representation |
| for STMT to the dump file. SINCE is the last RTX after which the RTL |
| generated for STMT should have been appended. */ |
| |
| static void |
| maybe_dump_rtl_for_gimple_stmt (gimple *stmt, rtx_insn *since) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "\n;; "); |
| print_gimple_stmt (dump_file, stmt, 0, |
| TDF_SLIM | (dump_flags & TDF_LINENO)); |
| fprintf (dump_file, "\n"); |
| |
| print_rtl (dump_file, since ? NEXT_INSN (since) : since); |
| } |
| } |
| |
| /* Maps the blocks that do not contain tree labels to rtx labels. */ |
| |
| static hash_map<basic_block, rtx_code_label *> *lab_rtx_for_bb; |
| |
| /* Returns the label_rtx expression for a label starting basic block BB. */ |
| |
| static rtx_code_label * |
| label_rtx_for_bb (basic_block bb ATTRIBUTE_UNUSED) |
| { |
| if (bb->flags & BB_RTL) |
| return block_label (bb); |
| |
| rtx_code_label **elt = lab_rtx_for_bb->get (bb); |
| if (elt) |
| return *elt; |
| |
| /* Find the tree label if it is present. */ |
| gimple_stmt_iterator gsi = gsi_start_bb (bb); |
| glabel *lab_stmt; |
| if (!gsi_end_p (gsi) |
| && (lab_stmt = dyn_cast <glabel *> (gsi_stmt (gsi))) |
| && !DECL_NONLOCAL (gimple_label_label (lab_stmt))) |
| return jump_target_rtx (gimple_label_label (lab_stmt)); |
| |
| rtx_code_label *l = gen_label_rtx (); |
| lab_rtx_for_bb->put (bb, l); |
| return l; |
| } |
| |
| |
| /* A subroutine of expand_gimple_cond. Given E, a fallthrough edge |
| of a basic block where we just expanded the conditional at the end, |
| possibly clean up the CFG and instruction sequence. LAST is the |
| last instruction before the just emitted jump sequence. */ |
| |
| static void |
| maybe_cleanup_end_of_block (edge e, rtx_insn *last) |
| { |
| /* Special case: when jumpif decides that the condition is |
| trivial it emits an unconditional jump (and the necessary |
| barrier). But we still have two edges, the fallthru one is |
| wrong. purge_dead_edges would clean this up later. Unfortunately |
| we have to insert insns (and split edges) before |
| find_many_sub_basic_blocks and hence before purge_dead_edges. |
| But splitting edges might create new blocks which depend on the |
| fact that if there are two edges there's no barrier. So the |
| barrier would get lost and verify_flow_info would ICE. Instead |
| of auditing all edge splitters to care for the barrier (which |
| normally isn't there in a cleaned CFG), fix it here. */ |
| if (BARRIER_P (get_last_insn ())) |
| { |
| rtx_insn *insn; |
| remove_edge (e); |
| /* Now, we have a single successor block, if we have insns to |
| insert on the remaining edge we potentially will insert |
| it at the end of this block (if the dest block isn't feasible) |
| in order to avoid splitting the edge. This insertion will take |
| place in front of the last jump. But we might have emitted |
| multiple jumps (conditional and one unconditional) to the |
| same destination. Inserting in front of the last one then |
| is a problem. See PR 40021. We fix this by deleting all |
| jumps except the last unconditional one. */ |
| insn = PREV_INSN (get_last_insn ()); |
| /* Make sure we have an unconditional jump. Otherwise we're |
| confused. */ |
| gcc_assert (JUMP_P (insn) && !any_condjump_p (insn)); |
| for (insn = PREV_INSN (insn); insn != last;) |
| { |
| insn = PREV_INSN (insn); |
| if (JUMP_P (NEXT_INSN (insn))) |
| { |
| if (!any_condjump_p (NEXT_INSN (insn))) |
| { |
| gcc_assert (BARRIER_P (NEXT_INSN (NEXT_INSN (insn)))); |
| delete_insn (NEXT_INSN (NEXT_INSN (insn))); |
| } |
| delete_insn (NEXT_INSN (insn)); |
| } |
| } |
| } |
| } |
| |
| /* A subroutine of expand_gimple_basic_block. Expand one GIMPLE_COND. |
| Returns a new basic block if we've terminated the current basic |
| block and created a new one. */ |
| |
| static basic_block |
| expand_gimple_cond (basic_block bb, gcond *stmt) |
| { |
| basic_block new_bb, dest; |
| edge true_edge; |
| edge false_edge; |
| rtx_insn *last2, *last; |
| enum tree_code code; |
| tree op0, op1; |
| |
| code = gimple_cond_code (stmt); |
| op0 = gimple_cond_lhs (stmt); |
| op1 = gimple_cond_rhs (stmt); |
| /* We're sometimes presented with such code: |
| D.123_1 = x < y; |
| if (D.123_1 != 0) |
| ... |
| This would expand to two comparisons which then later might |
| be cleaned up by combine. But some pattern matchers like if-conversion |
| work better when there's only one compare, so make up for this |
| here as special exception if TER would have made the same change. */ |
| if (SA.values |
| && TREE_CODE (op0) == SSA_NAME |
| && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE |
| && TREE_CODE (op1) == INTEGER_CST |
| && ((gimple_cond_code (stmt) == NE_EXPR |
| && integer_zerop (op1)) |
| || (gimple_cond_code (stmt) == EQ_EXPR |
| && integer_onep (op1))) |
| && bitmap_bit_p (SA.values, SSA_NAME_VERSION (op0))) |
| { |
| gimple *second = SSA_NAME_DEF_STMT (op0); |
| if (gimple_code (second) == GIMPLE_ASSIGN) |
| { |
| enum tree_code code2 = gimple_assign_rhs_code (second); |
| if (TREE_CODE_CLASS (code2) == tcc_comparison) |
| { |
| code = code2; |
| op0 = gimple_assign_rhs1 (second); |
| op1 = gimple_assign_rhs2 (second); |
| } |
| /* If jumps are cheap and the target does not support conditional |
| compare, turn some more codes into jumpy sequences. */ |
| else if (BRANCH_COST (optimize_insn_for_speed_p (), false) < 4 |
| && targetm.gen_ccmp_first == NULL) |
| { |
| if ((code2 == BIT_AND_EXPR |
| && TYPE_PRECISION (TREE_TYPE (op0)) == 1 |
| && TREE_CODE (gimple_assign_rhs2 (second)) != INTEGER_CST) |
| || code2 == TRUTH_AND_EXPR) |
| { |
| code = TRUTH_ANDIF_EXPR; |
| op0 = gimple_assign_rhs1 (second); |
| op1 = gimple_assign_rhs2 (second); |
| } |
| else if (code2 == BIT_IOR_EXPR || code2 == TRUTH_OR_EXPR) |
| { |
| code = TRUTH_ORIF_EXPR; |
| op0 = gimple_assign_rhs1 (second); |
| op1 = gimple_assign_rhs2 (second); |
| } |
| } |
| } |
| } |
| |
| /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial |
| into (x - C2) * C3 < C4. */ |
| if ((code == EQ_EXPR || code == NE_EXPR) |
| && TREE_CODE (op0) == SSA_NAME |
| && TREE_CODE (op1) == INTEGER_CST) |
| code = maybe_optimize_mod_cmp (code, &op0, &op1); |
| |
| /* Optimize (x - y) < 0 into x < y if x - y has undefined overflow. */ |
| if (!TYPE_UNSIGNED (TREE_TYPE (op0)) |
| && (code == LT_EXPR || code == LE_EXPR |
| || code == GT_EXPR || code == GE_EXPR) |
| && integer_zerop (op1) |
| && TREE_CODE (op0) == SSA_NAME) |
| maybe_optimize_sub_cmp_0 (code, &op0, &op1); |
| |
| last2 = last = get_last_insn (); |
| |
| extract_true_false_edges_from_block (bb, &true_edge, &false_edge); |
| set_curr_insn_location (gimple_location (stmt)); |
| |
| /* These flags have no purpose in RTL land. */ |
| true_edge->flags &= ~EDGE_TRUE_VALUE; |
| false_edge->flags &= ~EDGE_FALSE_VALUE; |
| |
| /* We can either have a pure conditional jump with one fallthru edge or |
| two-way jump that needs to be decomposed into two basic blocks. */ |
| if (false_edge->dest == bb->next_bb) |
| { |
| jumpif_1 (code, op0, op1, label_rtx_for_bb (true_edge->dest), |
| true_edge->probability); |
| maybe_dump_rtl_for_gimple_stmt (stmt, last); |
| if (true_edge->goto_locus != UNKNOWN_LOCATION) |
| set_curr_insn_location (true_edge->goto_locus); |
| false_edge->flags |= EDGE_FALLTHRU; |
| maybe_cleanup_end_of_block (false_edge, last); |
| return NULL; |
| } |
| if (true_edge->dest == bb->next_bb) |
| { |
| jumpifnot_1 (code, op0, op1, label_rtx_for_bb (false_edge->dest), |
| false_edge->probability); |
| maybe_dump_rtl_for_gimple_stmt (stmt, last); |
| if (false_edge->goto_locus != UNKNOWN_LOCATION) |
| set_curr_insn_location (false_edge->goto_locus); |
| true_edge->flags |= EDGE_FALLTHRU; |
| maybe_cleanup_end_of_block (true_edge, last); |
| return NULL; |
| } |
| |
| jumpif_1 (code, op0, op1, label_rtx_for_bb (true_edge->dest), |
| true_edge->probability); |
| last = get_last_insn (); |
| if (false_edge->goto_locus != UNKNOWN_LOCATION) |
| set_curr_insn_location (false_edge->goto_locus); |
| emit_jump (label_rtx_for_bb (false_edge->dest)); |
| |
| BB_END (bb) = last; |
| if (BARRIER_P (BB_END (bb))) |
| BB_END (bb) = PREV_INSN (BB_END (bb)); |
| update_bb_for_insn (bb); |
| |
| new_bb = create_basic_block (NEXT_INSN (last), get_last_insn (), bb); |
| dest = false_edge->dest; |
| redirect_edge_succ (false_edge, new_bb); |
| false_edge->flags |= EDGE_FALLTHRU; |
| new_bb->count = false_edge->count (); |
| loop_p loop = find_common_loop (bb->loop_father, dest->loop_father); |
| add_bb_to_loop (new_bb, loop); |
| if (loop->latch == bb |
| && loop->header == dest) |
| loop->latch = new_bb; |
| make_single_succ_edge (new_bb, dest, 0); |
| if (BARRIER_P (BB_END (new_bb))) |
| BB_END (new_bb) = PREV_INSN (BB_END (new_bb)); |
| update_bb_for_insn (new_bb); |
| |
| maybe_dump_rtl_for_gimple_stmt (stmt, last2); |
| |
| if (true_edge->goto_locus != UNKNOWN_LOCATION) |
| { |
| set_curr_insn_location (true_edge->goto_locus); |
| true_edge->goto_locus = curr_insn_location (); |
| } |
| |
| return new_bb; |
| } |
| |
| /* Mark all calls that can have a transaction restart. */ |
| |
| static void |
| mark_transaction_restart_calls (gimple *stmt) |
| { |
| struct tm_restart_node dummy; |
| tm_restart_node **slot; |
| |
| if (!cfun->gimple_df->tm_restart) |
| return; |
| |
| dummy.stmt = stmt; |
| slot = cfun->gimple_df->tm_restart->find_slot (&dummy, NO_INSERT); |
| if (slot) |
| { |
| struct tm_restart_node *n = *slot; |
| tree list = n->label_or_list; |
| rtx_insn *insn; |
| |
| for (insn = next_real_insn (get_last_insn ()); |
| !CALL_P (insn); |
| insn = next_real_insn (insn)) |
| continue; |
| |
| if (TREE_CODE (list) == LABEL_DECL) |
| add_reg_note (insn, REG_TM, label_rtx (list)); |
| else |
| for (; list ; list = TREE_CHAIN (list)) |
| add_reg_note (insn, REG_TM, label_rtx (TREE_VALUE (list))); |
| } |
| } |
| |
| /* A subroutine of expand_gimple_stmt_1, expanding one GIMPLE_CALL |
| statement STMT. */ |
| |
| static void |
| expand_call_stmt (gcall *stmt) |
| { |
| tree exp, decl, lhs; |
| bool builtin_p; |
| size_t i; |
| |
| if (gimple_call_internal_p (stmt)) |
| { |
| expand_internal_call (stmt); |
| return; |
| } |
| |
| /* If this is a call to a built-in function and it has no effect other |
| than setting the lhs, try to implement it using an internal function |
| instead. */ |
| decl = gimple_call_fndecl (stmt); |
| if (gimple_call_lhs (stmt) |
| && !gimple_has_side_effects (stmt) |
| && (optimize || (decl && called_as_built_in (decl)))) |
| { |
| internal_fn ifn = replacement_internal_fn (stmt); |
| if (ifn != IFN_LAST) |
| { |
| expand_internal_call (ifn, stmt); |
| return; |
| } |
| } |
| |
| exp = build_vl_exp (CALL_EXPR, gimple_call_num_args (stmt) + 3); |
| |
| CALL_EXPR_FN (exp) = gimple_call_fn (stmt); |
| builtin_p = decl && fndecl_built_in_p (decl); |
| |
| /* If this is not a builtin function, the function type through which the |
| call is made may be different from the type of the function. */ |
| if (!builtin_p) |
| CALL_EXPR_FN (exp) |
| = fold_convert (build_pointer_type (gimple_call_fntype (stmt)), |
| CALL_EXPR_FN (exp)); |
| |
| TREE_TYPE (exp) = gimple_call_return_type (stmt); |
| CALL_EXPR_STATIC_CHAIN (exp) = gimple_call_chain (stmt); |
| |
| for (i = 0; i < gimple_call_num_args (stmt); i++) |
| { |
| tree arg = gimple_call_arg (stmt, i); |
| gimple *def; |
| /* TER addresses into arguments of builtin functions so we have a |
| chance to infer more correct alignment information. See PR39954. */ |
| if (builtin_p |
| && TREE_CODE (arg) == SSA_NAME |
| && (def = get_gimple_for_ssa_name (arg)) |
| && gimple_assign_rhs_code (def) == ADDR_EXPR) |
| arg = gimple_assign_rhs1 (def); |
| CALL_EXPR_ARG (exp, i) = arg; |
| } |
| |
| if (gimple_has_side_effects (stmt) |
| /* ??? Downstream in expand_expr_real_1 we assume that expressions |
| w/o side-effects do not throw so work around this here. */ |
| || stmt_could_throw_p (cfun, stmt)) |
| TREE_SIDE_EFFECTS (exp) = 1; |
| |
| if (gimple_call_nothrow_p (stmt)) |
| TREE_NOTHROW (exp) = 1; |
| |
| CALL_EXPR_TAILCALL (exp) = gimple_call_tail_p (stmt); |
| CALL_EXPR_MUST_TAIL_CALL (exp) = gimple_call_must_tail_p (stmt); |
| CALL_EXPR_RETURN_SLOT_OPT (exp) = gimple_call_return_slot_opt_p (stmt); |
| if (decl |
| && fndecl_built_in_p (decl, BUILT_IN_NORMAL) |
| && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (decl))) |
| CALL_ALLOCA_FOR_VAR_P (exp) = gimple_call_alloca_for_var_p (stmt); |
| else |
| CALL_FROM_THUNK_P (exp) = gimple_call_from_thunk_p (stmt); |
| CALL_EXPR_VA_ARG_PACK (exp) = gimple_call_va_arg_pack_p (stmt); |
| CALL_EXPR_BY_DESCRIPTOR (exp) = gimple_call_by_descriptor_p (stmt); |
| SET_EXPR_LOCATION (exp, gimple_location (stmt)); |
| |
| /* Must come after copying location. */ |
| copy_warning (exp, stmt); |
| |
| /* Ensure RTL is created for debug args. */ |
| if (decl && DECL_HAS_DEBUG_ARGS_P (decl)) |
| { |
| vec<tree, va_gc> **debug_args = decl_debug_args_lookup (decl); |
| unsigned int ix; |
| tree dtemp; |
| |
| if (debug_args) |
| for (ix = 1; (*debug_args)->iterate (ix, &dtemp); ix += 2) |
| { |
| gcc_assert (TREE_CODE (dtemp) == DEBUG_EXPR_DECL); |
| expand_debug_expr (dtemp); |
| } |
| } |
| |
| rtx_insn *before_call = get_last_insn (); |
| lhs = gimple_call_lhs (stmt); |
| if (lhs) |
| expand_assignment (lhs, exp, false); |
| else |
| expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL); |
| |
| /* If the gimple call is an indirect call and has 'nocf_check' |
| attribute find a generated CALL insn to mark it as no |
| control-flow verification is needed. */ |
| if (gimple_call_nocf_check_p (stmt) |
| && !gimple_call_fndecl (stmt)) |
| { |
| rtx_insn *last = get_last_insn (); |
| while (!CALL_P (last) |
| && last != before_call) |
| last = PREV_INSN (last); |
| |
| if (last != before_call) |
| add_reg_note (last, REG_CALL_NOCF_CHECK, const0_rtx); |
| } |
| |
| mark_transaction_restart_calls (stmt); |
| } |
| |
| |
| /* Generate RTL for an asm statement (explicit assembler code). |
| STRING is a STRING_CST node containing the assembler code text, |
| or an ADDR_EXPR containing a STRING_CST. VOL nonzero means the |
| insn is volatile; don't optimize it. */ |
| |
| static void |
| expand_asm_loc (tree string, int vol, location_t locus) |
| { |
| rtx body; |
| |
| body = gen_rtx_ASM_INPUT_loc (VOIDmode, |
| ggc_strdup (TREE_STRING_POINTER (string)), |
| locus); |
| |
| MEM_VOLATILE_P (body) = vol; |
| |
| /* Non-empty basic ASM implicitly clobbers memory. */ |
| if (TREE_STRING_LENGTH (string) != 0) |
| { |
| rtx asm_op, clob; |
| unsigned i, nclobbers; |
| auto_vec<rtx> input_rvec, output_rvec; |
| auto_vec<machine_mode> input_mode; |
| auto_vec<const char *> constraints; |
| auto_vec<rtx> use_rvec; |
| auto_vec<rtx> clobber_rvec; |
| HARD_REG_SET clobbered_regs; |
| CLEAR_HARD_REG_SET (clobbered_regs); |
| |
| clob = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)); |
| clobber_rvec.safe_push (clob); |
| |
| if (targetm.md_asm_adjust) |
| targetm.md_asm_adjust (output_rvec, input_rvec, input_mode, |
| constraints, use_rvec, clobber_rvec, |
| clobbered_regs, locus); |
| |
| asm_op = body; |
| nclobbers = clobber_rvec.length (); |
| auto nuses = use_rvec.length (); |
| body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (1 + nuses + nclobbers)); |
| |
| i = 0; |
| XVECEXP (body, 0, i++) = asm_op; |
| for (rtx use : use_rvec) |
| XVECEXP (body, 0, i++) = gen_rtx_USE (VOIDmode, use); |
| for (rtx clobber : clobber_rvec) |
| XVECEXP (body, 0, i++) = gen_rtx_CLOBBER (VOIDmode, clobber); |
| } |
| |
| emit_insn (body); |
| } |
| |
| /* Return the number of times character C occurs in string S. */ |
| static int |
| n_occurrences (int c, const char *s) |
| { |
| int n = 0; |
| while (*s) |
| n += (*s++ == c); |
| return n; |
| } |
| |
| /* A subroutine of expand_asm_operands. Check that all operands have |
| the same number of alternatives. Return true if so. */ |
| |
| static bool |
| check_operand_nalternatives (const vec<const char *> &constraints) |
| { |
| unsigned len = constraints.length(); |
| if (len > 0) |
| { |
| int nalternatives = n_occurrences (',', constraints[0]); |
| |
| if (nalternatives + 1 > MAX_RECOG_ALTERNATIVES) |
| { |
| error ("too many alternatives in %<asm%>"); |
| return false; |
| } |
| |
| for (unsigned i = 1; i < len; ++i) |
| if (n_occurrences (',', constraints[i]) != nalternatives) |
| { |
| error ("operand constraints for %<asm%> differ " |
| "in number of alternatives"); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* Check for overlap between registers marked in CLOBBERED_REGS and |
| anything inappropriate in T. Emit error and return the register |
| variable definition for error, NULL_TREE for ok. */ |
| |
| static bool |
| tree_conflicts_with_clobbers_p (tree t, HARD_REG_SET *clobbered_regs, |
| location_t loc) |
| { |
| /* Conflicts between asm-declared register variables and the clobber |
| list are not allowed. */ |
| tree overlap = tree_overlaps_hard_reg_set (t, clobbered_regs); |
| |
| if (overlap) |
| { |
| error_at (loc, "%<asm%> specifier for variable %qE conflicts with " |
| "%<asm%> clobber list", DECL_NAME (overlap)); |
| |
| /* Reset registerness to stop multiple errors emitted for a single |
| variable. */ |
| DECL_REGISTER (overlap) = 0; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Check that the given REGNO spanning NREGS is a valid |
| asm clobber operand. Some HW registers cannot be |
| saved/restored, hence they should not be clobbered by |
| asm statements. */ |
| static bool |
