| /* Timing variables for measuring compiler performance. |
| Copyright (C) 2000-2024 Free Software Foundation, Inc. |
| Contributed by Alex Samuel <samuel@codesourcery.com> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "timevar.h" |
| #include "options.h" |
| #include "json.h" |
| |
| #ifndef HAVE_CLOCK_T |
| typedef int clock_t; |
| #endif |
| |
| #ifndef HAVE_STRUCT_TMS |
| struct tms |
| { |
| clock_t tms_utime; |
| clock_t tms_stime; |
| clock_t tms_cutime; |
| clock_t tms_cstime; |
| }; |
| #endif |
| |
| #ifndef RUSAGE_SELF |
| # define RUSAGE_SELF 0 |
| #endif |
| |
| /* Calculation of scale factor to convert ticks to seconds. |
| We mustn't use CLOCKS_PER_SEC except with clock(). */ |
| #if HAVE_SYSCONF && defined _SC_CLK_TCK |
| # define TICKS_PER_SECOND sysconf (_SC_CLK_TCK) /* POSIX 1003.1-1996 */ |
| #else |
| # ifdef CLK_TCK |
| # define TICKS_PER_SECOND CLK_TCK /* POSIX 1003.1-1988; obsolescent */ |
| # else |
| # ifdef HZ |
| # define TICKS_PER_SECOND HZ /* traditional UNIX */ |
| # else |
| # define TICKS_PER_SECOND 100 /* often the correct value */ |
| # endif |
| # endif |
| #endif |
| |
| /* Prefer times to getrusage to clock (each gives successively less |
| information). */ |
| #ifdef HAVE_TIMES |
| # if defined HAVE_DECL_TIMES && !HAVE_DECL_TIMES |
| extern clock_t times (struct tms *); |
| # endif |
| # define USE_TIMES |
| # define HAVE_USER_TIME |
| # define HAVE_SYS_TIME |
| # define HAVE_WALL_TIME |
| #else |
| #ifdef HAVE_GETRUSAGE |
| # if defined HAVE_DECL_GETRUSAGE && !HAVE_DECL_GETRUSAGE |
| extern int getrusage (int, struct rusage *); |
| # endif |
| # define USE_GETRUSAGE |
| # define HAVE_USER_TIME |
| # define HAVE_SYS_TIME |
| #else |
| #ifdef HAVE_CLOCK |
| # if defined HAVE_DECL_CLOCK && !HAVE_DECL_CLOCK |
| extern clock_t clock (void); |
| # endif |
| # define USE_CLOCK |
| # define HAVE_USER_TIME |
| #endif |
| #endif |
| #endif |
| |
| /* libc is very likely to have snuck a call to sysconf() into one of |
| the underlying constants, and that can be very slow, so we have to |
| precompute them. Whose wonderful idea was it to make all those |
| _constants_ variable at run time, anyway? */ |
| #define NANOSEC_PER_SEC 1000000000 |
| #ifdef USE_TIMES |
| static uint64_t ticks_to_nanosec; |
| #define TICKS_TO_NANOSEC (NANOSEC_PER_SEC / TICKS_PER_SECOND) |
| #endif |
| |
| #ifdef USE_CLOCK |
| static uint64_t clocks_to_nanosec; |
| #define CLOCKS_TO_NANOSEC (NANOSEC_PER_SEC / CLOCKS_PER_SEC) |
| #endif |
| |
| /* Non-NULL if timevars should be used. In GCC, this happens with |
| the -ftime-report flag. */ |
| |
| timer *g_timer; |
| |
| /* Total amount of memory allocated by garbage collector. */ |
| |
| size_t timevar_ggc_mem_total; |
| |
| /* The amount of memory that will cause us to report the timevar even |
| if the time spent is not significant. */ |
| |
| #define GGC_MEM_BOUND (1 << 20) |
| |
| /* See timevar.h for an explanation of timing variables. */ |
| |
| static void get_time (struct timevar_time_def *); |
| static void timevar_accumulate (struct timevar_time_def *, |
| struct timevar_time_def *, |
| struct timevar_time_def *); |
| |