| asm_clobber_reg_is_valid (int regno, int nregs, const char *regname) |
| { |
| bool is_valid = true; |
| HARD_REG_SET regset; |
| |
| CLEAR_HARD_REG_SET (regset); |
| |
| add_range_to_hard_reg_set (®set, regno, nregs); |
| |
| /* Clobbering the PIC register is an error. */ |
| if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM |
| && overlaps_hard_reg_set_p (regset, Pmode, PIC_OFFSET_TABLE_REGNUM)) |
| { |
| /* ??? Diagnose during gimplification? */ |
| error ("PIC register clobbered by %qs in %<asm%>", regname); |
| is_valid = false; |
| } |
| else if (!in_hard_reg_set_p |
| (accessible_reg_set, reg_raw_mode[regno], regno)) |
| { |
| /* ??? Diagnose during gimplification? */ |
| error ("the register %qs cannot be clobbered in %<asm%>" |
| " for the current target", regname); |
| is_valid = false; |
| } |
| |
| /* Clobbering the stack pointer register is deprecated. GCC expects |
| the value of the stack pointer after an asm statement to be the same |
| as it was before, so no asm can validly clobber the stack pointer in |
| the usual sense. Adding the stack pointer to the clobber list has |
| traditionally had some undocumented and somewhat obscure side-effects. */ |
| if (overlaps_hard_reg_set_p (regset, Pmode, STACK_POINTER_REGNUM)) |
| { |
| crtl->sp_is_clobbered_by_asm = true; |
| if (warning (OPT_Wdeprecated, "listing the stack pointer register" |
| " %qs in a clobber list is deprecated", regname)) |
| inform (input_location, "the value of the stack pointer after" |
| " an %<asm%> statement must be the same as it was before" |
| " the statement"); |
| } |
| |
| return is_valid; |
| } |
| |
| /* Generate RTL for an asm statement with arguments. |
| STRING is the instruction template. |
| OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs. |
| Each output or input has an expression in the TREE_VALUE and |
| a tree list in TREE_PURPOSE which in turn contains a constraint |
| name in TREE_VALUE (or NULL_TREE) and a constraint string |
| in TREE_PURPOSE. |
| CLOBBERS is a list of STRING_CST nodes each naming a hard register |
| that is clobbered by this insn. |
| |
| LABELS is a list of labels, and if LABELS is non-NULL, FALLTHRU_BB |
| should be the fallthru basic block of the asm goto. |
| |
| Not all kinds of lvalue that may appear in OUTPUTS can be stored directly. |
| Some elements of OUTPUTS may be replaced with trees representing temporary |
| values. The caller should copy those temporary values to the originally |
| specified lvalues. |
| |
| VOL nonzero means the insn is volatile; don't optimize it. */ |
| |
| static void |
| expand_asm_stmt (gasm *stmt) |
| { |
| class save_input_location |
| { |
| location_t old; |
| |
| public: |
| explicit save_input_location(location_t where) |
| { |
| old = input_location; |
| input_location = where; |
| } |
| |
| ~save_input_location() |
| { |
| input_location = old; |
| } |
| }; |
| |
| location_t locus = gimple_location (stmt); |
| |
| if (gimple_asm_input_p (stmt)) |
| { |
| const char *s = gimple_asm_string (stmt); |
| tree string = build_string (strlen (s), s); |
| expand_asm_loc (string, gimple_asm_volatile_p (stmt), locus); |
| return; |
| } |
| |
| /* There are some legacy diagnostics in here. */ |
| save_input_location s_i_l(locus); |
| |
| unsigned noutputs = gimple_asm_noutputs (stmt); |
| unsigned ninputs = gimple_asm_ninputs (stmt); |
| unsigned nlabels = gimple_asm_nlabels (stmt); |
| unsigned i; |
| bool error_seen = false; |
| |
| /* ??? Diagnose during gimplification? */ |
| if (ninputs + noutputs + nlabels > MAX_RECOG_OPERANDS) |
| { |
| error_at (locus, "more than %d operands in %<asm%>", MAX_RECOG_OPERANDS); |
| return; |
| } |
| |
| auto_vec<tree, MAX_RECOG_OPERANDS> output_tvec; |
| auto_vec<tree, MAX_RECOG_OPERANDS> input_tvec; |
| auto_vec<const char *, MAX_RECOG_OPERANDS> constraints; |
| |
| /* Copy the gimple vectors into new vectors that we can manipulate. */ |
| |
| output_tvec.safe_grow (noutputs, true); |
| input_tvec.safe_grow (ninputs, true); |
| constraints.safe_grow (noutputs + ninputs, true); |
| |
| for (i = 0; i < noutputs; ++i) |
| { |
| tree t = gimple_asm_output_op (stmt, i); |
| output_tvec[i] = TREE_VALUE (t); |
| constraints[i] = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t))); |
| } |
| for (i = 0; i < ninputs; i++) |
| { |
| tree t = gimple_asm_input_op (stmt, i); |
| input_tvec[i] = TREE_VALUE (t); |
| constraints[i + noutputs] |
| = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t))); |
| } |
| |
| /* ??? Diagnose during gimplification? */ |
| if (! check_operand_nalternatives (constraints)) |
| return; |
| |
| /* Count the number of meaningful clobbered registers, ignoring what |
| we would ignore later. */ |
| auto_vec<rtx> clobber_rvec; |
| HARD_REG_SET clobbered_regs; |
| CLEAR_HARD_REG_SET (clobbered_regs); |
| |
| if (unsigned n = gimple_asm_nclobbers (stmt)) |
| { |
| clobber_rvec.reserve (n); |
| for (i = 0; i < n; i++) |
| { |
| tree t = gimple_asm_clobber_op (stmt, i); |
| const char *regname = TREE_STRING_POINTER (TREE_VALUE (t)); |
| int nregs, j; |
| |
| j = decode_reg_name_and_count (regname, &nregs); |
| if (j < 0) |
| { |
| if (j == -2) |
| { |
| /* ??? Diagnose during gimplification? */ |
| error_at (locus, "unknown register name %qs in %<asm%>", |
| regname); |
| error_seen = true; |
| } |
| else if (j == -4) |
| { |
| rtx x = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)); |
| clobber_rvec.safe_push (x); |
| } |
| else |
| { |
| /* Otherwise we should have -1 == empty string |
| or -3 == cc, which is not a register. */ |
| gcc_assert (j == -1 || j == -3); |
| } |
| } |
| else |
| for (int reg = j; reg < j + nregs; reg++) |
| { |
| if (!asm_clobber_reg_is_valid (reg, nregs, regname)) |
| return; |
| |
| SET_HARD_REG_BIT (clobbered_regs, reg); |
| rtx x = gen_rtx_REG (reg_raw_mode[reg], reg); |
| clobber_rvec.safe_push (x); |
| } |
| } |
| } |
| |
| /* First pass over inputs and outputs checks validity and sets |
| mark_addressable if needed. */ |
| /* ??? Diagnose during gimplification? */ |
| |
| for (i = 0; i < noutputs; ++i) |
| { |
| tree val = output_tvec[i]; |
| tree type = TREE_TYPE (val); |
| const char *constraint; |
| bool is_inout; |
| bool allows_reg; |
| bool allows_mem; |
| |
| /* Try to parse the output constraint. If that fails, there's |
| no point in going further. */ |
| constraint = constraints[i]; |
| if (!parse_output_constraint (&constraint, i, ninputs, noutputs, |
| &allows_mem, &allows_reg, &is_inout)) |
| return; |
| |
| /* If the output is a hard register, verify it doesn't conflict with |
| any other operand's possible hard register use. */ |
| if (DECL_P (val) |
| && REG_P (DECL_RTL (val)) |
| && HARD_REGISTER_P (DECL_RTL (val))) |
| { |
| unsigned j, output_hregno = REGNO (DECL_RTL (val)); |
| bool early_clobber_p = strchr (constraints[i], '&') != NULL; |
| unsigned long match; |
| |
| /* Verify the other outputs do not use the same hard register. */ |
| for (j = i + 1; j < noutputs; ++j) |
| if (DECL_P (output_tvec[j]) |
| && REG_P (DECL_RTL (output_tvec[j])) |
| && HARD_REGISTER_P (DECL_RTL (output_tvec[j])) |
| && output_hregno == REGNO (DECL_RTL (output_tvec[j]))) |
| { |
| error_at (locus, "invalid hard register usage between output " |
| "operands"); |
| error_seen = true; |
| } |
| |
| /* Verify matching constraint operands use the same hard register |
| and that the non-matching constraint operands do not use the same |
| hard register if the output is an early clobber operand. */ |
| for (j = 0; j < ninputs; ++j) |
| if (DECL_P (input_tvec[j]) |
| && REG_P (DECL_RTL (input_tvec[j])) |
| && HARD_REGISTER_P (DECL_RTL (input_tvec[j]))) |
| { |
| unsigned input_hregno = REGNO (DECL_RTL (input_tvec[j])); |
| switch (*constraints[j + noutputs]) |
| { |
| case '0': case '1': case '2': case '3': case '4': |
| case '5': case '6': case '7': case '8': case '9': |
| match = strtoul (constraints[j + noutputs], NULL, 10); |
| break; |
| default: |
| match = ULONG_MAX; |
| break; |
| } |
| if (i == match |
| && output_hregno != input_hregno) |
| { |
| error_at (locus, "invalid hard register usage between " |
| "output operand and matching constraint operand"); |
| error_seen = true; |
| } |
| else if (early_clobber_p |
| && i != match |
| && output_hregno == input_hregno) |
| { |
| error_at (locus, "invalid hard register usage between " |
| "earlyclobber operand and input operand"); |
| error_seen = true; |
| } |
| } |
| } |
| |
| if (! allows_reg |
| && (allows_mem |
| || is_inout |
| || (DECL_P (val) |
| && REG_P (DECL_RTL (val)) |
| && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type)))) |
| mark_addressable (val); |
| } |
| |
| for (i = 0; i < ninputs; ++i) |
| { |
| bool allows_reg, allows_mem; |
| const char *constraint; |
| |
| constraint = constraints[i + noutputs]; |
| if (! parse_input_constraint (&constraint, i, ninputs, noutputs, 0, |
| constraints.address (), |
| &allows_mem, &allows_reg)) |
| return; |
| |
| if (! allows_reg && allows_mem) |
| mark_addressable (input_tvec[i]); |
| } |
| |
| /* Second pass evaluates arguments. */ |
| |
| /* Make sure stack is consistent for asm goto. */ |
| if (nlabels > 0) |
| do_pending_stack_adjust (); |
| int old_generating_concat_p = generating_concat_p; |
| |
| /* Vector of RTX's of evaluated output operands. */ |
| auto_vec<rtx, MAX_RECOG_OPERANDS> output_rvec; |
| auto_vec<int, MAX_RECOG_OPERANDS> inout_opnum; |
| rtx_insn *after_rtl_seq = NULL, *after_rtl_end = NULL; |
| |
| output_rvec.safe_grow (noutputs, true); |
| |
| for (i = 0; i < noutputs; ++i) |
| { |
| tree val = output_tvec[i]; |
| tree type = TREE_TYPE (val); |
| bool is_inout, allows_reg, allows_mem, ok; |
| rtx op; |
| |
| ok = parse_output_constraint (&constraints[i], i, ninputs, |
| noutputs, &allows_mem, &allows_reg, |
| &is_inout); |
| gcc_assert (ok); |
| |
| /* If an output operand is not a decl or indirect ref and our constraint |
| allows a register, make a temporary to act as an intermediate. |
| Make the asm insn write into that, then we will copy it to |
| the real output operand. Likewise for promoted variables. */ |
| |
| generating_concat_p = 0; |
| |
| gcc_assert (TREE_CODE (val) != INDIRECT_REF); |
| if (((TREE_CODE (val) == MEM_REF |
| && TREE_CODE (TREE_OPERAND (val, 0)) != ADDR_EXPR) |
| && allows_mem) |
| || (DECL_P (val) |
| && (allows_mem || REG_P (DECL_RTL (val))) |
| && ! (REG_P (DECL_RTL (val)) |
| && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type))) |
| || ! allows_reg |
| || is_inout |
| || TREE_ADDRESSABLE (type) |
| || (!tree_fits_poly_int64_p (TYPE_SIZE (type)) |
| && !known_size_p (max_int_size_in_bytes (type)))) |
| { |
| op = expand_expr (val, NULL_RTX, VOIDmode, |
| !allows_reg ? EXPAND_MEMORY : EXPAND_WRITE); |
| if (MEM_P (op)) |
| op = validize_mem (op); |
| |
| if (! allows_reg && !MEM_P (op)) |
| { |
| error_at (locus, "output number %d not directly addressable", i); |
| error_seen = true; |
| } |
| if ((! allows_mem && MEM_P (op) && GET_MODE (op) != BLKmode) |
| || GET_CODE (op) == CONCAT) |
| { |
| rtx old_op = op; |
| op = gen_reg_rtx (GET_MODE (op)); |
| |
| generating_concat_p = old_generating_concat_p; |
| |
| if (is_inout) |
| emit_move_insn (op, old_op); |
| |
| push_to_sequence2 (after_rtl_seq, after_rtl_end); |
| emit_move_insn (old_op, op); |
| after_rtl_seq = get_insns (); |
| after_rtl_end = get_last_insn (); |
| end_sequence (); |
| } |
| } |
| else |
| { |
| op = assign_temp (type, 0, 1); |
| op = validize_mem (op); |
| if (!MEM_P (op) && TREE_CODE (val) == SSA_NAME) |
| set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (val), op); |
| |
| generating_concat_p = old_generating_concat_p; |
| |
| push_to_sequence2 (after_rtl_seq, after_rtl_end); |
| expand_assignment (val, make_tree (type, op), false); |
| after_rtl_seq = get_insns (); |
| after_rtl_end = get_last_insn (); |
| end_sequence (); |
| } |
| output_rvec[i] = op; |
| |
| if (is_inout) |
| inout_opnum.safe_push (i); |
| } |
| |
| const char *str = gimple_asm_string (stmt); |
| if (error_seen) |
| { |
| ninputs = 0; |
| noutputs = 0; |
| inout_opnum.truncate (0); |
| output_rvec.truncate (0); |
| clobber_rvec.truncate (0); |
| constraints.truncate (0); |
| CLEAR_HARD_REG_SET (clobbered_regs); |
| str = ""; |
| } |
| |
| auto_vec<rtx, MAX_RECOG_OPERANDS> input_rvec; |
| auto_vec<machine_mode, MAX_RECOG_OPERANDS> input_mode; |
| |
| input_rvec.safe_grow (ninputs, true); |
| input_mode.safe_grow (ninputs, true); |
| |
| generating_concat_p = 0; |
| |
| for (i = 0; i < ninputs; ++i) |
| { |
| tree val = input_tvec[i]; |
| tree type = TREE_TYPE (val); |
| bool allows_reg, allows_mem, ok; |
| const char *constraint; |
| rtx op; |
| |
| constraint = constraints[i + noutputs]; |
| ok = parse_input_constraint (&constraint, i, ninputs, noutputs, 0, |
| constraints.address (), |
| &allows_mem, &allows_reg); |
| gcc_assert (ok); |
| |
| /* EXPAND_INITIALIZER will not generate code for valid initializer |
| constants, but will still generate code for other types of operand. |
| This is the behavior we want for constant constraints. */ |
| op = expand_expr (val, NULL_RTX, VOIDmode, |
| allows_reg ? EXPAND_NORMAL |
| : allows_mem ? EXPAND_MEMORY |
| : EXPAND_INITIALIZER); |
| |
| /* Never pass a CONCAT to an ASM. */ |
| if (GET_CODE (op) == CONCAT) |
| op = force_reg (GET_MODE (op), op); |
| else if (MEM_P (op)) |
| op = validize_mem (op); |
| |
| if (asm_operand_ok (op, constraint, NULL) <= 0) |
| { |
| if (allows_reg && TYPE_MODE (type) != BLKmode) |
| op = force_reg (TYPE_MODE (type), op); |
| else if (!allows_mem) |
| warning_at (locus, 0, "%<asm%> operand %d probably does not match " |
| "constraints", i + noutputs); |
| else if (MEM_P (op)) |
| { |
| /* We won't recognize either volatile memory or memory |
| with a queued address as available a memory_operand |
| at this point. Ignore it: clearly this *is* a memory. */ |
| } |
| else |
| gcc_unreachable (); |
| } |
| input_rvec[i] = op; |
| input_mode[i] = TYPE_MODE (type); |
| } |
| |
| /* For in-out operands, copy output rtx to input rtx. */ |
| unsigned ninout = inout_opnum.length (); |
| for (i = 0; i < ninout; i++) |
| { |
| int j = inout_opnum[i]; |
| rtx o = output_rvec[j]; |
| |
| input_rvec.safe_push (o); |
| input_mode.safe_push (GET_MODE (o)); |
| |
| char buffer[16]; |
| sprintf (buffer, "%d", j); |
| constraints.safe_push (ggc_strdup (buffer)); |
| } |
| ninputs += ninout; |
| |
| /* Sometimes we wish to automatically clobber registers across an asm. |
| Case in point is when the i386 backend moved from cc0 to a hard reg -- |
| maintaining source-level compatibility means automatically clobbering |
| the flags register. */ |
| rtx_insn *after_md_seq = NULL; |
| auto_vec<rtx> use_rvec; |
| if (targetm.md_asm_adjust) |
| after_md_seq |
| = targetm.md_asm_adjust (output_rvec, input_rvec, input_mode, |
| constraints, use_rvec, clobber_rvec, |
| clobbered_regs, locus); |
| |
| /* Do not allow the hook to change the output and input count, |
| lest it mess up the operand numbering. */ |
| gcc_assert (output_rvec.length() == noutputs); |
| gcc_assert (input_rvec.length() == ninputs); |
| gcc_assert (constraints.length() == noutputs + ninputs); |
| |
| /* But it certainly can adjust the uses and clobbers. */ |
| unsigned nuses = use_rvec.length (); |
| unsigned nclobbers = clobber_rvec.length (); |
| |
| /* Third pass checks for easy conflicts. */ |
| /* ??? Why are we doing this on trees instead of rtx. */ |
| |
| bool clobber_conflict_found = 0; |
| for (i = 0; i < noutputs; ++i) |
| if (tree_conflicts_with_clobbers_p (output_tvec[i], &clobbered_regs, locus)) |
| clobber_conflict_found = 1; |
| for (i = 0; i < ninputs - ninout; ++i) |
| if (tree_conflicts_with_clobbers_p (input_tvec[i], &clobbered_regs, locus)) |
| clobber_conflict_found = 1; |
| |
| /* Make vectors for the expression-rtx, constraint strings, |
| and named operands. */ |
| |
| rtvec argvec = rtvec_alloc (ninputs); |
| rtvec constraintvec = rtvec_alloc (ninputs); |
| rtvec labelvec = rtvec_alloc (nlabels); |
| |
| rtx body = gen_rtx_ASM_OPERANDS ((noutputs == 0 ? VOIDmode |
| : GET_MODE (output_rvec[0])), |
| ggc_strdup (str), |
| "", 0, argvec, constraintvec, |
| labelvec, locus); |
| MEM_VOLATILE_P (body) = gimple_asm_volatile_p (stmt); |
| |
| for (i = 0; i < ninputs; ++i) |
| { |
| ASM_OPERANDS_INPUT (body, i) = input_rvec[i]; |
| ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, i) |
| = gen_rtx_ASM_INPUT_loc (input_mode[i], |
| constraints[i + noutputs], |
| locus); |
| } |
| |
| /* Copy labels to the vector. */ |
| rtx_code_label *fallthru_label = NULL; |
| if (nlabels > 0) |
| { |
| basic_block fallthru_bb = NULL; |
| edge fallthru = find_fallthru_edge (gimple_bb (stmt)->succs); |
| if (fallthru) |
| fallthru_bb = fallthru->dest; |
| |
| for (i = 0; i < nlabels; ++i) |
| { |
| tree label = TREE_VALUE (gimple_asm_label_op (stmt, i)); |
| rtx_insn *r; |
| /* If asm goto has any labels in the fallthru basic block, use |
| a label that we emit immediately after the asm goto. Expansion |
| may insert further instructions into the same basic block after |
| asm goto and if we don't do this, insertion of instructions on |
| the fallthru edge might misbehave. See PR58670. */ |
| if (fallthru_bb && label_to_block (cfun, label) == fallthru_bb) |
| { |
| if (fallthru_label == NULL_RTX) |
| fallthru_label = gen_label_rtx (); |
| r = fallthru_label; |
| } |
| else |
| r = label_rtx (label); |
| ASM_OPERANDS_LABEL (body, i) = gen_rtx_LABEL_REF (Pmode, r); |
| } |
| } |
| |
| /* Now, for each output, construct an rtx |
| (set OUTPUT (asm_operands INSN OUTPUTCONSTRAINT OUTPUTNUMBER |
| ARGVEC CONSTRAINTS OPNAMES)) |
| If there is more than one, put them inside a PARALLEL. */ |
| |
| if (noutputs == 0 && nuses == 0 && nclobbers == 0) |
| { |
| /* No output operands: put in a raw ASM_OPERANDS rtx. */ |
| if (nlabels > 0) |
| emit_jump_insn (body); |
| else |
| emit_insn (body); |
| } |
| else if (noutputs == 1 && nuses == 0 && nclobbers == 0) |
| { |
| ASM_OPERANDS_OUTPUT_CONSTRAINT (body) = constraints[0]; |
| if (nlabels > 0) |
| emit_jump_insn (gen_rtx_SET (output_rvec[0], body)); |
| else |
| emit_insn (gen_rtx_SET (output_rvec[0], body)); |
| } |
| else |
| { |
| rtx obody = body; |
| int num = noutputs; |
| |
| if (num == 0) |
| num = 1; |
| |
| body = gen_rtx_PARALLEL (VOIDmode, |
| rtvec_alloc (num + nuses + nclobbers)); |
| |
| /* For each output operand, store a SET. */ |
| for (i = 0; i < noutputs; ++i) |
| { |
| rtx src, o = output_rvec[i]; |
| if (i == 0) |
| { |
| ASM_OPERANDS_OUTPUT_CONSTRAINT (obody) = constraints[0]; |
| src = obody; |
| } |
| else |
| { |
| src = gen_rtx_ASM_OPERANDS (GET_MODE (o), |
| ASM_OPERANDS_TEMPLATE (obody), |
| constraints[i], i, argvec, |
| constraintvec, labelvec, locus); |
| MEM_VOLATILE_P (src) = gimple_asm_volatile_p (stmt); |
| } |
| XVECEXP (body, 0, i) = gen_rtx_SET (o, src); |
| } |
| |
| /* If there are no outputs (but there are some clobbers) |
| store the bare ASM_OPERANDS into the PARALLEL. */ |
| if (i == 0) |
| XVECEXP (body, 0, i++) = obody; |
| |
| /* Add the uses specified by the target hook. No checking should |
| be needed since this doesn't come directly from user code. */ |
| for (rtx use : use_rvec) |
| XVECEXP (body, 0, i++) = gen_rtx_USE (VOIDmode, use); |
| |
| /* Store (clobber REG) for each clobbered register specified. */ |
| for (unsigned j = 0; j < nclobbers; ++j) |
| { |
| rtx clobbered_reg = clobber_rvec[j]; |
| |
| /* Do sanity check for overlap between clobbers and respectively |
| input and outputs that hasn't been handled. Such overlap |
| should have been detected and reported above. */ |
| if (!clobber_conflict_found && REG_P (clobbered_reg)) |
| { |
| /* We test the old body (obody) contents to avoid |
| tripping over the under-construction body. */ |
| for (unsigned k = 0; k < noutputs; ++k) |
| if (reg_overlap_mentioned_p (clobbered_reg, output_rvec[k])) |
| internal_error ("%<asm%> clobber conflict with " |
| "output operand"); |
| |
| for (unsigned k = 0; k < ninputs - ninout; ++k) |
| if (reg_overlap_mentioned_p (clobbered_reg, input_rvec[k])) |
| internal_error ("%<asm%> clobber conflict with " |
| "input operand"); |
| } |
| |
| XVECEXP (body, 0, i++) = gen_rtx_CLOBBER (VOIDmode, clobbered_reg); |
| } |
| |
| if (nlabels > 0) |
| emit_jump_insn (body); |
| else |
| emit_insn (body); |
| } |
| |
| generating_concat_p = old_generating_concat_p; |
| |
| if (fallthru_label) |
| emit_label (fallthru_label); |
| |
| if (after_md_seq) |
| emit_insn (after_md_seq); |
| if (after_rtl_seq) |
| { |
| if (nlabels == 0) |
| emit_insn (after_rtl_seq); |
| else |
| { |
| edge e; |
| edge_iterator ei; |
| unsigned int cnt = EDGE_COUNT (gimple_bb (stmt)->succs); |
| |
| FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs) |
| { |
| rtx_insn *copy; |
| if (--cnt == 0) |
| copy = after_rtl_seq; |
| else |
| { |
| start_sequence (); |
| duplicate_insn_chain (after_rtl_seq, after_rtl_end, |
| NULL, NULL); |
| copy = get_insns (); |
| end_sequence (); |
| } |
| prepend_insn_to_edge (copy, e); |
| } |
| } |
| } |
| |
| free_temp_slots (); |
| crtl->has_asm_statement = 1; |
| } |
| |
| /* Emit code to jump to the address |
| specified by the pointer expression EXP. */ |
| |
| static void |
| expand_computed_goto (tree exp) |
| { |
| rtx x = expand_normal (exp); |
| |
| do_pending_stack_adjust (); |
| emit_indirect_jump (x); |
| } |
| |
| /* Generate RTL code for a `goto' statement with target label LABEL. |
| LABEL should be a LABEL_DECL tree node that was or will later be |
| defined with `expand_label'. */ |
| |
| static void |
| expand_goto (tree label) |
| { |
| if (flag_checking) |
| { |
| /* Check for a nonlocal goto to a containing function. Should have |
| gotten translated to __builtin_nonlocal_goto. */ |
| tree context = decl_function_context (label); |
| gcc_assert (!context || context == current_function_decl); |
| } |
| |
| emit_jump (jump_target_rtx (label)); |
| } |
| |
| /* Output a return with no value. */ |
| |
| static void |
| expand_null_return_1 (void) |
| { |
| clear_pending_stack_adjust (); |
| do_pending_stack_adjust (); |
| emit_jump (return_label); |
| } |
| |
| /* Generate RTL to return from the current function, with no value. |
| (That is, we do not do anything about returning any value.) */ |
| |
| void |
| expand_null_return (void) |
| { |
| /* If this function was declared to return a value, but we |
| didn't, clobber the return registers so that they are not |
| propagated live to the rest of the function. */ |
| clobber_return_register (); |
| |
| expand_null_return_1 (); |
| } |
| |
| /* Generate RTL to return from the current function, with value VAL. */ |
| |
| static void |
| expand_value_return (rtx val) |
| { |
| /* Copy the value to the return location unless it's already there. */ |
| |
| tree decl = DECL_RESULT (current_function_decl); |
| rtx return_reg = DECL_RTL (decl); |
| if (return_reg != val) |
| { |
| tree funtype = TREE_TYPE (current_function_decl); |
| tree type = TREE_TYPE (decl); |
| int unsignedp = TYPE_UNSIGNED (type); |
| machine_mode old_mode = DECL_MODE (decl); |
| machine_mode mode; |
| if (DECL_BY_REFERENCE (decl)) |
| mode = promote_function_mode (type, old_mode, &unsignedp, funtype, 2); |
| else |
| mode = promote_function_mode (type, old_mode, &unsignedp, funtype, 1); |
| |
| if (mode != old_mode) |
| { |
| /* Some ABIs require scalar floating point modes to be returned |
| in a wider scalar integer mode. We need to explicitly |
| reinterpret to an integer mode of the correct precision |
| before extending to the desired result. */ |
| if (SCALAR_INT_MODE_P (mode) |
| && SCALAR_FLOAT_MODE_P (old_mode) |
| && known_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (old_mode))) |
| val = convert_float_to_wider_int (mode, old_mode, val); |
| else |
| val = convert_modes (mode, old_mode, val, unsignedp); |
| } |
| |
| if (GET_CODE (return_reg) == PARALLEL) |
| emit_group_load (return_reg, val, type, int_size_in_bytes (type)); |
| else |
| emit_move_insn (return_reg, val); |
| } |
| |
| expand_null_return_1 (); |
| } |
| |
| /* Generate RTL to evaluate the expression RETVAL and return it |
| from the current function. */ |
| |
| static void |
| expand_return (tree retval) |
| { |
| rtx result_rtl; |
| rtx val = 0; |
| tree retval_rhs; |
| |
| /* If function wants no value, give it none. */ |
| if (VOID_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl)))) |
| { |
| expand_normal (retval); |
| expand_null_return (); |
| return; |
| } |
| |
| if (retval == error_mark_node) |
| { |
| /* Treat this like a return of no value from a function that |
| returns a value. */ |
| expand_null_return (); |
| return; |
| } |
| else if ((TREE_CODE (retval) == MODIFY_EXPR |
| || TREE_CODE (retval) == INIT_EXPR) |
| && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL) |
| retval_rhs = TREE_OPERAND (retval, 1); |
| else |
| retval_rhs = retval; |
| |
| result_rtl = DECL_RTL (DECL_RESULT (current_function_decl)); |
| |
| /* If we are returning the RESULT_DECL, then the value has already |
| been stored into it, so we don't have to do anything special. */ |
| if (TREE_CODE (retval_rhs) == RESULT_DECL) |
| expand_value_return (result_rtl); |
| |
| /* If the result is an aggregate that is being returned in one (or more) |
| registers, load the registers here. */ |
| |
| else if (retval_rhs != 0 |
| && TYPE_MODE (TREE_TYPE (retval_rhs)) == BLKmode |
| && REG_P (result_rtl)) |
| { |
| val = copy_blkmode_to_reg (GET_MODE (result_rtl), retval_rhs); |
| if (val) |
| { |
| /* Use the mode of the result value on the return register. */ |
| PUT_MODE (result_rtl, GET_MODE (val)); |
| expand_value_return (val); |
| } |
| else |
| expand_null_return (); |
| } |
| else if (retval_rhs != 0 |
| && !VOID_TYPE_P (TREE_TYPE (retval_rhs)) |
| && (REG_P (result_rtl) |
| || (GET_CODE (result_rtl) == PARALLEL))) |
| { |
| /* Compute the return value into a temporary (usually a pseudo reg). */ |
| val |
| = assign_temp (TREE_TYPE (DECL_RESULT (current_function_decl)), 0, 1); |
| val = expand_expr (retval_rhs, val, GET_MODE (val), EXPAND_NORMAL); |
| val = force_not_mem (val); |
| expand_value_return (val); |
| } |
| else |
| { |
| /* No hard reg used; calculate value into hard return reg. */ |
| expand_expr (retval, const0_rtx, VOIDmode, EXPAND_NORMAL); |
| expand_value_return (result_rtl); |
| } |
| } |
| |
| /* Expand a clobber of LHS. If LHS is stored it in a multi-part |
| register, tell the rtl optimizers that its value is no longer |
| needed. */ |
| |
| static void |
| expand_clobber (tree lhs) |
| { |
| if (DECL_P (lhs)) |
| { |
| rtx decl_rtl = DECL_RTL_IF_SET (lhs); |
| if (decl_rtl && REG_P (decl_rtl)) |
| { |
| machine_mode decl_mode = GET_MODE (decl_rtl); |
| if (maybe_gt (GET_MODE_SIZE (decl_mode), |
| REGMODE_NATURAL_SIZE (decl_mode))) |
| emit_clobber (decl_rtl); |
| } |
| } |
| } |
| |
| /* A subroutine of expand_gimple_stmt, expanding one gimple statement |
| STMT that doesn't require special handling for outgoing edges. That |
| is no tailcalls and no GIMPLE_COND. */ |
| |
| static void |
| expand_gimple_stmt_1 (gimple *stmt) |
| { |
| tree op0; |
| |
| set_curr_insn_location (gimple_location (stmt)); |
| |
| switch (gimple_code (stmt)) |
| { |
| case GIMPLE_GOTO: |
| op0 = gimple_goto_dest (stmt); |
| if (TREE_CODE (op0) == LABEL_DECL) |
| expand_goto (op0); |
| else |
| expand_computed_goto (op0); |
| break; |
| case GIMPLE_LABEL: |
| expand_label (gimple_label_label (as_a <glabel *> (stmt))); |
| break; |
| case GIMPLE_NOP: |
| case GIMPLE_PREDICT: |
| break; |
| case GIMPLE_SWITCH: |
| { |
| gswitch *swtch = as_a <gswitch *> (stmt); |
| if (gimple_switch_num_labels (swtch) == 1) |
| expand_goto (CASE_LABEL (gimple_switch_default_label (swtch))); |
| else |
| expand_case (swtch); |
| } |
| break; |
| case GIMPLE_ASM: |
| expand_asm_stmt (as_a <gasm *> (stmt)); |
| break; |
| case GIMPLE_CALL: |
| expand_call_stmt (as_a <gcall *> (stmt)); |
| break; |
| |
| case GIMPLE_RETURN: |
| { |
| op0 = gimple_return_retval (as_a <greturn *> (stmt)); |
| |
| /* If a return doesn't have a location, it very likely represents |
| multiple user returns so we cannot let it inherit the location |
| of the last statement of the previous basic block in RTL. */ |
| if (!gimple_has_location (stmt)) |
| set_curr_insn_location (cfun->function_end_locus); |
| |
| if (op0 && op0 != error_mark_node) |
| { |
| tree result = DECL_RESULT (current_function_decl); |
| |
| /* If we are not returning the current function's RESULT_DECL, |
| build an assignment to it. */ |
| if (op0 != result) |
| { |
| /* I believe that a function's RESULT_DECL is unique. */ |
| gcc_assert (TREE_CODE (op0) != RESULT_DECL); |
| |
| /* ??? We'd like to use simply expand_assignment here, |
| but this fails if the value is of BLKmode but the return |
| decl is a register. expand_return has special handling |
| for this combination, which eventually should move |
| to common code. See comments there. Until then, let's |
| build a modify expression :-/ */ |
| op0 = build2 (MODIFY_EXPR, TREE_TYPE (result), |
| result, op0); |
| } |
| } |
| |
| if (!op0) |
| expand_null_return (); |
| else |
| expand_return (op0); |
| } |
| break; |
| |
| case GIMPLE_ASSIGN: |
| { |
| gassign *assign_stmt = as_a <gassign *> (stmt); |
| tree lhs = gimple_assign_lhs (assign_stmt); |
| |
| /* Tree expand used to fiddle with |= and &= of two bitfield |
| COMPONENT_REFs here. This can't happen with gimple, the LHS |
| of binary assigns must be a gimple reg. */ |
| |
| if (TREE_CODE (lhs) != SSA_NAME |
| || gimple_assign_rhs_class (assign_stmt) == GIMPLE_SINGLE_RHS) |
| { |
| tree rhs = gimple_assign_rhs1 (assign_stmt); |
| gcc_assert (gimple_assign_rhs_class (assign_stmt) |
| == GIMPLE_SINGLE_RHS); |
| if (gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (rhs) |
| /* Do not put locations on possibly shared trees. */ |
| && !is_gimple_min_invariant (rhs)) |
| SET_EXPR_LOCATION (rhs, gimple_location (stmt)); |
| if (TREE_CLOBBER_P (rhs)) |
| /* This is a clobber to mark the going out of scope for |
| this LHS. */ |
| expand_clobber (lhs); |
| else |
| expand_assignment (lhs, rhs, |
| gimple_assign_nontemporal_move_p ( |
| assign_stmt)); |
| } |
| else |
| { |
| rtx target, temp; |
| bool nontemporal = gimple_assign_nontemporal_move_p (assign_stmt); |
| bool promoted = false; |
| |
| target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target)) |
| promoted = true; |
| |
| /* If we want to use a nontemporal store, force the value to |
| register first. If we store into a promoted register, |
| don't directly expand to target. */ |
| temp = nontemporal || promoted ? NULL_RTX : target; |
| temp = expand_expr_real_gassign (assign_stmt, temp, |
| GET_MODE (target), EXPAND_NORMAL); |
| |
| if (temp == target) |
| ; |
| else if (promoted) |
| { |
| int unsignedp = SUBREG_PROMOTED_SIGN (target); |
| /* If TEMP is a VOIDmode constant, use convert_modes to make |
| sure that we properly convert it. */ |
| if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode) |
| { |
| temp = convert_modes (GET_MODE (target), |
| TYPE_MODE (TREE_TYPE (lhs)), |
| temp, unsignedp); |
| temp = convert_modes (GET_MODE (SUBREG_REG (target)), |
| GET_MODE (target), temp, unsignedp); |
| } |
| |
| convert_move (SUBREG_REG (target), temp, unsignedp); |
| } |
| else if (nontemporal && emit_storent_insn (target, temp)) |
| ; |
| else |
| { |
| temp = force_operand (temp, target); |
| if (temp != target) |
| emit_move_insn (target, temp); |
| } |
| } |
| } |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Expand one gimple statement STMT and return the last RTL instruction |
| before any of the newly generated ones. |
| |
| In addition to generating the necessary RTL instructions this also |
| sets REG_EH_REGION notes if necessary and sets the current source |
| location for diagnostics. */ |
| |
| static rtx_insn * |
| expand_gimple_stmt (gimple *stmt) |
| { |
| location_t saved_location = input_location; |
| rtx_insn *last = get_last_insn (); |
| int lp_nr; |
| |
| gcc_assert (cfun); |
| |
| /* We need to save and restore the current source location so that errors |
| discovered during expansion are emitted with the right location. But |
| it would be better if the diagnostic routines used the source location |
| embedded in the tree nodes rather than globals. */ |
| if (gimple_has_location (stmt)) |
| input_location = gimple_location (stmt); |
| |
| expand_gimple_stmt_1 (stmt); |
| |
| /* Free any temporaries used to evaluate this statement. */ |
| free_temp_slots (); |
| |
| input_location = saved_location; |
| |
| /* Mark all insns that may trap. */ |
| lp_nr = lookup_stmt_eh_lp (stmt); |
| if (lp_nr) |
| { |
| rtx_insn *insn; |
| for (insn = next_real_insn (last); insn; |
| insn = next_real_insn (insn)) |
| { |
| if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX) |
| /* If we want exceptions for non-call insns, any |
| may_trap_p instruction may throw. */ |
| && GET_CODE (PATTERN (insn)) != CLOBBER |
| && GET_CODE (PATTERN (insn)) != USE |
| && insn_could_throw_p (insn)) |
| make_reg_eh_region_note (insn, 0, lp_nr); |
| } |
| } |
| |
| return last; |
| } |
| |
| /* A subroutine of expand_gimple_basic_block. Expand one GIMPLE_CALL |
| that has CALL_EXPR_TAILCALL set. Returns non-null if we actually |
| generated a tail call (something that might be denied by the ABI |
| rules governing the call; see calls.cc). |
| |
| Sets CAN_FALLTHRU if we generated a *conditional* tail call, and |
| can still reach the rest of BB. The case here is __builtin_sqrt, |
| where the NaN result goes through the external function (with a |
| tailcall) and the normal result happens via a sqrt instruction. */ |
| |
| static basic_block |
| expand_gimple_tailcall (basic_block bb, gcall *stmt, bool *can_fallthru) |
| { |
| rtx_insn *last2, *last; |
| edge e; |
| edge_iterator ei; |
| profile_probability probability; |
| |
| last2 = last = expand_gimple_stmt (stmt); |
| |
| for (last = NEXT_INSN (last); last; last = NEXT_INSN (last)) |
| if (CALL_P (last) && SIBLING_CALL_P (last)) |
| goto found; |
| |
| maybe_dump_rtl_for_gimple_stmt (stmt, last2); |
| |
| *can_fallthru = true; |
| return NULL; |
| |
| found: |
| /* ??? Wouldn't it be better to just reset any pending stack adjust? |
| Any instructions emitted here are about to be deleted. */ |
| do_pending_stack_adjust (); |
| |
| /* Remove any non-eh, non-abnormal edges that don't go to exit. */ |
| /* ??? I.e. the fallthrough edge. HOWEVER! If there were to be |
| EH or abnormal edges, we shouldn't have created a tail call in |
| the first place. So it seems to me we should just be removing |
| all edges here, or redirecting the existing fallthru edge to |
| the exit block. */ |
| |
| probability = profile_probability::never (); |
| |
| for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) |
| { |
| if (!(e->flags & (EDGE_ABNORMAL | EDGE_EH))) |
| { |
| if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)) |
| e->dest->count -= e->count (); |
| probability += e->probability; |
| remove_edge (e); |
| } |
| else |