| /* The implementation of timing events for jit client code, allowing |
| arbitrary named items to appear on the timing stack. */ |
| |
| class timer::named_items |
| { |
| public: |
| named_items (timer *t); |
| ~named_items (); |
| |
| void push (const char *item_name); |
| void pop (); |
| void print (FILE *fp, const timevar_time_def *total); |
| |
| json::value *make_json () const; |
| |
| private: |
| /* Which timer instance does this relate to? */ |
| timer *m_timer; |
| |
| /* Dictionary, mapping from item names to timevar_def. |
| Note that currently we merely store/compare the raw string |
| pointers provided by client code; we don't take a copy, |
| or use strcmp. */ |
| typedef hash_map <const char *, timer::timevar_def> hash_map_t; |
| hash_map_t m_hash_map; |
| |
| /* The order in which items were originally inserted. */ |
| auto_vec <const char *> m_names; |
| }; |
| |
| /* The constructor for class timer::named_items. */ |
| |
| timer::named_items::named_items (timer *t) |
| : m_timer (t), |
| m_hash_map (), |
| m_names () |
| { |
| } |
| |
| /* The destructor for class timer::named_items. */ |
| |
| timer::named_items::~named_items () |
| { |
| } |
| |
| /* Push the named item onto the timer stack. */ |
| |
| void |
| timer::named_items::push (const char *item_name) |
| { |
| gcc_assert (item_name); |
| |
| bool existed; |
| timer::timevar_def *def = &m_hash_map.get_or_insert (item_name, &existed); |
| if (!existed) |
| { |
| def->elapsed.user = 0; |
| def->elapsed.sys = 0; |
| def->elapsed.wall = 0; |
| def->name = item_name; |
| def->standalone = 0; |
| m_names.safe_push (item_name); |
| } |
| m_timer->push_internal (def); |
| } |
| |
| /* Pop the top item from the timer stack. */ |
| |
| void |
| timer::named_items::pop () |
| { |
| m_timer->pop_internal (); |
| } |
| |
| /* Print the given client item. Helper function for timer::print. */ |
| |
| void |
| timer::named_items::print (FILE *fp, const timevar_time_def *total) |
| { |
| fprintf (fp, "Client items:\n"); |
| for (const char *item_name : m_names) |
| { |
| timer::timevar_def *def = m_hash_map.get (item_name); |
| gcc_assert (def); |
| m_timer->print_row (fp, total, def->name, def->elapsed); |
| } |
| } |
| |
| /* Create a json value representing this object, suitable for use |
| in SARIF output. */ |
| |
| json::value * |
| timer::named_items::make_json () const |
| { |
| json::array *arr = new json::array (); |
| for (const char *item_name : m_names) |
| { |
| hash_map_t &mut_map = const_cast <hash_map_t &> (m_hash_map); |
| timer::timevar_def *def = mut_map.get (item_name); |
| gcc_assert (def); |
| arr->append (def->make_json ()); |
| } |
| return arr; |
| } |
| |
| /* Fill the current times into TIME. The definition of this function |
| also defines any or all of the HAVE_USER_TIME, HAVE_SYS_TIME, and |
| HAVE_WALL_TIME macros. */ |
| |
| static void |
| get_time (struct timevar_time_def *now) |
| { |
| now->user = 0; |
| now->sys = 0; |
| now->wall = 0; |
| now->ggc_mem = timevar_ggc_mem_total; |
| |
| { |
| #ifdef USE_TIMES |
| struct tms tms; |
| now->wall = times (&tms) * ticks_to_nanosec; |