| ei_next (&ei); |
| } |
| |
| /* This is somewhat ugly: the call_expr expander often emits instructions |
| after the sibcall (to perform the function return). These confuse the |
| find_many_sub_basic_blocks code, so we need to get rid of these. */ |
| last = NEXT_INSN (last); |
| gcc_assert (BARRIER_P (last)); |
| |
| *can_fallthru = false; |
| while (NEXT_INSN (last)) |
| { |
| /* For instance an sqrt builtin expander expands if with |
| sibcall in the then and label for `else`. */ |
| if (LABEL_P (NEXT_INSN (last))) |
| { |
| *can_fallthru = true; |
| break; |
| } |
| delete_insn (NEXT_INSN (last)); |
| } |
| |
| e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_ABNORMAL |
| | EDGE_SIBCALL); |
| e->probability = probability; |
| BB_END (bb) = last; |
| update_bb_for_insn (bb); |
| |
| if (NEXT_INSN (last)) |
| { |
| bb = create_basic_block (NEXT_INSN (last), get_last_insn (), bb); |
| |
| last = BB_END (bb); |
| if (BARRIER_P (last)) |
| BB_END (bb) = PREV_INSN (last); |
| } |
| |
| maybe_dump_rtl_for_gimple_stmt (stmt, last2); |
| |
| return bb; |
| } |
| |
| /* Return the difference between the floor and the truncated result of |
| a signed division by OP1 with remainder MOD. */ |
| static rtx |
| floor_sdiv_adjust (machine_mode mode, rtx mod, rtx op1) |
| { |
| /* (mod != 0 ? (op1 / mod < 0 ? -1 : 0) : 0) */ |
| return gen_rtx_IF_THEN_ELSE |
| (mode, gen_rtx_NE (BImode, mod, const0_rtx), |
| gen_rtx_IF_THEN_ELSE |
| (mode, gen_rtx_LT (BImode, |
| gen_rtx_DIV (mode, op1, mod), |
| const0_rtx), |
| constm1_rtx, const0_rtx), |
| const0_rtx); |
| } |
| |
| /* Return the difference between the ceil and the truncated result of |
| a signed division by OP1 with remainder MOD. */ |
| static rtx |
| ceil_sdiv_adjust (machine_mode mode, rtx mod, rtx op1) |
| { |
| /* (mod != 0 ? (op1 / mod > 0 ? 1 : 0) : 0) */ |
| return gen_rtx_IF_THEN_ELSE |
| (mode, gen_rtx_NE (BImode, mod, const0_rtx), |
| gen_rtx_IF_THEN_ELSE |
| (mode, gen_rtx_GT (BImode, |
| gen_rtx_DIV (mode, op1, mod), |
| const0_rtx), |
| const1_rtx, const0_rtx), |
| const0_rtx); |
| } |
| |
| /* Return the difference between the ceil and the truncated result of |
| an unsigned division by OP1 with remainder MOD. */ |
| static rtx |
| ceil_udiv_adjust (machine_mode mode, rtx mod, rtx op1 ATTRIBUTE_UNUSED) |
| { |
| /* (mod != 0 ? 1 : 0) */ |
| return gen_rtx_IF_THEN_ELSE |
| (mode, gen_rtx_NE (BImode, mod, const0_rtx), |
| const1_rtx, const0_rtx); |
| } |
| |
| /* Return the difference between the rounded and the truncated result |
| of a signed division by OP1 with remainder MOD. Halfway cases are |
| rounded away from zero, rather than to the nearest even number. */ |
| static rtx |
| round_sdiv_adjust (machine_mode mode, rtx mod, rtx op1) |
| { |
| /* (abs (mod) >= abs (op1) - abs (mod) |
| ? (op1 / mod > 0 ? 1 : -1) |
| : 0) */ |
| return gen_rtx_IF_THEN_ELSE |
| (mode, gen_rtx_GE (BImode, gen_rtx_ABS (mode, mod), |
| gen_rtx_MINUS (mode, |
| gen_rtx_ABS (mode, op1), |
| gen_rtx_ABS (mode, mod))), |
| gen_rtx_IF_THEN_ELSE |
| (mode, gen_rtx_GT (BImode, |
| gen_rtx_DIV (mode, op1, mod), |
| const0_rtx), |
| const1_rtx, constm1_rtx), |
| const0_rtx); |
| } |
| |
| /* Return the difference between the rounded and the truncated result |
| of a unsigned division by OP1 with remainder MOD. Halfway cases |
| are rounded away from zero, rather than to the nearest even |
| number. */ |
| static rtx |
| round_udiv_adjust (machine_mode mode, rtx mod, rtx op1) |
| { |
| /* (mod >= op1 - mod ? 1 : 0) */ |
| return gen_rtx_IF_THEN_ELSE |
| (mode, gen_rtx_GE (BImode, mod, |
| gen_rtx_MINUS (mode, op1, mod)), |
| const1_rtx, const0_rtx); |
| } |
| |
| /* Convert X to MODE, that must be Pmode or ptr_mode, without emitting |
| any rtl. */ |
| |
| static rtx |
| convert_debug_memory_address (scalar_int_mode mode, rtx x, |
| addr_space_t as) |
| { |
| #ifndef POINTERS_EXTEND_UNSIGNED |
| gcc_assert (mode == Pmode |
| || mode == targetm.addr_space.address_mode (as)); |
| gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode); |
| #else |
| rtx temp; |
| |
| gcc_assert (targetm.addr_space.valid_pointer_mode (mode, as)); |
| |
| if (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode) |
| return x; |
| |
| /* X must have some form of address mode already. */ |
| scalar_int_mode xmode = as_a <scalar_int_mode> (GET_MODE (x)); |
| if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (xmode)) |
| x = lowpart_subreg (mode, x, xmode); |
| else if (POINTERS_EXTEND_UNSIGNED > 0) |
| x = gen_rtx_ZERO_EXTEND (mode, x); |
| else if (!POINTERS_EXTEND_UNSIGNED) |
| x = gen_rtx_SIGN_EXTEND (mode, x); |
| else |
| { |
| switch (GET_CODE (x)) |
| { |
| case SUBREG: |
| if ((SUBREG_PROMOTED_VAR_P (x) |
| || (REG_P (SUBREG_REG (x)) && REG_POINTER (SUBREG_REG (x))) |
| || (GET_CODE (SUBREG_REG (x)) == PLUS |
| && REG_P (XEXP (SUBREG_REG (x), 0)) |
| && REG_POINTER (XEXP (SUBREG_REG (x), 0)) |
| && CONST_INT_P (XEXP (SUBREG_REG (x), 1)))) |
| && GET_MODE (SUBREG_REG (x)) == mode) |
| return SUBREG_REG (x); |
| break; |
| case LABEL_REF: |
| temp = gen_rtx_LABEL_REF (mode, label_ref_label (x)); |
| LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x); |
| return temp; |
| case SYMBOL_REF: |
| temp = shallow_copy_rtx (x); |
| PUT_MODE (temp, mode); |
| return temp; |
| case CONST: |
| temp = convert_debug_memory_address (mode, XEXP (x, 0), as); |
| if (temp) |
| temp = gen_rtx_CONST (mode, temp); |
| return temp; |
| case PLUS: |
| case MINUS: |
| if (CONST_INT_P (XEXP (x, 1))) |
| { |
| temp = convert_debug_memory_address (mode, XEXP (x, 0), as); |
| if (temp) |
| return gen_rtx_fmt_ee (GET_CODE (x), mode, temp, XEXP (x, 1)); |
| } |
| break; |
| default: |
| break; |
| } |
| /* Don't know how to express ptr_extend as operation in debug info. */ |
| return NULL; |
| } |
| #endif /* POINTERS_EXTEND_UNSIGNED */ |
| |
| return x; |
| } |
| |
| /* Map from SSA_NAMEs to corresponding DEBUG_EXPR_DECLs created |
| by avoid_deep_ter_for_debug. */ |
| |
| static hash_map<tree, tree> *deep_ter_debug_map; |
| |
| /* Split too deep TER chains for debug stmts using debug temporaries. */ |
| |
| static void |
| avoid_deep_ter_for_debug (gimple *stmt, int depth) |
| { |
| use_operand_p use_p; |
| ssa_op_iter iter; |
| FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE) |
| { |
| tree use = USE_FROM_PTR (use_p); |
| if (TREE_CODE (use) != SSA_NAME || SSA_NAME_IS_DEFAULT_DEF (use)) |
| continue; |
| gimple *g = get_gimple_for_ssa_name (use); |
| if (g == NULL) |
| continue; |
| if (depth > 6 && !stmt_ends_bb_p (g)) |
| { |
| if (deep_ter_debug_map == NULL) |
| deep_ter_debug_map = new hash_map<tree, tree>; |
| |
| tree &vexpr = deep_ter_debug_map->get_or_insert (use); |
| if (vexpr != NULL) |
| continue; |
| vexpr = build_debug_expr_decl (TREE_TYPE (use)); |
| gimple *def_temp = gimple_build_debug_bind (vexpr, use, g); |
| gimple_stmt_iterator gsi = gsi_for_stmt (g); |
| gsi_insert_after (&gsi, def_temp, GSI_NEW_STMT); |
| avoid_deep_ter_for_debug (def_temp, 0); |
| } |
| else |
| avoid_deep_ter_for_debug (g, depth + 1); |
| } |
| } |
| |
| /* Return an RTX equivalent to the value of the parameter DECL. */ |
| |
| static rtx |
| expand_debug_parm_decl (tree decl) |
| { |
| rtx incoming = DECL_INCOMING_RTL (decl); |
| |
| if (incoming |
| && GET_MODE (incoming) != BLKmode |
| && ((REG_P (incoming) && HARD_REGISTER_P (incoming)) |
| || (MEM_P (incoming) |
| && REG_P (XEXP (incoming, 0)) |
| && HARD_REGISTER_P (XEXP (incoming, 0))))) |
| { |
| rtx rtl = gen_rtx_ENTRY_VALUE (GET_MODE (incoming)); |
| |
| #ifdef HAVE_window_save |
| /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers. |
| If the target machine has an explicit window save instruction, the |
| actual entry value is the corresponding OUTGOING_REGNO instead. */ |
| if (REG_P (incoming) |
| && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming)) |
| incoming |
| = gen_rtx_REG_offset (incoming, GET_MODE (incoming), |
| OUTGOING_REGNO (REGNO (incoming)), 0); |
| else if (MEM_P (incoming)) |
| { |
| rtx reg = XEXP (incoming, 0); |
| if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg)) |
| { |
| reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg))); |
| incoming = replace_equiv_address_nv (incoming, reg); |
| } |
| else |
| incoming = copy_rtx (incoming); |
| } |
| #endif |
| |
| ENTRY_VALUE_EXP (rtl) = incoming; |
| return rtl; |
| } |
| |
| if (incoming |
| && GET_MODE (incoming) != BLKmode |
| && !TREE_ADDRESSABLE (decl) |
| && MEM_P (incoming) |
| && (XEXP (incoming, 0) == virtual_incoming_args_rtx |
| || (GET_CODE (XEXP (incoming, 0)) == PLUS |
| && XEXP (XEXP (incoming, 0), 0) == virtual_incoming_args_rtx |
| && CONST_INT_P (XEXP (XEXP (incoming, 0), 1))))) |
| return copy_rtx (incoming); |
| |
| return NULL_RTX; |
| } |
| |
| /* Return an RTX equivalent to the value of the tree expression EXP. */ |
| |
| static rtx |
| expand_debug_expr (tree exp) |
| { |
| rtx op0 = NULL_RTX, op1 = NULL_RTX, op2 = NULL_RTX; |
| machine_mode mode = TYPE_MODE (TREE_TYPE (exp)); |
| machine_mode inner_mode = VOIDmode; |
| int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp)); |
| addr_space_t as; |
| scalar_int_mode op0_mode, op1_mode, addr_mode; |
| |
| switch (TREE_CODE_CLASS (TREE_CODE (exp))) |
| { |
| case tcc_expression: |
| switch (TREE_CODE (exp)) |
| { |
| case COND_EXPR: |
| case DOT_PROD_EXPR: |
| case SAD_EXPR: |
| case WIDEN_MULT_PLUS_EXPR: |
| case WIDEN_MULT_MINUS_EXPR: |
| goto ternary; |
| |
| case TRUTH_ANDIF_EXPR: |
| case TRUTH_ORIF_EXPR: |
| case TRUTH_AND_EXPR: |
| case TRUTH_OR_EXPR: |
| case TRUTH_XOR_EXPR: |
| goto binary; |
| |
| case TRUTH_NOT_EXPR: |
| goto unary; |
| |
| default: |
| break; |
| } |
| break; |
| |
| ternary: |
| op2 = expand_debug_expr (TREE_OPERAND (exp, 2)); |
| if (!op2) |
| return NULL_RTX; |
| /* Fall through. */ |
| |
| binary: |
| case tcc_binary: |
| if (mode == BLKmode) |
| return NULL_RTX; |
| op1 = expand_debug_expr (TREE_OPERAND (exp, 1)); |
| if (!op1) |
| return NULL_RTX; |
| switch (TREE_CODE (exp)) |
| { |
| case LSHIFT_EXPR: |
| case RSHIFT_EXPR: |
| case LROTATE_EXPR: |
| case RROTATE_EXPR: |
| case WIDEN_LSHIFT_EXPR: |
| /* Ensure second operand isn't wider than the first one. */ |
| inner_mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))); |
| if (is_a <scalar_int_mode> (inner_mode, &op1_mode) |
| && (GET_MODE_UNIT_PRECISION (mode) |
| < GET_MODE_PRECISION (op1_mode))) |
| op1 = lowpart_subreg (GET_MODE_INNER (mode), op1, op1_mode); |
| break; |
| default: |
| break; |
| } |
| /* Fall through. */ |
| |
| unary: |
| case tcc_unary: |
| if (mode == BLKmode) |
| return NULL_RTX; |
| inner_mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))); |
| op0 = expand_debug_expr (TREE_OPERAND (exp, 0)); |
| if (!op0) |
| return NULL_RTX; |
| break; |
| |
| case tcc_comparison: |
| unsignedp = TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))); |
| goto binary; |
| |
| case tcc_type: |
| case tcc_statement: |
| gcc_unreachable (); |
| |
| case tcc_constant: |
| case tcc_exceptional: |
| case tcc_declaration: |
| case tcc_reference: |
| case tcc_vl_exp: |
| break; |
| } |
| |
| switch (TREE_CODE (exp)) |
| { |
| case STRING_CST: |
| if (!lookup_constant_def (exp)) |
| { |
| if (strlen (TREE_STRING_POINTER (exp)) + 1 |
| != (size_t) TREE_STRING_LENGTH (exp)) |
| return NULL_RTX; |
| op0 = gen_rtx_CONST_STRING (Pmode, TREE_STRING_POINTER (exp)); |
| op0 = gen_rtx_MEM (BLKmode, op0); |
| set_mem_attributes (op0, exp, 0); |
| return op0; |
| } |
| /* Fall through. */ |
| |
| case INTEGER_CST: |
| if (TREE_CODE (TREE_TYPE (exp)) == BITINT_TYPE |
| && TYPE_MODE (TREE_TYPE (exp)) == BLKmode) |
| return NULL; |
| /* FALLTHRU */ |
| case REAL_CST: |
| case FIXED_CST: |
| op0 = expand_expr (exp, NULL_RTX, mode, EXPAND_INITIALIZER); |
| return op0; |
| |
| case POLY_INT_CST: |
| return immed_wide_int_const (poly_int_cst_value (exp), mode); |
| |
| case COMPLEX_CST: |
| gcc_assert (COMPLEX_MODE_P (mode)); |
| op0 = expand_debug_expr (TREE_REALPART (exp)); |
| op1 = expand_debug_expr (TREE_IMAGPART (exp)); |
| return gen_rtx_CONCAT (mode, op0, op1); |
| |
| case DEBUG_EXPR_DECL: |
| op0 = DECL_RTL_IF_SET (exp); |
| |
| if (op0) |
| { |
| if (GET_MODE (op0) != mode) |
| gcc_assert (VECTOR_TYPE_P (TREE_TYPE (exp))); |
| else |
| return op0; |
| } |
| |
| op0 = gen_rtx_DEBUG_EXPR (mode); |
| DEBUG_EXPR_TREE_DECL (op0) = exp; |
| SET_DECL_RTL (exp, op0); |
| |
| return op0; |
| |
| case VAR_DECL: |
| case PARM_DECL: |
| case FUNCTION_DECL: |
| case LABEL_DECL: |
| case CONST_DECL: |
| case RESULT_DECL: |
| op0 = DECL_RTL_IF_SET (exp); |
| |
| /* This decl was probably optimized away. */ |
| if (!op0 |
| /* At least label RTXen are sometimes replaced by |
| NOTE_INSN_DELETED_LABEL. Any notes here are not |
| handled by copy_rtx. */ |
| || NOTE_P (op0)) |
| { |
| if (!VAR_P (exp) |
| || DECL_EXTERNAL (exp) |
| || !TREE_STATIC (exp) |
| || !DECL_NAME (exp) |
| || DECL_HARD_REGISTER (exp) |
| || DECL_IN_CONSTANT_POOL (exp) |
| || mode == VOIDmode |
| || symtab_node::get (exp) == NULL) |
| return NULL; |
| |
| op0 = make_decl_rtl_for_debug (exp); |
| if (!MEM_P (op0) |
| || GET_CODE (XEXP (op0, 0)) != SYMBOL_REF |
| || SYMBOL_REF_DECL (XEXP (op0, 0)) != exp) |
| return NULL; |
| } |
| else if (VAR_P (exp) |
| && is_global_var (exp) |
| && symtab_node::get (exp) == NULL) |
| return NULL; |
| else |
| op0 = copy_rtx (op0); |
| |
| if (GET_MODE (op0) == BLKmode |
| /* If op0 is not BLKmode, but mode is, adjust_mode |
| below would ICE. While it is likely a FE bug, |
| try to be robust here. See PR43166. */ |
| || mode == BLKmode |
| || (mode == VOIDmode && GET_MODE (op0) != VOIDmode)) |
| { |
| gcc_assert (MEM_P (op0)); |
| op0 = adjust_address_nv (op0, mode, 0); |
| return op0; |
| } |
| |
| /* Fall through. */ |
| |
| adjust_mode: |
| case PAREN_EXPR: |
| CASE_CONVERT: |
| { |
| inner_mode = GET_MODE (op0); |
| |
| if (mode == inner_mode) |
| return op0; |
| |
| if (inner_mode == VOIDmode) |
| { |
| if (TREE_CODE (exp) == SSA_NAME) |
| inner_mode = TYPE_MODE (TREE_TYPE (exp)); |
| else |
| inner_mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))); |
| if (mode == inner_mode) |
| return op0; |
| } |
| |
| if (FLOAT_MODE_P (mode) && FLOAT_MODE_P (inner_mode)) |
| { |
| if (GET_MODE_UNIT_BITSIZE (mode) |
| == GET_MODE_UNIT_BITSIZE (inner_mode)) |
| op0 = simplify_gen_subreg (mode, op0, inner_mode, 0); |
| else if (GET_MODE_UNIT_BITSIZE (mode) |
| < GET_MODE_UNIT_BITSIZE (inner_mode)) |
| op0 = simplify_gen_unary (FLOAT_TRUNCATE, mode, op0, inner_mode); |
| else |
| op0 = simplify_gen_unary (FLOAT_EXTEND, mode, op0, inner_mode); |
| } |
| else if (FLOAT_MODE_P (mode)) |
| { |
| gcc_assert (TREE_CODE (exp) != SSA_NAME); |
| if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0)))) |
| op0 = simplify_gen_unary (UNSIGNED_FLOAT, mode, op0, inner_mode); |
| else |
| op0 = simplify_gen_unary (FLOAT, mode, op0, inner_mode); |
| } |
| else if (FLOAT_MODE_P (inner_mode)) |
| { |
| if (unsignedp) |
| op0 = simplify_gen_unary (UNSIGNED_FIX, mode, op0, inner_mode); |
| else |
| op0 = simplify_gen_unary (FIX, mode, op0, inner_mode); |
| } |
| else if (GET_MODE_UNIT_PRECISION (mode) |
| == GET_MODE_UNIT_PRECISION (inner_mode)) |
| op0 = lowpart_subreg (mode, op0, inner_mode); |
| else if (GET_MODE_UNIT_PRECISION (mode) |
| < GET_MODE_UNIT_PRECISION (inner_mode)) |
| op0 = simplify_gen_unary (TRUNCATE, mode, op0, inner_mode); |
| else if (UNARY_CLASS_P (exp) |
| ? TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) |
| : unsignedp) |
| op0 = simplify_gen_unary (ZERO_EXTEND, mode, op0, inner_mode); |
| else |
| op0 = simplify_gen_unary (SIGN_EXTEND, mode, op0, inner_mode); |
| |
| return op0; |
| } |
| |
| case MEM_REF: |
| if (!is_gimple_mem_ref_addr (TREE_OPERAND (exp, 0))) |
| { |
| tree newexp = fold_binary (MEM_REF, TREE_TYPE (exp), |
| TREE_OPERAND (exp, 0), |
| TREE_OPERAND (exp, 1)); |
| if (newexp) |
| return expand_debug_expr (newexp); |
| } |
| /* FALLTHROUGH */ |
| case INDIRECT_REF: |
| inner_mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))); |
| op0 = expand_debug_expr (TREE_OPERAND (exp, 0)); |
| if (!op0) |
| return NULL; |
| |
| if (TREE_CODE (exp) == MEM_REF) |
| { |
| if (GET_CODE (op0) == DEBUG_IMPLICIT_PTR |
| || (GET_CODE (op0) == PLUS |
| && GET_CODE (XEXP (op0, 0)) == DEBUG_IMPLICIT_PTR)) |
| /* (mem (debug_implicit_ptr)) might confuse aliasing. |
| Instead just use get_inner_reference. */ |
| goto component_ref; |
| |
| op1 = expand_debug_expr (TREE_OPERAND (exp, 1)); |
| poly_int64 offset; |
| if (!op1 || !poly_int_rtx_p (op1, &offset)) |
| return NULL; |
| |
| op0 = plus_constant (inner_mode, op0, offset); |
| } |
| |
| as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))); |
| |
| op0 = convert_debug_memory_address (targetm.addr_space.address_mode (as), |
| op0, as); |
| if (op0 == NULL_RTX) |
| return NULL; |
| |
| op0 = gen_rtx_MEM (mode, op0); |
| set_mem_attributes (op0, exp, 0); |
| if (TREE_CODE (exp) == MEM_REF |
| && !is_gimple_mem_ref_addr (TREE_OPERAND (exp, 0))) |
| set_mem_expr (op0, NULL_TREE); |
| set_mem_addr_space (op0, as); |
| |
| return op0; |
| |
| case TARGET_MEM_REF: |
| if (TREE_CODE (TMR_BASE (exp)) == ADDR_EXPR |
| && !DECL_RTL_SET_P (TREE_OPERAND (TMR_BASE (exp), 0))) |
| return NULL; |
| |
| op0 = expand_debug_expr |
| (tree_mem_ref_addr (build_pointer_type (TREE_TYPE (exp)), exp)); |
| if (!op0) |
| return NULL; |
| |
| as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))); |
| op0 = convert_debug_memory_address (targetm.addr_space.address_mode (as), |
| op0, as); |
| if (op0 == NULL_RTX) |
| return NULL; |
| |
| op0 = gen_rtx_MEM (mode, op0); |
| |
| set_mem_attributes (op0, exp, 0); |
| set_mem_addr_space (op0, as); |
| |
| return op0; |
| |
| component_ref: |
| case ARRAY_REF: |
| case ARRAY_RANGE_REF: |
| case COMPONENT_REF: |
| case BIT_FIELD_REF: |
| case REALPART_EXPR: |
| case IMAGPART_EXPR: |
| case VIEW_CONVERT_EXPR: |
| { |
| machine_mode mode1; |
| poly_int64 bitsize, bitpos; |
| tree offset; |
| int reversep, volatilep = 0; |
| tree tem |
| = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1, |
| &unsignedp, &reversep, &volatilep); |
| rtx orig_op0; |
| |
| if (known_eq (bitsize, 0)) |
| return NULL; |
| |
| orig_op0 = op0 = expand_debug_expr (tem); |
| |
| if (!op0) |
| return NULL; |
| |
| if (offset) |
| { |
| machine_mode addrmode, offmode; |
| |
| if (!MEM_P (op0)) |
| return NULL; |
| |
| op0 = XEXP (op0, 0); |
| addrmode = GET_MODE (op0); |
| if (addrmode == VOIDmode) |
| addrmode = Pmode; |
| |
| op1 = expand_debug_expr (offset); |
| if (!op1) |
| return NULL; |
| |
| offmode = GET_MODE (op1); |
| if (offmode == VOIDmode) |
| offmode = TYPE_MODE (TREE_TYPE (offset)); |
| |
| if (addrmode != offmode) |
| op1 = lowpart_subreg (addrmode, op1, offmode); |
| |
| /* Don't use offset_address here, we don't need a |
| recognizable address, and we don't want to generate |
| code. */ |
| op0 = gen_rtx_MEM (mode, simplify_gen_binary (PLUS, addrmode, |
| op0, op1)); |
| } |
| |
| if (MEM_P (op0)) |
| { |
| if (mode1 == VOIDmode) |
| { |
| if (maybe_gt (bitsize, MAX_BITSIZE_MODE_ANY_INT)) |
| return NULL; |
| /* Bitfield. */ |
| mode1 = smallest_int_mode_for_size (bitsize); |
| } |
| poly_int64 bytepos = bits_to_bytes_round_down (bitpos); |
| if (maybe_ne (bytepos, 0)) |
| { |
| op0 = adjust_address_nv (op0, mode1, bytepos); |
| bitpos = num_trailing_bits (bitpos); |
| } |
| else if (known_eq (bitpos, 0) |
| && known_eq (bitsize, GET_MODE_BITSIZE (mode))) |
| op0 = adjust_address_nv (op0, mode, 0); |
| else if (GET_MODE (op0) != mode1) |
| op0 = adjust_address_nv (op0, mode1, 0); |
| else |
| op0 = copy_rtx (op0); |
| if (op0 == orig_op0) |
| op0 = shallow_copy_rtx (op0); |
| if (TREE_CODE (tem) != SSA_NAME) |
| set_mem_attributes (op0, exp, 0); |
| } |
| |
| if (known_eq (bitpos, 0) && mode == GET_MODE (op0)) |
| return op0; |
| |
| if (maybe_lt (bitpos, 0)) |
| return NULL; |
| |
| if (GET_MODE (op0) == BLKmode || mode == BLKmode) |
| return NULL; |
| |
| poly_int64 bytepos; |
| if (multiple_p (bitpos, BITS_PER_UNIT, &bytepos) |
| && known_eq (bitsize, GET_MODE_BITSIZE (mode1))) |
| { |
| machine_mode opmode = GET_MODE (op0); |
| |
| if (opmode == VOIDmode) |
| opmode = TYPE_MODE (TREE_TYPE (tem)); |
| |
| /* This condition may hold if we're expanding the address |
| right past the end of an array that turned out not to |
| be addressable (i.e., the address was only computed in |
| debug stmts). The gen_subreg below would rightfully |
| crash, and the address doesn't really exist, so just |
| drop it. */ |
| if (known_ge (bitpos, GET_MODE_BITSIZE (opmode))) |
| return NULL; |
| |
| if (multiple_p (bitpos, GET_MODE_BITSIZE (mode))) |
| return simplify_gen_subreg (mode, op0, opmode, bytepos); |
| } |
| |
| return simplify_gen_ternary (SCALAR_INT_MODE_P (GET_MODE (op0)) |
| && TYPE_UNSIGNED (TREE_TYPE (exp)) |
| ? SIGN_EXTRACT |
| : ZERO_EXTRACT, mode, |
| GET_MODE (op0) != VOIDmode |
| ? GET_MODE (op0) |
| : TYPE_MODE (TREE_TYPE (tem)), |
| op0, gen_int_mode (bitsize, word_mode), |
| gen_int_mode (bitpos, word_mode)); |
| } |
| |
| case ABS_EXPR: |
| case ABSU_EXPR: |
| return simplify_gen_unary (ABS, mode, op0, mode); |
| |
| case NEGATE_EXPR: |
| return simplify_gen_unary (NEG, mode, op0, mode); |
| |
| case BIT_NOT_EXPR: |
| return simplify_gen_unary (NOT, mode, op0, mode); |
| |
| case FLOAT_EXPR: |
| return simplify_gen_unary (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, |
| 0))) |
| ? UNSIGNED_FLOAT : FLOAT, mode, op0, |
| inner_mode); |
| |
| case FIX_TRUNC_EXPR: |
| return simplify_gen_unary (unsignedp ? UNSIGNED_FIX : FIX, mode, op0, |
| inner_mode); |
| |
| case POINTER_PLUS_EXPR: |
| /* For the rare target where pointers are not the same size as |
| size_t, we need to check for mis-matched modes and correct |
| the addend. */ |
| if (op0 && op1 |
| && is_a <scalar_int_mode> (GET_MODE (op0), &op0_mode) |
| && is_a <scalar_int_mode> (GET_MODE (op1), &op1_mode) |
| && op0_mode != op1_mode) |
| { |
| if (GET_MODE_BITSIZE (op0_mode) < GET_MODE_BITSIZE (op1_mode) |
| /* If OP0 is a partial mode, then we must truncate, even |
| if it has the same bitsize as OP1 as GCC's |
| representation of partial modes is opaque. */ |
| || (GET_MODE_CLASS (op0_mode) == MODE_PARTIAL_INT |
| && (GET_MODE_BITSIZE (op0_mode) |
| == GET_MODE_BITSIZE (op1_mode)))) |
| op1 = simplify_gen_unary (TRUNCATE, op0_mode, op1, op1_mode); |
| else |
| /* We always sign-extend, regardless of the signedness of |
| the operand, because the operand is always unsigned |
| here even if the original C expression is signed. */ |
| op1 = simplify_gen_unary (SIGN_EXTEND, op0_mode, op1, op1_mode); |
| } |
| /* Fall through. */ |
| case PLUS_EXPR: |
| return simplify_gen_binary (PLUS, mode, op0, op1); |
| |
| case MINUS_EXPR: |
| case POINTER_DIFF_EXPR: |
| return simplify_gen_binary (MINUS, mode, op0, op1); |
| |
| case MULT_EXPR: |
| return simplify_gen_binary (MULT, mode, op0, op1); |
| |
| case RDIV_EXPR: |
| case TRUNC_DIV_EXPR: |
| case EXACT_DIV_EXPR: |
| if (unsignedp) |
| return simplify_gen_binary (UDIV, mode, op0, op1); |
| else |
| return simplify_gen_binary (DIV, mode, op0, op1); |
| |
| case TRUNC_MOD_EXPR: |
| return simplify_gen_binary (unsignedp ? UMOD : MOD, mode, op0, op1); |
| |
| case FLOOR_DIV_EXPR: |
| if (unsignedp) |
| return simplify_gen_binary (UDIV, mode, op0, op1); |
| else |
| { |
| rtx div = simplify_gen_binary (DIV, mode, op0, op1); |
| rtx mod = simplify_gen_binary (MOD, mode, op0, op1); |
| rtx adj = floor_sdiv_adjust (mode, mod, op1); |
| return simplify_gen_binary (PLUS, mode, div, adj); |
| } |
| |
| case FLOOR_MOD_EXPR: |
| if (unsignedp) |
| return simplify_gen_binary (UMOD, mode, op0, op1); |
| else |
| { |
| rtx mod = simplify_gen_binary (MOD, mode, op0, op1); |
| rtx adj = floor_sdiv_adjust (mode, mod, op1); |
| adj = simplify_gen_unary (NEG, mode, |
| simplify_gen_binary (MULT, mode, adj, op1), |
| mode); |
| return simplify_gen_binary (PLUS, mode, mod, adj); |
| } |
| |
| case CEIL_DIV_EXPR: |
| if (unsignedp) |
| { |
| rtx div = simplify_gen_binary (UDIV, mode, op0, op1); |
| rtx mod = simplify_gen_binary (UMOD, mode, op0, op1); |
| rtx adj = ceil_udiv_adjust (mode, mod, op1); |
| return simplify_gen_binary (PLUS, mode, div, adj); |
| } |
| else |
| { |
| rtx div = simplify_gen_binary (DIV, mode, op0, op1); |
| rtx mod = simplify_gen_binary (MOD, mode, op0, op1); |
| rtx adj = ceil_sdiv_adjust (mode, mod, op1); |
| return simplify_gen_binary (PLUS, mode, div, adj); |
| } |
| |
| case CEIL_MOD_EXPR: |
| if (unsignedp) |
| { |
| rtx mod = simplify_gen_binary (UMOD, mode, op0, op1); |
| rtx adj = ceil_udiv_adjust (mode, mod, op1); |
| adj = simplify_gen_unary (NEG, mode, |
| simplify_gen_binary (MULT, mode, adj, op1), |
| mode); |
| return simplify_gen_binary (PLUS, mode, mod, adj); |
| } |
| else |
| { |
| rtx mod = simplify_gen_binary (MOD, mode, op0, op1); |
| rtx adj = ceil_sdiv_adjust (mode, mod, op1); |
| adj = simplify_gen_unary (NEG, mode, |
| simplify_gen_binary (MULT, mode, adj, op1), |
| mode); |
| return simplify_gen_binary (PLUS, mode, mod, adj); |
| } |
| |
| case ROUND_DIV_EXPR: |
| if (unsignedp) |
| { |
| rtx div = simplify_gen_binary (UDIV, mode, op0, op1); |
| rtx mod = simplify_gen_binary (UMOD, mode, op0, op1); |
| rtx adj = round_udiv_adjust (mode, mod, op1); |
| return simplify_gen_binary (PLUS, mode, div, adj); |
| } |
| else |
| { |
| rtx div = simplify_gen_binary (DIV, mode, op0, op1); |
| rtx mod = simplify_gen_binary (MOD, mode, op0, op1); |
| rtx adj = round_sdiv_adjust (mode, mod, op1); |
| return simplify_gen_binary (PLUS, mode, div, adj); |
| } |
| |
| case ROUND_MOD_EXPR: |
| if (unsignedp) |
| { |
| rtx mod = simplify_gen_binary (UMOD, mode, op0, op1); |
| rtx adj = round_udiv_adjust (mode, mod, op1); |
| adj = simplify_gen_unary (NEG, mode, |
| simplify_gen_binary (MULT, mode, adj, op1), |
| mode); |
| return simplify_gen_binary (PLUS, mode, mod, adj); |
| } |
| else |
| { |
| rtx mod = simplify_gen_binary (MOD, mode, op0, op1); |
| rtx adj = round_sdiv_adjust (mode, mod, op1); |
| adj = simplify_gen_unary (NEG, mode, |
| simplify_gen_binary (MULT, mode, adj, op1), |
| mode); |
| return simplify_gen_binary (PLUS, mode, mod, adj); |
| } |
| |
| case LSHIFT_EXPR: |
| return simplify_gen_binary (ASHIFT, mode, op0, op1); |
| |
| case RSHIFT_EXPR: |
| if (unsignedp) |
| return simplify_gen_binary (LSHIFTRT, mode, op0, op1); |
| else |
| return simplify_gen_binary (ASHIFTRT, mode, op0, op1); |
| |
| case LROTATE_EXPR: |
| return simplify_gen_binary (ROTATE, mode, op0, op1); |
| |
| case RROTATE_EXPR: |
| return simplify_gen_binary (ROTATERT, mode, op0, op1); |
| |
| case MIN_EXPR: |
| return simplify_gen_binary (unsignedp ? UMIN : SMIN, mode, op0, op1); |
| |
| case MAX_EXPR: |
| return simplify_gen_binary (unsignedp ? UMAX : SMAX, mode, op0, op1); |
| |
| case BIT_AND_EXPR: |
| case TRUTH_AND_EXPR: |
| return simplify_gen_binary (AND, mode, op0, op1); |
| |
| case BIT_IOR_EXPR: |
| case TRUTH_OR_EXPR: |
| return simplify_gen_binary (IOR, mode, op0, op1); |
| |
| case BIT_XOR_EXPR: |
| case TRUTH_XOR_EXPR: |
| return simplify_gen_binary (XOR, mode, op0, op1); |
| |
| case TRUTH_ANDIF_EXPR: |
| return gen_rtx_IF_THEN_ELSE (mode, op0, op1, const0_rtx); |
| |
| case TRUTH_ORIF_EXPR: |
| return gen_rtx_IF_THEN_ELSE (mode, op0, const_true_rtx, op1); |
| |
| case TRUTH_NOT_EXPR: |
| return simplify_gen_relational (EQ, mode, inner_mode, op0, const0_rtx); |
| |
| case LT_EXPR: |
| return simplify_gen_relational (unsignedp ? LTU : LT, mode, inner_mode, |
| op0, op1); |
| |
| case LE_EXPR: |
| return simplify_gen_relational (unsignedp ? LEU : LE, mode, inner_mode, |
| op0, op1); |
| |
| case GT_EXPR: |
| return simplify_gen_relational (unsignedp ? GTU : GT, mode, inner_mode, |
| op0, op1); |
| |
| case GE_EXPR: |
| return simplify_gen_relational (unsignedp ? GEU : GE, mode, inner_mode, |
| op0, op1); |
| |
| case EQ_EXPR: |
| return simplify_gen_relational (EQ, mode, inner_mode, op0, op1); |
| |
| case NE_EXPR: |
| return simplify_gen_relational (NE, mode, inner_mode, op0, op1); |
| |
| case UNORDERED_EXPR: |
| return simplify_gen_relational (UNORDERED, mode, inner_mode, op0, op1); |
| |
| case ORDERED_EXPR: |
| return simplify_gen_relational (ORDERED, mode, inner_mode, op0, op1); |
| |
| case UNLT_EXPR: |
| return simplify_gen_relational (UNLT, mode, inner_mode, op0, op1); |
| |
| case UNLE_EXPR: |
| return simplify_gen_relational (UNLE, mode, inner_mode, op0, op1); |
| |
| case UNGT_EXPR: |
| return simplify_gen_relational (UNGT, mode, inner_mode, op0, op1); |
| |
| case UNGE_EXPR: |
| return simplify_gen_relational (UNGE, mode, inner_mode, op0, op1); |
| |
| case UNEQ_EXPR: |
| return simplify_gen_relational (UNEQ, mode, inner_mode, op0, op1); |
| |
| case LTGT_EXPR: |
| return simplify_gen_relational (LTGT, mode, inner_mode, op0, op1); |
| |
| case COND_EXPR: |
| return gen_rtx_IF_THEN_ELSE (mode, op0, op1, op2); |
| |
| case COMPLEX_EXPR: |
| gcc_assert (COMPLEX_MODE_P (mode)); |
| if (GET_MODE (op0) == VOIDmode) |
| op0 = gen_rtx_CONST (GET_MODE_INNER (mode), op0); |
| if (GET_MODE (op1) == VOIDmode) |
| op1 = gen_rtx_CONST (GET_MODE_INNER (mode), op1); |
| return gen_rtx_CONCAT (mode, op0, op1); |
| |
| case CONJ_EXPR: |
| if (GET_CODE (op0) == CONCAT) |
| return gen_rtx_CONCAT (mode, XEXP (op0, 0), |
| simplify_gen_unary (NEG, GET_MODE_INNER (mode), |
| XEXP (op0, 1), |
| GET_MODE_INNER (mode))); |
| else |
| { |
| scalar_mode imode = GET_MODE_INNER (mode); |
| rtx re, im; |
| |
| if (MEM_P (op0)) |
| { |
| re = adjust_address_nv (op0, imode, 0); |
| im = adjust_address_nv (op0, imode, GET_MODE_SIZE (imode)); |
| } |
| else |
| { |
| scalar_int_mode ifmode; |
| scalar_int_mode ihmode; |
| rtx halfsize; |
| if (!int_mode_for_mode (mode).exists (&ifmode) |
| || !int_mode_for_mode (imode).exists (&ihmode)) |
| return NULL; |
| halfsize = GEN_INT (GET_MODE_BITSIZE (ihmode)); |
| re = op0; |
| if (mode != ifmode) |
| re = gen_rtx_SUBREG (ifmode, re, 0); |
| re = gen_rtx_ZERO_EXTRACT (ihmode, re, halfsize, const0_rtx); |
| if (imode != ihmode) |
| re = gen_rtx_SUBREG (imode, re, 0); |
| im = copy_rtx (op0); |
| if (mode != ifmode) |
| im = gen_rtx_SUBREG (ifmode, im, 0); |
| im = gen_rtx_ZERO_EXTRACT (ihmode, im, halfsize, halfsize); |
| if (imode != ihmode) |
| im = gen_rtx_SUBREG (imode, im, 0); |
| } |
| im = gen_rtx_NEG (imode, im); |
| return gen_rtx_CONCAT (mode, re, im); |
| } |
| |
| case ADDR_EXPR: |
| op0 = expand_debug_expr (TREE_OPERAND (exp, 0)); |
| if (!op0 || !MEM_P (op0)) |
| { |
| if ((TREE_CODE (TREE_OPERAND (exp, 0)) == VAR_DECL |
| || TREE_CODE (TREE_OPERAND (exp, 0)) == PARM_DECL |
| || TREE_CODE (TREE_OPERAND (exp, 0)) == RESULT_DECL) |
| && (!TREE_ADDRESSABLE (TREE_OPERAND (exp, 0)) |
| || target_for_debug_bind (TREE_OPERAND (exp, 0)))) |
| return gen_rtx_DEBUG_IMPLICIT_PTR (mode, TREE_OPERAND (exp, 0)); |
| |
| if (handled_component_p (TREE_OPERAND (exp, 0))) |
| { |
| poly_int64 bitoffset, bitsize, maxsize, byteoffset; |
| bool reverse; |
| tree decl |
| = get_ref_base_and_extent (TREE_OPERAND (exp, 0), &bitoffset, |
| &bitsize, &maxsize, &reverse); |
| if ((VAR_P (decl) |
| || TREE_CODE (decl) == PARM_DECL |
| || TREE_CODE (decl) == RESULT_DECL) |
| && (!TREE_ADDRESSABLE (decl) |
| || target_for_debug_bind (decl)) |
| && multiple_p (bitoffset, BITS_PER_UNIT, &byteoffset) |
| && known_gt (bitsize, 0) |
| && known_eq (bitsize, maxsize)) |
| { |
| rtx base = gen_rtx_DEBUG_IMPLICIT_PTR (mode, decl); |
| return plus_constant (mode, base, byteoffset); |
| } |
| } |
| |
| if (TREE_CODE (TREE_OPERAND (exp, 0)) == MEM_REF |
| && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) |
| == ADDR_EXPR) |
| { |
| op0 = expand_debug_expr (TREE_OPERAND (TREE_OPERAND (exp, 0), |
| 0)); |
| if (op0 != NULL |
| && (GET_CODE (op0) == DEBUG_IMPLICIT_PTR |
| || (GET_CODE (op0) == PLUS |
| && GET_CODE (XEXP (op0, 0)) == DEBUG_IMPLICIT_PTR |
| && CONST_INT_P (XEXP (op0, 1))))) |
| { |
| op1 = expand_debug_expr (TREE_OPERAND (TREE_OPERAND (exp, 0), |
| 1)); |
| poly_int64 offset; |
| if (!op1 || !poly_int_rtx_p (op1, &offset)) |
| return NULL; |
| |
| return plus_constant (mode, op0, offset); |
| } |
| } |
| |
| return NULL; |
| } |
| |
| as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp))); |
| addr_mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (exp)); |
| op0 = convert_debug_memory_address (addr_mode, XEXP (op0, 0), as); |
| |
| return op0; |
| |
| case VECTOR_CST: |
| { |
| unsigned HOST_WIDE_INT i, nelts; |
| |
| if (!VECTOR_CST_NELTS (exp).is_constant (&nelts)) |
| return NULL; |
| |
| op0 = gen_rtx_CONCATN (mode, rtvec_alloc (nelts)); |
| |
| for (i = 0; i < nelts; ++i) |
| { |
| op1 = expand_debug_expr (VECTOR_CST_ELT (exp, i)); |
| if (!op1) |
| return NULL; |
| XVECEXP (op0, 0, i) = op1; |
| } |
| |
| return op0; |
| } |
| |
| case CONSTRUCTOR: |
| if (TREE_CLOBBER_P (exp)) |
| return NULL; |
| else if (TREE_CODE (TREE_TYPE (exp)) == VECTOR_TYPE) |
| { |
| unsigned i; |
| unsigned HOST_WIDE_INT nelts; |
| tree val; |
| |
| if (!TYPE_VECTOR_SUBPARTS (TREE_TYPE (exp)).is_constant (&nelts)) |
| goto flag_unsupported; |
| |
| op0 = gen_rtx_CONCATN (mode, rtvec_alloc (nelts)); |
| |
| FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), i, val) |
| { |
| op1 = expand_debug_expr (val); |
| if (!op1) |
| return NULL; |
| XVECEXP (op0, 0, i) = op1; |
| } |
| |
| if (i < nelts) |
| { |
| op1 = expand_debug_expr |
| (build_zero_cst (TREE_TYPE (TREE_TYPE (exp)))); |
| |
| if (!op1) |
| return NULL; |
| |
| for (; i < nelts; i++) |
| XVECEXP (op0, 0, i) = op1; |
| } |
| |
| return op0; |
| } |
| else |
| goto flag_unsupported; |
| |
| case CALL_EXPR: |
| /* ??? Maybe handle some builtins? */ |
| return NULL; |
| |
| case SSA_NAME: |
| { |
| gimple *g = get_gimple_for_ssa_name (exp); |
| if (g) |
| { |
| tree t = NULL_TREE; |
| if (deep_ter_debug_map) |
| { |
| tree *slot = deep_ter_debug_map->get (exp); |
| if (slot) |
| t = *slot; |
| } |
| if (t == NULL_TREE) |
| t = gimple_assign_rhs_to_tree (g); |
| op0 = expand_debug_expr (t); |
| if (!op0) |
| return NULL; |
| } |
| else |
| { |
| /* If this is a reference to an incoming value of |
| parameter that is never used in the code or where the |
| incoming value is never used in the code, use |
| PARM_DECL's DECL_RTL if set. */ |
| if (SSA_NAME_IS_DEFAULT_DEF (exp) |
| && SSA_NAME_VAR (exp) |
| && TREE_CODE (SSA_NAME_VAR (exp)) == PARM_DECL |
| && has_zero_uses (exp)) |
| { |
| op0 = expand_debug_parm_decl (SSA_NAME_VAR (exp)); |
| if (op0) |
| goto adjust_mode; |
| op0 = expand_debug_expr (SSA_NAME_VAR (exp)); |
| if (op0) |
| goto adjust_mode; |
| } |
| |
| int part = var_to_partition (SA.map, exp); |
| |
| if (part == NO_PARTITION) |
| return NULL; |
| |
| gcc_assert (part >= 0 && (unsigned)part < SA.map->num_partitions); |
| |
| op0 = copy_rtx (SA.partition_to_pseudo[part]); |
| } |
| goto adjust_mode; |
| } |
| |
| case ERROR_MARK: |
| return NULL; |
| |
| /* Vector stuff. For most of the codes we don't have rtl codes. */ |
| case REALIGN_LOAD_EXPR: |
| case VEC_COND_EXPR: |
| case VEC_PACK_FIX_TRUNC_EXPR: |
| case VEC_PACK_FLOAT_EXPR: |
| case VEC_PACK_SAT_EXPR: |
| case VEC_PACK_TRUNC_EXPR: |
| case VEC_UNPACK_FIX_TRUNC_HI_EXPR: |
| case VEC_UNPACK_FIX_TRUNC_LO_EXPR: |
| case VEC_UNPACK_FLOAT_HI_EXPR: |
| case VEC_UNPACK_FLOAT_LO_EXPR: |
| case VEC_UNPACK_HI_EXPR: |
| case VEC_UNPACK_LO_EXPR: |
| case VEC_WIDEN_MULT_HI_EXPR: |
| case VEC_WIDEN_MULT_LO_EXPR: |
| case VEC_WIDEN_MULT_EVEN_EXPR: |
| case VEC_WIDEN_MULT_ODD_EXPR: |
| case VEC_WIDEN_LSHIFT_HI_EXPR: |
| case VEC_WIDEN_LSHIFT_LO_EXPR: |
| case VEC_PERM_EXPR: |
| case VEC_DUPLICATE_EXPR: |
| case VEC_SERIES_EXPR: |
| case SAD_EXPR: |
| return NULL; |
| |
| /* Misc codes. */ |
| case ADDR_SPACE_CONVERT_EXPR: |
| case FIXED_CONVERT_EXPR: |
| case OBJ_TYPE_REF: |
| case WITH_SIZE_EXPR: |
| case BIT_INSERT_EXPR: |
| return NULL; |
| |
| case DOT_PROD_EXPR: |
| if (SCALAR_INT_MODE_P (GET_MODE (op0)) |
| && SCALAR_INT_MODE_P (mode)) |
| { |
| op0 |
| = simplify_gen_unary (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, |
| 0))) |
| ? ZERO_EXTEND : SIGN_EXTEND, mode, op0, |
| inner_mode); |
| op1 |
| = simplify_gen_unary (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, |
| 1))) |
| ? ZERO_EXTEND : SIGN_EXTEND, mode, op1, |
| inner_mode); |
| op0 = simplify_gen_binary (MULT, mode, op0, op1); |
| return simplify_gen_binary (PLUS, mode, op0, op2); |
| } |
| return NULL; |
| |
| case WIDEN_MULT_EXPR: |
| case WIDEN_MULT_PLUS_EXPR: |
| case WIDEN_MULT_MINUS_EXPR: |
| if (SCALAR_INT_MODE_P (GET_MODE (op0)) |
| && SCALAR_INT_MODE_P (mode)) |
| { |
| inner_mode = GET_MODE (op0); |
| if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0)))) |
| op0 = simplify_gen_unary (ZERO_EXTEND, mode, op0, inner_mode); |
| else |
| op0 = simplify_gen_unary (SIGN_EXTEND, mode, op0, inner_mode); |
| if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 1)))) |
| op1 = simplify_gen_unary (ZERO_EXTEND, mode, op1, inner_mode); |
| else |
| op1 = simplify_gen_unary (SIGN_EXTEND, mode, op1, inner_mode); |
| op0 = simplify_gen_binary (MULT, mode, op0, op1); |
| if (TREE_CODE (exp) == WIDEN_MULT_EXPR) |
| return op0; |
| else if (TREE_CODE (exp) == WIDEN_MULT_PLUS_EXPR) |
| return simplify_gen_binary (PLUS, mode, op0, op2); |
| else |
| return simplify_gen_binary (MINUS, mode, op2, op0); |
| } |
| return NULL; |
| |
| case MULT_HIGHPART_EXPR: |
| /* ??? Similar to the above. */ |
| return NULL; |
| |
| case WIDEN_SUM_EXPR: |
| case WIDEN_LSHIFT_EXPR: |
| if (SCALAR_INT_MODE_P (GET_MODE (op0)) |
| && SCALAR_INT_MODE_P (mode)) |
| { |
| op0 |
| = simplify_gen_unary (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, |
| 0))) |
| ? ZERO_EXTEND : SIGN_EXTEND, mode, op0, |
| inner_mode); |
| return simplify_gen_binary (TREE_CODE (exp) == WIDEN_LSHIFT_EXPR |
| ? ASHIFT : PLUS, mode, op0, op1); |
| } |
| return NULL; |
| |
| default: |
| flag_unsupported: |
| if (flag_checking) |
| { |
| debug_tree (exp); |
| gcc_unreachable (); |
| } |
| return NULL; |
| } |
| } |
| |
| /* Return an RTX equivalent to the source bind value of the tree expression |
| EXP. */ |
| |
| static rtx |
| expand_debug_source_expr (tree exp) |
| { |
| rtx op0 = NULL_RTX; |
| machine_mode mode = VOIDmode, inner_mode; |
| |
| switch (TREE_CODE (exp)) |
| { |
| case VAR_DECL: |
| if (DECL_ABSTRACT_ORIGIN (exp)) |
| return expand_debug_source_expr (DECL_ABSTRACT_ORIGIN (exp)); |
| break; |
| case PARM_DECL: |
| { |
| mode = DECL_MODE (exp); |
| op0 = expand_debug_parm_decl (exp); |
| if (op0) |
| break; |
| /* See if this isn't an argument that has been completely |
| optimized out. */ |
| if (!DECL_RTL_SET_P (exp) |
| && !DECL_INCOMING_RTL (exp) |
| && DECL_ABSTRACT_ORIGIN (current_function_decl)) |
| { |
| tree aexp = DECL_ORIGIN (exp); |
| if (DECL_CONTEXT (aexp) |
| == DECL_ABSTRACT_ORIGIN (current_function_decl)) |
| { |
| vec<tree, va_gc> **debug_args; |
| unsigned int ix; |
| tree ddecl; |
| debug_args = decl_debug_args_lookup (current_function_decl); |
| if (debug_args != NULL) |
| { |
| for (ix = 0; vec_safe_iterate (*debug_args, ix, &ddecl); |
| ix += 2) |
| if (ddecl == aexp) |
| return gen_rtx_DEBUG_PARAMETER_REF (mode, aexp); |
| } |
| } |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| |
| if (op0 == NULL_RTX) |
| return NULL_RTX; |
| |
| inner_mode = GET_MODE (op0); |
| if (mode == inner_mode) |
| return op0; |
| |
| if (FLOAT_MODE_P (mode) && FLOAT_MODE_P (inner_mode)) |
| { |
| if (GET_MODE_UNIT_BITSIZE (mode) |
| == GET_MODE_UNIT_BITSIZE (inner_mode)) |
| op0 = simplify_gen_subreg (mode, op0, inner_mode, 0); |
| else if (GET_MODE_UNIT_BITSIZE (mode) |
| < GET_MODE_UNIT_BITSIZE (inner_mode)) |
| op0 = simplify_gen_unary (FLOAT_TRUNCATE, mode, op0, inner_mode); |
| else |
| op0 = simplify_gen_unary (FLOAT_EXTEND, mode, op0, inner_mode); |
| } |
| else if (FLOAT_MODE_P (mode)) |
| gcc_unreachable (); |
| else if (FLOAT_MODE_P (inner_mode)) |
| { |
| if (TYPE_UNSIGNED (TREE_TYPE (exp))) |
| op0 = simplify_gen_unary (UNSIGNED_FIX, mode, op0, inner_mode); |
| else |
| op0 = simplify_gen_unary (FIX, mode, op0, inner_mode); |
| } |
| else if (GET_MODE_UNIT_PRECISION (mode) |
| == GET_MODE_UNIT_PRECISION (inner_mode)) |
| op0 = lowpart_subreg (mode, op0, inner_mode); |
| else if (GET_MODE_UNIT_PRECISION (mode) |
| < GET_MODE_UNIT_PRECISION (inner_mode)) |
| op0 = simplify_gen_unary (TRUNCATE, mode, op0, inner_mode); |
| else if (TYPE_UNSIGNED (TREE_TYPE (exp))) |
| op0 = simplify_gen_unary (ZERO_EXTEND, mode, op0, inner_mode); |
| else |
| op0 = simplify_gen_unary (SIGN_EXTEND, mode, op0, inner_mode); |
| |
| return op0; |
| } |
| |
| /* Ensure INSN_VAR_LOCATION_LOC (insn) doesn't have unbound complexity. |
| Allow 4 levels of rtl nesting for most rtl codes, and if we see anything |
| deeper than that, create DEBUG_EXPRs and emit DEBUG_INSNs before INSN. */ |
| |
| static void |
| avoid_complex_debug_insns (rtx_insn *insn, rtx *exp_p, int depth) |
| { |
| rtx exp = *exp_p; |
| |
| if (exp == NULL_RTX) |
| return; |
| |
| if ((OBJECT_P (exp) && !MEM_P (exp)) || GET_CODE (exp) == CLOBBER) |
| return; |
| |
| if (depth == 4) |
| { |
| /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */ |
| rtx dval = make_debug_expr_from_rtl (exp); |
| |
| /* Emit a debug bind insn before INSN. */ |
| rtx bind = gen_rtx_VAR_LOCATION (GET_MODE (exp), |
| DEBUG_EXPR_TREE_DECL (dval), exp, |
| VAR_INIT_STATUS_INITIALIZED); |
| |
| emit_debug_insn_before (bind, insn); |
| *exp_p = dval; |
| return; |
| } |
| |
| const char *format_ptr = GET_RTX_FORMAT (GET_CODE (exp)); |
| int i, j; |
| for (i = 0; i < GET_RTX_LENGTH (GET_CODE (exp)); i++) |
| switch (*format_ptr++) |
| { |
| case 'e': |
| avoid_complex_debug_insns (insn, &XEXP (exp, i), depth + 1); |
| break; |
| |
| case 'E': |
| case 'V': |
| for (j = 0; j < XVECLEN (exp, i); j++) |
| avoid_complex_debug_insns (insn, &XVECEXP (exp, i, j), depth + 1); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* Expand the _LOCs in debug insns. We run this after expanding all |
| regular insns, so that any variables referenced in the function |
| will have their DECL_RTLs set. */ |
| |
| static void |
| expand_debug_locations (void) |
| { |
| rtx_insn *insn; |
| rtx_insn *last = get_last_insn (); |
| int save_strict_alias = flag_strict_aliasing; |
| |
| /* New alias sets while setting up memory attributes cause |
| -fcompare-debug failures, even though it doesn't bring about any |
| codegen changes. */ |
| flag_strict_aliasing = 0; |
| |
| for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) |
| if (DEBUG_BIND_INSN_P (insn)) |
| { |
| tree value = (tree)INSN_VAR_LOCATION_LOC (insn); |
| rtx val; |
| rtx_insn *prev_insn, *insn2; |
| machine_mode mode; |
| |
| if (value == NULL_TREE) |
| val = NULL_RTX; |
| else |
| { |
| if (INSN_VAR_LOCATION_STATUS (insn) |
| == VAR_INIT_STATUS_UNINITIALIZED) |
| val = expand_debug_source_expr (value); |
| /* The avoid_deep_ter_for_debug function inserts |
| debug bind stmts after SSA_NAME definition, with the |
| SSA_NAME as the whole bind location. Disable temporarily |
| expansion of that SSA_NAME into the DEBUG_EXPR_DECL |
| being defined in this DEBUG_INSN. */ |
| else if (deep_ter_debug_map && TREE_CODE (value) == SSA_NAME) |
| { |
| tree *slot = deep_ter_debug_map->get (value); |
| if (slot) |
| { |
| if (*slot == INSN_VAR_LOCATION_DECL (insn)) |
| *slot = NULL_TREE; |
| else |
| slot = NULL; |
| } |
| val = expand_debug_expr (value); |
| if (slot) |
| *slot = INSN_VAR_LOCATION_DECL (insn); |
| } |
| else |
| val = expand_debug_expr (value); |
| gcc_assert (last == get_last_insn ()); |
| } |
| |
| if (!val) |
| val = gen_rtx_UNKNOWN_VAR_LOC (); |
| else |
| { |
| mode = GET_MODE (INSN_VAR_LOCATION (insn)); |
| |
| gcc_assert (mode == GET_MODE (val) |
| || (GET_MODE (val) == VOIDmode |
| && (CONST_SCALAR_INT_P (val) |
| || GET_CODE (val) == CONST_FIXED |
| || GET_CODE (val) == LABEL_REF))); |
| } |
| |
| INSN_VAR_LOCATION_LOC (insn) = val; |
| prev_insn = PREV_INSN (insn); |
| for (insn2 = insn; insn2 != prev_insn; insn2 = PREV_INSN (insn2)) |
| avoid_complex_debug_insns (insn2, &INSN_VAR_LOCATION_LOC (insn2), 0); |
| } |
| |
| flag_strict_aliasing = save_strict_alias; |
| } |
| |
| /* Performs swapping operands of commutative operations to expand |
| the expensive one first. */ |
| |
| static void |
| reorder_operands (basic_block bb) |
| { |
| unsigned int *lattice; /* Hold cost of each statement. */ |
| unsigned int i = 0, n = 0; |
| gimple_stmt_iterator gsi; |
| gimple_seq stmts; |
| gimple *stmt; |
| bool swap; |
| tree op0, op1; |
| ssa_op_iter iter; |
| use_operand_p use_p; |
| gimple *def0, *def1; |
| |
| /* Compute cost of each statement using estimate_num_insns. */ |
| stmts = bb_seq (bb); |
| for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| stmt = gsi_stmt (gsi); |
| if (!is_gimple_debug (stmt)) |
| gimple_set_uid (stmt, n++); |
| } |
| lattice = XNEWVEC (unsigned int, n); |
| for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| unsigned cost; |
| stmt = gsi_stmt (gsi); |
| if (is_gimple_debug (stmt)) |
| continue; |
| cost = estimate_num_insns (stmt, &eni_size_weights); |
| lattice[i] = cost; |
| FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE) |
| { |
| tree use = USE_FROM_PTR (use_p); |
| gimple *def_stmt; |
| if (TREE_CODE (use) != SSA_NAME) |
| continue; |
| def_stmt = get_gimple_for_ssa_name (use); |
| if (!def_stmt) |
| continue; |
| lattice[i] += lattice[gimple_uid (def_stmt)]; |
| } |
| i++; |
| if (!is_gimple_assign (stmt) |
| || !commutative_tree_code (gimple_assign_rhs_code (stmt))) |
| continue; |
| op0 = gimple_op (stmt, 1); |
| op1 = gimple_op (stmt, 2); |
| if (TREE_CODE (op0) != SSA_NAME |
| || TREE_CODE (op1) != SSA_NAME) |
| continue; |
| /* Swap operands if the second one is more expensive. */ |
| def0 = get_gimple_for_ssa_name (op0); |
| def1 = get_gimple_for_ssa_name (op1); |
| if (!def1) |
| continue; |
| swap = false; |
| if (!def0 || lattice[gimple_uid (def1)] > lattice[gimple_uid (def0)]) |
| swap = true; |
| if (swap) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Swap operands in stmt:\n"); |
| print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); |
| fprintf (dump_file, "Cost left opnd=%d, right opnd=%d\n", |
| def0 ? lattice[gimple_uid (def0)] : 0, |
| lattice[gimple_uid (def1)]); |
| } |
| swap_ssa_operands (stmt, gimple_assign_rhs1_ptr (stmt), |
| gimple_assign_rhs2_ptr (stmt)); |
| } |
| } |
| XDELETE (lattice); |
| } |
| |
| /* Expand basic block BB from GIMPLE trees to RTL. */ |
| |
| static basic_block |
| expand_gimple_basic_block (basic_block bb, bool disable_tail_calls) |
| { |
| gimple_stmt_iterator gsi; |
| gimple_seq stmts; |
| gimple *stmt = NULL; |
| rtx_note *note = NULL; |
| rtx_insn *last; |
| edge e; |
| edge_iterator ei; |
| bool nondebug_stmt_seen = false; |
| |
| if (dump_file) |
| fprintf (dump_file, "\n;; Generating RTL for gimple basic block %d\n", |
| bb->index); |
| |
| /* Note that since we are now transitioning from GIMPLE to RTL, we |
| cannot use the gsi_*_bb() routines because they expect the basic |
| block to be in GIMPLE, instead of RTL. Therefore, we need to |
| access the BB sequence directly. */ |
| if (optimize) |
| reorder_operands (bb); |
| stmts = bb_seq (bb); |
| bb->il.gimple.seq = NULL; |
| bb->il.gimple.phi_nodes = NULL; |
| rtl_profile_for_bb (bb); |
| init_rtl_bb_info (bb); |
| bb->flags |= BB_RTL; |
| |
| /* Remove the RETURN_EXPR if we may fall though to the exit |
| instead. */ |
| gsi = gsi_last (stmts); |
| if (!gsi_end_p (gsi) |
| && gimple_code (gsi_stmt (gsi)) == GIMPLE_RETURN) |
| { |
| greturn *ret_stmt = as_a <greturn *> (gsi_stmt (gsi)); |
| |
| gcc_assert (single_succ_p (bb)); |
| gcc_assert (single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)); |
| |
| if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun) |
| && !gimple_return_retval (ret_stmt)) |
| { |
| gsi_remove (&gsi, false); |
| single_succ_edge (bb)->flags |= EDGE_FALLTHRU; |
| } |
| } |
| |
| gsi = gsi_start (stmts); |
| if (!gsi_end_p (gsi)) |
| { |
| stmt = gsi_stmt (gsi); |
| if (gimple_code (stmt) != GIMPLE_LABEL) |
| stmt = NULL; |
| } |
| |
| rtx_code_label **elt = lab_rtx_for_bb->get (bb); |
| |
| if (stmt || elt) |
| { |
| gcc_checking_assert (!note); |
| last = get_last_insn (); |
| |
| if (stmt) |
| { |
| expand_gimple_stmt (stmt); |
| gsi_next (&gsi); |
| } |
| |
| if (elt) |
| emit_label (*elt); |
| |
| BB_HEAD (bb) = NEXT_INSN (last); |
| if (NOTE_P (BB_HEAD (bb))) |
| BB_HEAD (bb) = NEXT_INSN (BB_HEAD (bb)); |
| gcc_assert (LABEL_P (BB_HEAD (bb))); |
| note = emit_note_after (NOTE_INSN_BASIC_BLOCK, BB_HEAD (bb)); |
| |
| maybe_dump_rtl_for_gimple_stmt (stmt, last); |
| } |
| else |
| BB_HEAD (bb) = note = emit_note (NOTE_INSN_BASIC_BLOCK); |
| |
| if (note) |
| NOTE_BASIC_BLOCK (note) = bb; |
| |
| for (; !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| basic_block new_bb; |
| |
| stmt = gsi_stmt (gsi); |
| if (!is_gimple_debug (stmt)) |
| nondebug_stmt_seen = true; |
| |
| /* If this statement is a non-debug one, and we generate debug |
| insns, then this one might be the last real use of a TERed |
| SSA_NAME, but where there are still some debug uses further |
| down. Expanding the current SSA name in such further debug |
| uses by their RHS might lead to wrong debug info, as coalescing |
| might make the operands of such RHS be placed into the same |
| pseudo as something else. Like so: |
| a_1 = a_0 + 1; // Assume a_1 is TERed and a_0 is dead |
| use(a_1); |
| a_2 = ... |
| #DEBUG ... => a_1 |
| As a_0 and a_2 don't overlap in lifetime, assume they are coalesced. |
| If we now would expand a_1 by it's RHS (a_0 + 1) in the debug use, |
| the write to a_2 would actually have clobbered the place which |
| formerly held a_0. |
| |
| So, instead of that, we recognize the situation, and generate |
| debug temporaries at the last real use of TERed SSA names: |
| a_1 = a_0 + 1; |
| #DEBUG #D1 => a_1 |
| use(a_1); |
| a_2 = ... |
| #DEBUG ... => #D1 |
| */ |
| if (MAY_HAVE_DEBUG_BIND_INSNS |
| && SA.values |
| && !is_gimple_debug (stmt)) |
| { |
| ssa_op_iter iter; |
| tree op; |
| gimple *def; |
| |
| location_t sloc = curr_insn_location (); |
| |
| /* Look for SSA names that have their last use here (TERed |
| names always have only one real use). */ |
| FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE) |
| if ((def = get_gimple_for_ssa_name (op))) |
| { |
| imm_use_iterator imm_iter; |
| use_operand_p use_p; |
| bool have_debug_uses = false; |
| |
| FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op) |
| { |
| if (gimple_debug_bind_p (USE_STMT (use_p))) |
| { |
| have_debug_uses = true; |
| break; |
| } |
| } |
| |
| if (have_debug_uses) |
| { |
| /* OP is a TERed SSA name, with DEF its defining |
| statement, and where OP is used in further debug |
| instructions. Generate a debug temporary, and |
| replace all uses of OP in debug insns with that |
| temporary. */ |
| gimple *debugstmt; |
| tree value = gimple_assign_rhs_to_tree (def); |
| tree vexpr = build_debug_expr_decl (TREE_TYPE (value)); |
| rtx val; |
| machine_mode mode; |
| |
| set_curr_insn_location (gimple_location (def)); |
| |
| if (DECL_P (value)) |
| mode = DECL_MODE (value); |
| else |
| mode = TYPE_MODE (TREE_TYPE (value)); |
| /* FIXME: Is setting the mode really necessary? */ |
| SET_DECL_MODE (vexpr, mode); |
| |
| val = gen_rtx_VAR_LOCATION |
| (mode, vexpr, (rtx)value, VAR_INIT_STATUS_INITIALIZED); |
| |
| emit_debug_insn (val); |
| |
| FOR_EACH_IMM_USE_STMT (debugstmt, imm_iter, op) |
| { |
| if (!gimple_debug_bind_p (debugstmt)) |
| continue; |
| |
| FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter) |
| SET_USE (use_p, vexpr); |
| |
| update_stmt (debugstmt); |
| } |
| } |
| } |
| set_curr_insn_location (sloc); |
| } |
| |
| currently_expanding_gimple_stmt = stmt; |
| |
| /* Expand this statement, then evaluate the resulting RTL and |
| fixup the CFG accordingly. */ |
| if (gimple_code (stmt) == GIMPLE_COND) |
| { |
| new_bb = expand_gimple_cond (bb, as_a <gcond *> (stmt)); |
| if (new_bb) |
| { |
| currently_expanding_gimple_stmt = NULL; |
| return new_bb; |
| } |
| } |
| else if (is_gimple_debug (stmt)) |
| { |
| location_t sloc = curr_insn_location (); |
| gimple_stmt_iterator nsi = gsi; |
| |
| for (;;) |
| { |
| tree var; |
| tree value = NULL_TREE; |
| rtx val = NULL_RTX; |
| machine_mode mode; |
| |
| if (!gimple_debug_nonbind_marker_p (stmt)) |
| { |
| if (gimple_debug_bind_p (stmt)) |
| { |
| var = gimple_debug_bind_get_var (stmt); |
| |
| if (TREE_CODE (var) != DEBUG_EXPR_DECL |
| && TREE_CODE (var) != LABEL_DECL |
| && !target_for_debug_bind (var)) |
| goto delink_debug_stmt; |
| |
| if (DECL_P (var) && !VECTOR_TYPE_P (TREE_TYPE (var))) |
| mode = DECL_MODE (var); |
| else |
| mode = TYPE_MODE (TREE_TYPE (var)); |
| |
| if (gimple_debug_bind_has_value_p (stmt)) |
| value = gimple_debug_bind_get_value (stmt); |
| |
| val = gen_rtx_VAR_LOCATION |
| (mode, var, (rtx)value, VAR_INIT_STATUS_INITIALIZED); |
| } |
| else if (gimple_debug_source_bind_p (stmt)) |
| { |
| var = gimple_debug_source_bind_get_var (stmt); |
| |
| value = gimple_debug_source_bind_get_value (stmt); |
| |
| if (!VECTOR_TYPE_P (TREE_TYPE (var))) |
| mode = DECL_MODE (var); |
| else |
| mode = TYPE_MODE (TREE_TYPE (var)); |
| |
| val = gen_rtx_VAR_LOCATION (mode, var, (rtx)value, |
| VAR_INIT_STATUS_UNINITIALIZED); |
| } |
| else |
| gcc_unreachable (); |
| } |
| /* If this function was first compiled with markers |
| enabled, but they're now disable (e.g. LTO), drop |
| them on the floor. */ |
| else if (gimple_debug_nonbind_marker_p (stmt) |
| && !MAY_HAVE_DEBUG_MARKER_INSNS) |
| goto delink_debug_stmt; |
| else if (gimple_debug_begin_stmt_p (stmt)) |
| val = GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT (); |
| else if (gimple_debug_inline_entry_p (stmt)) |
| val = GEN_RTX_DEBUG_MARKER_INLINE_ENTRY_PAT (); |
| else |
| gcc_unreachable (); |
| |
| last = get_last_insn (); |
| |
| set_curr_insn_location (gimple_location (stmt)); |
| |
| emit_debug_insn (val); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| /* We can't dump the insn with a TREE where an RTX |
| is expected. */ |
| if (GET_CODE (val) == VAR_LOCATION) |
| { |
| gcc_checking_assert (PAT_VAR_LOCATION_LOC (val) == (rtx)value); |
| PAT_VAR_LOCATION_LOC (val) = const0_rtx; |
| } |
| maybe_dump_rtl_for_gimple_stmt (stmt, last); |
| if (GET_CODE (val) == VAR_LOCATION) |
| PAT_VAR_LOCATION_LOC (val) = (rtx)value; |
| } |
| |
| delink_debug_stmt: |
| /* In order not to generate too many debug temporaries, |
| we delink all uses of debug statements we already expanded. |
| Therefore debug statements between definition and real |
| use of TERed SSA names will continue to use the SSA name, |
| and not be replaced with debug temps. */ |
| delink_stmt_imm_use (stmt); |
| |
| gsi = nsi; |
| gsi_next (&nsi); |
| if (gsi_end_p (nsi)) |
| break; |
| stmt = gsi_stmt (nsi); |
| if (!is_gimple_debug (stmt)) |
| break; |
| } |
| |
| set_curr_insn_location (sloc); |
| } |
| else |
| { |
| gcall *call_stmt = dyn_cast <gcall *> (stmt); |
| if (call_stmt |
| && gimple_call_tail_p (call_stmt) |
| && disable_tail_calls) |
| gimple_call_set_tail (call_stmt, false); |
| |
| if (call_stmt && gimple_call_tail_p (call_stmt)) |
| { |
| bool can_fallthru; |
| new_bb = expand_gimple_tailcall (bb, call_stmt, &can_fallthru); |
| if (new_bb) |
| { |
| if (can_fallthru) |
| bb = new_bb; |
| else |
| { |
| currently_expanding_gimple_stmt = NULL; |
| return new_bb; |
| } |
| } |
| } |
| else |
| { |
| def_operand_p def_p; |
| def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF); |
| |
| if (def_p != NULL) |
| { |
| /* Ignore this stmt if it is in the list of |
| replaceable expressions. */ |
| if (SA.values |
| && bitmap_bit_p (SA.values, |
| SSA_NAME_VERSION (DEF_FROM_PTR (def_p)))) |
| continue; |
| } |
| last = expand_gimple_stmt (stmt); |
| maybe_dump_rtl_for_gimple_stmt (stmt, last); |
| } |
| } |
| } |
| |
| currently_expanding_gimple_stmt = NULL; |
| |
| /* Expand implicit goto and convert goto_locus. */ |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| { |
| if (e->goto_locus != UNKNOWN_LOCATION || !nondebug_stmt_seen) |
| set_curr_insn_location (e->goto_locus); |
| if ((e->flags & EDGE_FALLTHRU) && e->dest != bb->next_bb) |
| { |
| emit_jump (label_rtx_for_bb (e->dest)); |
| e->flags &= ~EDGE_FALLTHRU; |
| } |
| } |
| |
| /* Expanded RTL can create a jump in the last instruction of block. |
| This later might be assumed to be a jump to successor and break edge insertion. |
| We need to insert dummy move to prevent this. PR41440. */ |
| if (single_succ_p (bb) |
| && (single_succ_edge (bb)->flags & EDGE_FALLTHRU) |
| && (last = get_last_insn ()) |
| && (JUMP_P (last) |
| || (DEBUG_INSN_P (last) |
| && JUMP_P (prev_nondebug_insn (last))))) |
| { |
| rtx dummy = gen_reg_rtx (SImode); |
| emit_insn_after_noloc (gen_move_insn (dummy, dummy), last, NULL); |
| } |
| |
| do_pending_stack_adjust (); |
| |
| /* Find the block tail. The last insn in the block is the insn |
| before a barrier and/or table jump insn. */ |
| last = get_last_insn (); |
| if (BARRIER_P (last)) |
| last = PREV_INSN (last); |
| if (JUMP_TABLE_DATA_P (last)) |
| last = PREV_INSN (PREV_INSN (last)); |
| if (BARRIER_P (last)) |
| last = PREV_INSN (last); |
| BB_END (bb) = last; |
| |
| update_bb_for_insn (bb); |
| |
| return bb; |
| } |
| |
| |
| /* Create a basic block for initialization code. */ |
| |
| static basic_block |
| construct_init_block (void) |
| { |
| basic_block init_block, first_block; |
| edge e = NULL; |
| int flags; |
| |
| /* Multiple entry points not supported yet. */ |
| gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1); |
| init_rtl_bb_info (ENTRY_BLOCK_PTR_FOR_FN (cfun)); |
| init_rtl_bb_info (EXIT_BLOCK_PTR_FOR_FN (cfun)); |
| ENTRY_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_RTL; |
| EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_RTL; |
| |
| e = EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0); |
| |
| /* When entry edge points to first basic block, we don't need jump, |
| otherwise we have to jump into proper target. */ |
| if (e && e->dest != ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb) |
| { |
| tree label = gimple_block_label (e->dest); |
| |
| emit_jump (jump_target_rtx (label)); |
| flags = 0; |
| } |
| else |
| flags = EDGE_FALLTHRU; |
| |
| init_block = create_basic_block (NEXT_INSN (get_insns ()), |
| get_last_insn (), |
| ENTRY_BLOCK_PTR_FOR_FN (cfun)); |
| init_block->count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count; |
| add_bb_to_loop (init_block, ENTRY_BLOCK_PTR_FOR_FN (cfun)->loop_father); |
| if (e) |
| { |
| first_block = e->dest; |
| redirect_edge_succ (e, init_block); |
| make_single_succ_edge (init_block, first_block, flags); |
| } |
| else |
| make_single_succ_edge (init_block, EXIT_BLOCK_PTR_FOR_FN (cfun), |
| EDGE_FALLTHRU); |
| |
| update_bb_for_insn (init_block); |
| return init_block; |
| } |
| |
| /* For each lexical block, set BLOCK_NUMBER to the depth at which it is |
| found in the block tree. */ |
| |
| static void |
| set_block_levels (tree block, int level) |
| { |
| while (block) |
| { |
| BLOCK_NUMBER (block) = level; |
| set_block_levels (BLOCK_SUBBLOCKS (block), level + 1); |
| block = BLOCK_CHAIN (block); |
| } |
| } |
| |
| /* Create a block containing landing pads and similar stuff. */ |
| |
| static void |
| construct_exit_block (void) |
| { |
| rtx_insn *head = get_last_insn (); |
| rtx_insn *end; |
| basic_block exit_block; |
| edge e, e2; |
| unsigned ix; |
| edge_iterator ei; |
| basic_block prev_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb; |
| rtx_insn *orig_end = BB_END (prev_bb); |
| |
| rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)); |
| |
| /* Make sure the locus is set to the end of the function, so that |
| epilogue line numbers and warnings are set properly. */ |
| if (LOCATION_LOCUS (cfun->function_end_locus) != UNKNOWN_LOCATION) |
| input_location = cfun->function_end_locus; |
| |
| /* Generate rtl for function exit. */ |
| expand_function_end (); |
| |
| end = get_last_insn (); |
| if (head == end) |
| return; |
| /* While emitting the function end we could move end of the last basic |
| block. */ |
| BB_END (prev_bb) = orig_end; |
| while (NEXT_INSN (head) && NOTE_P (NEXT_INSN (head))) |
| head = NEXT_INSN (head); |
| /* But make sure exit_block starts with RETURN_LABEL, otherwise the |
| bb count counting will be confused. Any instructions before that |
| label are emitted for the case where PREV_BB falls through into the |
| exit block, so append those instructions to prev_bb in that case. */ |
| if (NEXT_INSN (head) != return_label) |
| { |
| while (NEXT_INSN (head) != return_label) |
| { |
| if (!NOTE_P (NEXT_INSN (head))) |
| BB_END (prev_bb) = NEXT_INSN (head); |
| head = NEXT_INSN (head); |
| } |
| } |
| exit_block = create_basic_block (NEXT_INSN (head), end, prev_bb); |
| exit_block->count = EXIT_BLOCK_PTR_FOR_FN (cfun)->count; |
| add_bb_to_loop (exit_block, EXIT_BLOCK_PTR_FOR_FN (cfun)->loop_father); |
| |
| ix = 0; |
| while (ix < EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)) |
| { |
| e = EDGE_PRED (EXIT_BLOCK_PTR_FOR_FN (cfun), ix); |
| if (!(e->flags & EDGE_ABNORMAL)) |
| redirect_edge_succ (e, exit_block); |
| else |
| ix++; |
| } |
| |
| e = make_single_succ_edge (exit_block, EXIT_BLOCK_PTR_FOR_FN (cfun), |
| EDGE_FALLTHRU); |
| FOR_EACH_EDGE (e2, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) |
| if (e2 != e) |
| { |
| exit_block->count -= e2->count (); |
| } |
| update_bb_for_insn (exit_block); |
| } |
| |
| /* Helper function for discover_nonconstant_array_refs. |
| Look for ARRAY_REF nodes with non-constant indexes and mark them |
| addressable. */ |
| |
| static tree |
| discover_nonconstant_array_refs_r (tree * tp, int *walk_subtrees, |
| void *data) |
| { |
| tree t = *tp; |
| bitmap forced_stack_vars = (bitmap)((walk_stmt_info *)data)->info; |
| |
| if (IS_TYPE_OR_DECL_P (t)) |
| *walk_subtrees = 0; |
| else if (REFERENCE_CLASS_P (t) && TREE_THIS_VOLATILE (t)) |
| { |
| t = get_base_address (t); |
| if (t && DECL_P (t) |
| && DECL_MODE (t) != BLKmode |
| && !TREE_ADDRESSABLE (t)) |
| bitmap_set_bit (forced_stack_vars, DECL_UID (t)); |
| *walk_subtrees = 0; |
| } |
| else if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF) |
| { |
| while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF) |
| && is_gimple_min_invariant (TREE_OPERAND (t, 1)) |
| && (!TREE_OPERAND (t, 2) |
| || is_gimple_min_invariant (TREE_OPERAND (t, 2)))) |
| || (TREE_CODE (t) == COMPONENT_REF |
| && (!TREE_OPERAND (t,2) |
| || is_gimple_min_invariant (TREE_OPERAND (t, 2)))) |
| || TREE_CODE (t) == BIT_FIELD_REF |
| || TREE_CODE (t) == REALPART_EXPR |
| || TREE_CODE (t) == IMAGPART_EXPR |
| || TREE_CODE (t) == VIEW_CONVERT_EXPR |
| || CONVERT_EXPR_P (t)) |
| t = TREE_OPERAND (t, 0); |
| |
| if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF) |
| { |
| t = get_base_address (t); |
| if (t && DECL_P (t) |
| && DECL_MODE (t) != BLKmode |
| && !TREE_ADDRESSABLE (t)) |
| bitmap_set_bit (forced_stack_vars, DECL_UID (t)); |
| } |
| |
| *walk_subtrees = 0; |
| } |
| /* References of size POLY_INT_CST to a fixed-size object must go |
| through memory. It's more efficient to force that here than |
| to create temporary slots on the fly. |
| RTL expansion expectes TARGET_MEM_REF to always address actual memory. |
| Also, force to stack non-BLKmode vars accessed through VIEW_CONVERT_EXPR |
| to BLKmode type. */ |
| else if (TREE_CODE (t) == TARGET_MEM_REF |
| || (TREE_CODE (t) == MEM_REF |
| && TYPE_SIZE (TREE_TYPE (t)) |
| && POLY_INT_CST_P (TYPE_SIZE (TREE_TYPE (t)))) |
| || (TREE_CODE (t) == VIEW_CONVERT_EXPR |
| && TYPE_MODE (TREE_TYPE (t)) == BLKmode)) |
| { |
| tree base = get_base_address (t); |
| if (base |
| && DECL_P (base) |
| && !TREE_ADDRESSABLE (base) |
| && DECL_MODE (base) != BLKmode |
| && GET_MODE_SIZE (DECL_MODE (base)).is_constant ()) |
| bitmap_set_bit (forced_stack_vars, DECL_UID (base)); |
| *walk_subtrees = 0; |
| } |
| |
| return NULL_TREE; |
| } |
| |
| /* If there's a chance to get a pseudo for t then if it would be of float mode |
| and the actual access is via an integer mode (lowered memcpy or similar |
| access) then avoid the register expansion if the mode likely is not storage |
| suitable for raw bits processing (like XFmode on i?86). */ |
| |
| static void |
| avoid_type_punning_on_regs (tree t, bitmap forced_stack_vars) |
| { |
| machine_mode access_mode = TYPE_MODE (TREE_TYPE (t)); |
| if (access_mode != BLKmode |
| && !SCALAR_INT_MODE_P (access_mode)) |
| return; |
| tree base = get_base_address (t); |
| if (DECL_P (base) |
| && !TREE_ADDRESSABLE (base) |
| && FLOAT_MODE_P (DECL_MODE (base)) |
| && maybe_lt (GET_MODE_PRECISION (DECL_MODE (base)), |
| GET_MODE_BITSIZE (GET_MODE_INNER (DECL_MODE (base)))) |
| /* Double check in the expensive way we really would get a pseudo. */ |
| && use_register_for_decl (base)) |
| bitmap_set_bit (forced_stack_vars, DECL_UID (base)); |
| } |
| |
| /* RTL expansion is not able to compile array references with variable |
| offsets for arrays stored in single register. Discover such |
| expressions and mark variables as addressable to avoid this |
| scenario. */ |
| |
| static void |
| discover_nonconstant_array_refs (bitmap forced_stack_vars) |
| { |
| basic_block bb; |
| gimple_stmt_iterator gsi; |
| |
| walk_stmt_info wi = {}; |
| wi.info = forced_stack_vars; |
| FOR_EACH_BB_FN (bb, cfun) |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple *stmt = gsi_stmt (gsi); |
| if (!is_gimple_debug (stmt)) |
| { |
| walk_gimple_op (stmt, discover_nonconstant_array_refs_r, &wi); |
| gcall *call = dyn_cast <gcall *> (stmt); |
| if (call && gimple_call_internal_p (call)) |
| { |
| tree cand = NULL_TREE; |
| switch (gimple_call_internal_fn (call)) |
| { |
| case IFN_LOAD_LANES: |
| /* The source must be a MEM. */ |
| cand = gimple_call_arg (call, 0); |
| break; |
| case IFN_STORE_LANES: |
| /* The destination must be a MEM. */ |
| cand = gimple_call_lhs (call); |
| break; |
| default: |
| break; |
| } |
| if (cand) |
| cand = get_base_address (cand); |
| if (cand |
| && DECL_P (cand) |
| && use_register_for_decl (cand)) |
| bitmap_set_bit (forced_stack_vars, DECL_UID (cand)); |
| } |
| if (gimple_vdef (stmt)) |
| { |
| tree t = gimple_get_lhs (stmt); |
| if (t && REFERENCE_CLASS_P (t)) |
| avoid_type_punning_on_regs (t, forced_stack_vars); |
| } |
| } |
| } |
| } |
| |
| /* This function sets crtl->args.internal_arg_pointer to a virtual |
| register if DRAP is needed. Local register allocator will replace |
| virtual_incoming_args_rtx with the virtual register. */ |
| |
| static void |
| expand_stack_alignment (void) |
| { |
| rtx drap_rtx; |
| unsigned int preferred_stack_boundary; |
| |
| if (! SUPPORTS_STACK_ALIGNMENT) |
| return; |
| |
| if (cfun->calls_alloca |
| || cfun->has_nonlocal_label |
| || crtl->has_nonlocal_goto) |
| crtl->need_drap = true; |
| |
| /* Call update_stack_boundary here again to update incoming stack |
| boundary. It may set incoming stack alignment to a different |
| value after RTL expansion. TARGET_FUNCTION_OK_FOR_SIBCALL may |
| use the minimum incoming stack alignment to check if it is OK |
| to perform sibcall optimization since sibcall optimization will |
| only align the outgoing stack to incoming stack boundary. */ |
| if (targetm.calls.update_stack_boundary) |
| targetm.calls.update_stack_boundary (); |
| |
| /* The incoming stack frame has to be aligned at least at |
| parm_stack_boundary. */ |
| gcc_assert (crtl->parm_stack_boundary <= INCOMING_STACK_BOUNDARY); |
| |
| /* Update crtl->stack_alignment_estimated and use it later to align |
| stack. We check PREFERRED_STACK_BOUNDARY if there may be non-call |
| exceptions since callgraph doesn't collect incoming stack alignment |
| in this case. */ |
| if (cfun->can_throw_non_call_exceptions |
| && PREFERRED_STACK_BOUNDARY > crtl->preferred_stack_boundary) |
| preferred_stack_boundary = PREFERRED_STACK_BOUNDARY; |
| else |
| preferred_stack_boundary = crtl->preferred_stack_boundary; |
| if (preferred_stack_boundary > crtl->stack_alignment_estimated) |
| crtl->stack_alignment_estimated = preferred_stack_boundary; |
| if (preferred_stack_boundary > crtl->stack_alignment_needed) |
| crtl->stack_alignment_needed = preferred_stack_boundary; |
| |
| gcc_assert (crtl->stack_alignment_needed |
| <= crtl->stack_alignment_estimated); |
| |
| crtl->stack_realign_needed |
| = INCOMING_STACK_BOUNDARY < crtl->stack_alignment_estimated; |
| crtl->stack_realign_tried = crtl->stack_realign_needed; |
| |
| crtl->stack_realign_processed = true; |
| |
| /* Target has to redefine TARGET_GET_DRAP_RTX to support stack |
| alignment. */ |
| gcc_assert (targetm.calls.get_drap_rtx != NULL); |
| drap_rtx = targetm.calls.get_drap_rtx (); |
| |
| /* stack_realign_drap and drap_rtx must match. */ |
| gcc_assert ((stack_realign_drap != 0) == (drap_rtx != NULL)); |
| |
| /* Do nothing if NULL is returned, which means DRAP is not needed. */ |
| if (drap_rtx != NULL) |
| { |
| crtl->args.internal_arg_pointer = drap_rtx; |
| |
| /* Call fixup_tail_calls to clean up REG_EQUIV note if DRAP is |
| needed. */ |
| fixup_tail_calls (); |
| } |
| } |
| |
| |
| static void |
| expand_main_function (void) |
| { |
| #if (defined(INVOKE__main) \ |
| || (!defined(HAS_INIT_SECTION) \ |
| && !defined(INIT_SECTION_ASM_OP) \ |
| && !defined(INIT_ARRAY_SECTION_ASM_OP))) |
| emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode); |
| #endif |
| } |
| |
| |
| /* Expand code to initialize the stack_protect_guard. This is invoked at |
| the beginning of a function to be protected. */ |
| |
| static void |
| stack_protect_prologue (void) |
| { |
| tree guard_decl = targetm.stack_protect_guard (); |
| rtx x, y; |
| |
| crtl->stack_protect_guard_decl = guard_decl; |
| x = expand_normal (crtl->stack_protect_guard); |
| |
| if (targetm.have_stack_protect_combined_set () && guard_decl) |
| { |
| gcc_assert (DECL_P (guard_decl)); |
| y = DECL_RTL (guard_decl); |
| |
| /* Allow the target to compute address of Y and copy it to X without |
| leaking Y into a register. This combined address + copy pattern |
| allows the target to prevent spilling of any intermediate results by |
| splitting it after register allocator. */ |
| if (rtx_insn *insn = targetm.gen_stack_protect_combined_set (x, y)) |
| { |
| emit_insn (insn); |
| return; |
| } |
| } |
| |
| if (guard_decl) |
| y = expand_normal (guard_decl); |
| else |
| y = const0_rtx; |
| |
| /* Allow the target to copy from Y to X without leaking Y into a |
| register. */ |
| if (targetm.have_stack_protect_set ()) |
| if (rtx_insn *insn = targetm.gen_stack_protect_set (x, y)) |
| { |
| emit_insn (insn); |
| return; |
| } |
| |
| /* Otherwise do a straight move. */ |
| emit_move_insn (x, y); |
| } |
| |
| /* Translate the intermediate representation contained in the CFG |
| from GIMPLE trees to RTL. |
| |
| We do conversion per basic block and preserve/update the tree CFG. |
| This implies we have to do some magic as the CFG can simultaneously |
| consist of basic blocks containing RTL and GIMPLE trees. This can |
| confuse the CFG hooks, so be careful to not manipulate CFG during |
| the expansion. */ |
| |
| namespace { |
| |
| const pass_data pass_data_expand = |
| { |
| RTL_PASS, /* type */ |
| "expand", /* name */ |
| OPTGROUP_NONE, /* optinfo_flags */ |
| TV_EXPAND, /* tv_id */ |
| ( PROP_ssa | PROP_gimple_leh | PROP_cfg |
| | PROP_gimple_lcx |
| | PROP_gimple_lvec |
| | PROP_gimple_lva), /* properties_required */ |
| PROP_rtl, /* properties_provided */ |
| ( PROP_ssa | PROP_gimple ), /* properties_destroyed */ |
| 0, /* todo_flags_start */ |
| 0, /* todo_flags_finish */ |
| }; |
| |
| class pass_expand : public rtl_opt_pass |
| { |
| public: |
| pass_expand (gcc::context *ctxt) |
| : rtl_opt_pass (pass_data_expand, ctxt) |
| {} |
| |
| /* opt_pass methods: */ |
| unsigned int execute (function *) final override; |
| |
| }; // class pass_expand |
| |
| unsigned int |
| pass_expand::execute (function *fun) |
| { |
| basic_block bb, init_block; |
| edge_iterator ei; |
| edge e; |
| rtx_insn *var_seq, *var_ret_seq; |
| unsigned i; |
| |
| timevar_push (TV_OUT_OF_SSA); |
| rewrite_out_of_ssa (&SA); |
| timevar_pop (TV_OUT_OF_SSA); |
| SA.partition_to_pseudo = XCNEWVEC (rtx, SA.map->num_partitions); |
| |
| if (MAY_HAVE_DEBUG_BIND_STMTS && flag_tree_ter) |
| { |
| gimple_stmt_iterator gsi; |
| FOR_EACH_BB_FN (bb, cfun) |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| if (gimple_debug_bind_p (gsi_stmt (gsi))) |
| avoid_deep_ter_for_debug (gsi_stmt (gsi), 0); |
| } |
| |
| /* Mark arrays indexed with non-constant indices with TREE_ADDRESSABLE. */ |
| auto_bitmap forced_stack_vars; |
| discover_nonconstant_array_refs (forced_stack_vars); |
| |
| /* Make sure all values used by the optimization passes have sane |
| defaults. */ |
| reg_renumber = 0; |
| |
| /* Some backends want to know that we are expanding to RTL. */ |
| currently_expanding_to_rtl = 1; |
| /* Dominators are not kept up-to-date as we may create new basic-blocks. */ |
| free_dominance_info (CDI_DOMINATORS); |
| |
| rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)); |
| |
| insn_locations_init (); |
| if (!DECL_IS_UNDECLARED_BUILTIN (current_function_decl)) |
| { |
| /* Eventually, all FEs should explicitly set function_start_locus. */ |
| if (LOCATION_LOCUS (fun->function_start_locus) == UNKNOWN_LOCATION) |
| set_curr_insn_location |
| (DECL_SOURCE_LOCATION (current_function_decl)); |
| else |
| set_curr_insn_location (fun->function_start_locus); |
| } |
| else |
| set_curr_insn_location (UNKNOWN_LOCATION); |
| prologue_location = curr_insn_location (); |
| |
| #ifdef INSN_SCHEDULING |
| init_sched_attrs (); |
| #endif |
| |
| /* Make sure first insn is a note even if we don't want linenums. |
| This makes sure the first insn will never be deleted. |
| Also, final expects a note to appear there. */ |
| emit_note (NOTE_INSN_DELETED); |
| |
| targetm.expand_to_rtl_hook (); |
| crtl->init_stack_alignment (); |
| fun->cfg->max_jumptable_ents = 0; |
| |
| /* Resovle the function section. Some targets, like ARM EABI rely on knowledge |
| of the function section at exapnsion time to predict distance of calls. */ |
| resolve_unique_section (current_function_decl, 0, flag_function_sections); |
| |
| /* Expand the variables recorded during gimple lowering. */ |
| timevar_push (TV_VAR_EXPAND); |
| start_sequence (); |
| |
| var_ret_seq = expand_used_vars (forced_stack_vars); |
| |
| var_seq = get_insns (); |
| end_sequence (); |
| timevar_pop (TV_VAR_EXPAND); |
| |
| /* Honor stack protection warnings. */ |
| if (warn_stack_protect) |
| { |
| if (fun->calls_alloca) |
| warning (OPT_Wstack_protector, |
| "stack protector not protecting local variables: " |
| "variable length buffer"); |
| if (has_short_buffer && !crtl->stack_protect_guard) |
| warning (OPT_Wstack_protector, |
| "stack protector not protecting function: " |
| "all local arrays are less than %d bytes long", |
| (int) param_ssp_buffer_size); |
| } |
| |
| /* Temporarily mark PARM_DECLs and RESULT_DECLs we need to expand to |
| memory addressable so expand_function_start can emit the required |
| copies. */ |
| auto_vec<tree, 16> marked_parms; |
| for (tree parm = DECL_ARGUMENTS (current_function_decl); parm; |
| parm = DECL_CHAIN (parm)) |
| if (!TREE_ADDRESSABLE (parm) |
| && bitmap_bit_p (forced_stack_vars, DECL_UID (parm))) |
| { |
| TREE_ADDRESSABLE (parm) = 1; |
| marked_parms.safe_push (parm); |
| } |
| if (DECL_RESULT (current_function_decl) |
| && !TREE_ADDRESSABLE (DECL_RESULT (current_function_decl)) |
| && bitmap_bit_p (forced_stack_vars, |
| DECL_UID (DECL_RESULT (current_function_decl)))) |
| { |
| TREE_ADDRESSABLE (DECL_RESULT (current_function_decl)) = 1; |
| marked_parms.safe_push (DECL_RESULT (current_function_decl)); |
| } |
| |
| /* Set up parameters and prepare for return, for the function. */ |
| expand_function_start (current_function_decl); |
| |
| /* Clear TREE_ADDRESSABLE again. */ |
| while (!marked_parms.is_empty ()) |
| TREE_ADDRESSABLE (marked_parms.pop ()) = 0; |
| |
| /* If we emitted any instructions for setting up the variables, |
| emit them before the FUNCTION_START note. */ |
| if (var_seq) |
| { |
| emit_insn_before (var_seq, parm_birth_insn); |
| |
| /* In expand_function_end we'll insert the alloca save/restore |
| before parm_birth_insn. We've just insertted an alloca call. |
| Adjust the pointer to match. */ |
| parm_birth_insn = var_seq; |
| } |
| |
| /* Now propagate the RTL assignment of each partition to the |
| underlying var of each SSA_NAME. */ |
| tree name; |
| |
| FOR_EACH_SSA_NAME (i, name, cfun) |
| { |
| /* We might have generated new SSA names in |
| update_alias_info_with_stack_vars. They will have a NULL |
| defining statements, and won't be part of the partitioning, |
| so ignore those. */ |
| if (!SSA_NAME_DEF_STMT (name)) |
| continue; |
| |
| adjust_one_expanded_partition_var (name); |
| } |
| |
| /* Clean up RTL of variables that straddle across multiple |
| partitions, and check that the rtl of any PARM_DECLs that are not |
| cleaned up is that of their default defs. */ |
| FOR_EACH_SSA_NAME (i, name, cfun) |
| { |
| int part; |
| |
| /* We might have generated new SSA names in |
| update_alias_info_with_stack_vars. They will have a NULL |
| defining statements, and won't be part of the partitioning, |
| so ignore those. */ |
| if (!SSA_NAME_DEF_STMT (name)) |
| continue; |
| part = var_to_partition (SA.map, name); |
| if (part == NO_PARTITION) |
| continue; |
| |
| /* If this decl was marked as living in multiple places, reset |
| this now to NULL. */ |
| tree var = SSA_NAME_VAR (name); |
| if (var && DECL_RTL_IF_SET (var) == pc_rtx) |
| SET_DECL_RTL (var, NULL); |
| /* Check that the pseudos chosen by assign_parms are those of |
| the corresponding default defs. */ |
| else if (SSA_NAME_IS_DEFAULT_DEF (name) |
| && (TREE_CODE (var) == PARM_DECL |
| || TREE_CODE (var) == RESULT_DECL)) |
| { |
| rtx in = DECL_RTL_IF_SET (var); |
| gcc_assert (in); |
| rtx out = SA.partition_to_pseudo[part]; |
| gcc_assert (in == out); |
| |
| /* Now reset VAR's RTL to IN, so that the _EXPR attrs match |
| those expected by debug backends for each parm and for |
| the result. This is particularly important for stabs, |
| whose register elimination from parm's DECL_RTL may cause |
| -fcompare-debug differences as SET_DECL_RTL changes reg's |
| attrs. So, make sure the RTL already has the parm as the |
| EXPR, so that it won't change. */ |
| SET_DECL_RTL (var, NULL_RTX); |
| if (MEM_P (in)) |
| set_mem_attributes (in, var, true); |
| SET_DECL_RTL (var, in); |
| } |
| } |
| |
| /* If this function is `main', emit a call to `__main' |
| to run global initializers, etc. */ |
| if (DECL_NAME (current_function_decl) |
| && MAIN_NAME_P (DECL_NAME (current_function_decl)) |
| && DECL_FILE_SCOPE_P (current_function_decl)) |
| expand_main_function (); |
| |
| /* Initialize the stack_protect_guard field. This must happen after the |
| call to __main (if any) so that the external decl is initialized. */ |
| if (crtl->stack_protect_guard && targetm.stack_protect_runtime_enabled_p ()) |
| stack_protect_prologue (); |
| |
| expand_phi_nodes (&SA); |
| |
| /* Release any stale SSA redirection data. */ |
| redirect_edge_var_map_empty (); |
| |
| /* Register rtl specific functions for cfg. */ |
| rtl_register_cfg_hooks (); |
| |
| init_block = construct_init_block (); |
| |
| /* Clear EDGE_EXECUTABLE on the entry edge(s). It is cleaned from the |
| remaining edges later. */ |
| FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs) |
| e->flags &= ~EDGE_EXECUTABLE; |
| |
| /* If the function has too many markers, drop them while expanding. */ |
| if (cfun->debug_marker_count |
| >= param_max_debug_marker_count) |
| cfun->debug_nonbind_markers = false; |
| |
| lab_rtx_for_bb = new hash_map<basic_block, rtx_code_label *>; |
| FOR_BB_BETWEEN (bb, init_block->next_bb, EXIT_BLOCK_PTR_FOR_FN (fun), |
| next_bb) |
| bb = expand_gimple_basic_block (bb, var_ret_seq != NULL_RTX); |
| |
| if (MAY_HAVE_DEBUG_BIND_INSNS) |
| expand_debug_locations (); |
| |
| if (deep_ter_debug_map) |
| { |
| delete deep_ter_debug_map; |
| deep_ter_debug_map = NULL; |
| } |
| |
| /* Free stuff we no longer need after GIMPLE optimizations. */ |
| free_dominance_info (CDI_DOMINATORS); |
| free_dominance_info (CDI_POST_DOMINATORS); |
| delete_tree_cfg_annotations (fun); |
| |
| timevar_push (TV_OUT_OF_SSA); |
| finish_out_of_ssa (&SA); |
| timevar_pop (TV_OUT_OF_SSA); |
| |
| timevar_push (TV_POST_EXPAND); |
| /* We are no longer in SSA form. */ |
| fun->gimple_df->in_ssa_p = false; |
| loops_state_clear (LOOP_CLOSED_SSA); |
| |
| /* Expansion is used by optimization passes too, set maybe_hot_insn_p |
| conservatively to true until they are all profile aware. */ |
| delete lab_rtx_for_bb; |
| free_histograms (fun); |
| |
| construct_exit_block (); |
| insn_locations_finalize (); |
| |
| if (var_ret_seq) |
| { |
| rtx_insn *after = return_label; |
| rtx_insn *next = NEXT_INSN (after); |
| if (next && NOTE_INSN_BASIC_BLOCK_P (next)) |
| after = next; |
| emit_insn_after (var_ret_seq, after); |
| } |
| |
| if (hwasan_sanitize_stack_p ()) |
| hwasan_maybe_emit_frame_base_init (); |
| |
| /* Zap the tree EH table. */ |
| set_eh_throw_stmt_table (fun, NULL); |
| |
| /* We need JUMP_LABEL be set in order to redirect jumps, and hence |
| split edges which edge insertions might do. */ |
| rebuild_jump_labels (get_insns ()); |
| |
| /* If we have a single successor to the entry block, put the pending insns |
| after parm birth, but before NOTE_INSNS_FUNCTION_BEG. */ |
| if (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (fun))) |
| { |
| edge e = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (fun)); |
| if (e->insns.r) |
| { |
| rtx_insn *insns = e->insns.r; |
| e->insns.r = NULL; |
| rebuild_jump_labels_chain (insns); |
| if (NOTE_P (parm_birth_insn) |
| && NOTE_KIND (parm_birth_insn) == NOTE_INSN_FUNCTION_BEG) |
| emit_insn_before_noloc (insns, parm_birth_insn, e->dest); |
| else |
| emit_insn_after_noloc (insns, parm_birth_insn, e->dest); |
| } |
| } |
| |
| /* Otherwise, as well as for other edges, take the usual way. */ |
| commit_edge_insertions (); |
| |
| /* We're done expanding trees to RTL. */ |
| currently_expanding_to_rtl = 0; |
| |
| flush_mark_addressable_queue (); |
| |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (fun)->next_bb, |
| EXIT_BLOCK_PTR_FOR_FN (fun), next_bb) |
| { |
| edge e; |
| edge_iterator ei; |
| for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) |
| { |
| /* Clear EDGE_EXECUTABLE. This flag is never used in the backend. */ |
| e->flags &= ~EDGE_EXECUTABLE; |
| |
| /* At the moment not all abnormal edges match the RTL |
| representation. It is safe to remove them here as |
| find_many_sub_basic_blocks will rediscover them. |
| In the future we should get this fixed properly. */ |
| if ((e->flags & EDGE_ABNORMAL) |
| && !(e->flags & EDGE_SIBCALL)) |
| remove_edge (e); |
| else |
| ei_next (&ei); |
| } |
| } |
| |
| auto_sbitmap blocks (last_basic_block_for_fn (fun)); |
| bitmap_ones (blocks); |
| find_many_sub_basic_blocks (blocks); |
| purge_all_dead_edges (); |
| |
| /* After initial rtl generation, call back to finish generating |
| exception support code. We need to do this before cleaning up |
| the CFG as the code does not expect dead landing pads. */ |
| if (fun->eh->region_tree != NULL) |
| finish_eh_generation (); |
| |
| /* Call expand_stack_alignment after finishing all |
| updates to crtl->preferred_stack_boundary. */ |
| expand_stack_alignment (); |
| |
| /* Fixup REG_EQUIV notes in the prologue if there are tailcalls in this |
| function. */ |
| if (crtl->tail_call_emit) |
| fixup_tail_calls (); |
| |
| HOST_WIDE_INT patch_area_size, patch_area_entry; |
| parse_and_check_patch_area (flag_patchable_function_entry, false, |
| &patch_area_size, &patch_area_entry); |
| |
| tree patchable_function_entry_attr |
| = lookup_attribute ("patchable_function_entry", |
| DECL_ATTRIBUTES (cfun->decl)); |
| if (patchable_function_entry_attr) |
| { |
| tree pp_val = TREE_VALUE (patchable_function_entry_attr); |
| tree patchable_function_entry_value1 = TREE_VALUE (pp_val); |
| |
| patch_area_size = tree_to_uhwi (patchable_function_entry_value1); |
| patch_area_entry = 0; |
| if (TREE_CHAIN (pp_val) != NULL_TREE) |
| { |
| tree patchable_function_entry_value2 |
| = TREE_VALUE (TREE_CHAIN (pp_val)); |
| patch_area_entry = tree_to_uhwi (patchable_function_entry_value2); |
| } |
| } |
| |
| if (patch_area_entry > patch_area_size) |
| { |
| if (patch_area_size > 0) |
| warning (OPT_Wattributes, |
| "patchable function entry %wu exceeds size %wu", |
| patch_area_entry, patch_area_size); |
| patch_area_entry = 0; |
| } |
| |
| crtl->patch_area_size = patch_area_size; |
| crtl->patch_area_entry = patch_area_entry; |
| |
| /* BB subdivision may have created basic blocks that are only reachable |
| from unlikely bbs but not marked as such in the profile. */ |
| if (optimize) |
| propagate_unlikely_bbs_forward (); |
| |
| /* Remove unreachable blocks, otherwise we cannot compute dominators |
| which are needed for loop state verification. As a side-effect |
| this also compacts blocks. |
| ??? We cannot remove trivially dead insns here as for example |
| the DRAP reg on i?86 is not magically live at this point. |
| gcc.c-torture/execute/ipa-sra-2.c execution, -Os -m32 fails otherwise. */ |
| cleanup_cfg (CLEANUP_NO_INSN_DEL); |
| |
| checking_verify_flow_info (); |
| |
| /* Initialize pseudos allocated for hard registers. */ |
| emit_initial_value_sets (); |
| |
| /* And finally unshare all RTL. */ |
| unshare_all_rtl (); |
| |
| /* There's no need to defer outputting this function any more; we |
| know we want to output it. */ |
| DECL_DEFER_OUTPUT (current_function_decl) = 0; |
| |
| /* Now that we're done expanding trees to RTL, we shouldn't have any |
| more CONCATs anywhere. */ |
| generating_concat_p = 0; |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, |
| "\n\n;;\n;; Full RTL generated for this function:\n;;\n"); |
| /* And the pass manager will dump RTL for us. */ |
| } |
| |
| /* If we're emitting a nested function, make sure its parent gets |
| emitted as well. Doing otherwise confuses debug info. */ |
| { |
| tree parent; |
| for (parent = DECL_CONTEXT (current_function_decl); |
| parent != NULL_TREE; |
| parent = get_containing_scope (parent)) |
| if (TREE_CODE (parent) == FUNCTION_DECL) |
| TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (parent)) = 1; |
| } |
| |
| TREE_ASM_WRITTEN (current_function_decl) = 1; |
| |
| /* After expanding, the return labels are no longer needed. */ |
| return_label = NULL; |
| naked_return_label = NULL; |
| |
| /* After expanding, the tm_restart map is no longer needed. */ |
| if (fun->gimple_df->tm_restart) |
| fun->gimple_df->tm_restart = NULL; |
| |
| /* Tag the blocks with a depth number so that change_scope can find |
| the common parent easily. */ |
| set_block_levels (DECL_INITIAL (fun->decl), 0); |
| default_rtl_profile (); |
| |
| /* For -dx discard loops now, otherwise IL verify in clean_state will |
| ICE. */ |
| if (rtl_dump_and_exit) |
| { |
| cfun->curr_properties &= ~PROP_loops; |
| loop_optimizer_finalize (); |
| } |
| |
| timevar_pop (TV_POST_EXPAND); |
| |
| return 0; |
| } |
| |
| } // anon namespace |
| |
| rtl_opt_pass * |
| make_pass_expand (gcc::context *ctxt) |
| { |
| return new pass_expand (ctxt); |
| } |