| now->user = tms.tms_utime * ticks_to_nanosec; |
| now->sys = tms.tms_stime * ticks_to_nanosec; |
| #endif |
| #ifdef USE_GETRUSAGE |
| struct rusage rusage; |
| getrusage (RUSAGE_SELF, &rusage); |
| now->user = rusage.ru_utime.tv_sec * NANOSEC_PER_SEC |
| + rusage.ru_utime.tv_usec * 1000; |
| now->sys = rusage.ru_stime.tv_sec * NANOSEC_PER_SEC |
| + rusage.ru_stime.tv_usec * 1000; |
| #endif |
| #ifdef USE_CLOCK |
| now->user = clock () * clocks_to_nanosec; |
| #endif |
| } |
| } |
| |
| /* Add the difference between STOP_TIME and START_TIME to TIMER. */ |
| |
| static void |
| timevar_accumulate (struct timevar_time_def *timer, |
| struct timevar_time_def *start_time, |
| struct timevar_time_def *stop_time) |
| { |
| timer->user += stop_time->user - start_time->user; |
| timer->sys += stop_time->sys - start_time->sys; |
| timer->wall += stop_time->wall - start_time->wall; |
| timer->ggc_mem += stop_time->ggc_mem - start_time->ggc_mem; |
| } |
| |
| /* Get the difference between STOP_TIME and START_TIME. */ |
| |
| static void |
| timevar_diff (struct timevar_time_def *out, |
| const timevar_time_def &start_time, |
| const timevar_time_def &stop_time) |
| { |
| out->user = stop_time.user - start_time.user; |
| out->sys = stop_time.sys - start_time.sys; |
| out->wall = stop_time.wall - start_time.wall; |
| out->ggc_mem = stop_time.ggc_mem - start_time.ggc_mem; |
| } |
| |
| /* Class timer's constructor. */ |
| |
| timer::timer () : |
| m_stack (NULL), |
| m_unused_stack_instances (NULL), |
| m_start_time (), |
| m_jit_client_items (NULL) |
| { |
| /* Zero all elapsed times. */ |
| memset (m_timevars, 0, sizeof (m_timevars)); |
| |
| /* Initialize the names of timing variables. */ |
| #define DEFTIMEVAR(identifier__, name__) \ |
| m_timevars[identifier__].name = name__; |
| #include "timevar.def" |
| #undef DEFTIMEVAR |
| |
| /* Initialize configuration-specific state. |
| Ideally this would be one-time initialization. */ |
| #ifdef USE_TIMES |
| ticks_to_nanosec = TICKS_TO_NANOSEC; |
| #endif |
| #ifdef USE_CLOCK |
| clocks_to_nanosec = CLOCKS_TO_NANOSEC; |
| #endif |
| } |
| |
| /* Class timer's destructor. */ |
| |
| timer::~timer () |
| { |
| timevar_stack_def *iter, *next; |
| |
| for (iter = m_stack; iter; iter = next) |
| { |
| next = iter->next; |
| free (iter); |
| } |
| for (iter = m_unused_stack_instances; iter; iter = next) |
| { |
| next = iter->next; |
| free (iter); |
| } |
| for (unsigned i = 0; i < TIMEVAR_LAST; ++i) |
| delete m_timevars[i].children; |
| |
| delete m_jit_client_items; |
| } |
| |
| /* Initialize timing variables. */ |
| |
| void |
| timevar_init (void) |
| { |
| if (g_timer) |
| return; |
| |
| g_timer = new timer (); |
| } |
| |
| /* Push TIMEVAR onto the timing stack. No further elapsed time is |
| attributed to the previous topmost timing variable on the stack; |
| subsequent elapsed time is attributed to TIMEVAR, until it is |
| popped or another element is pushed on top. |
| |
| TIMEVAR cannot be running as a standalone timer. */ |
| |
| void |
| timer::push (timevar_id_t timevar) |
| { |
| struct timevar_def *tv = &m_timevars[timevar]; |
| push_internal (tv); |
| } |
| |
| /* Push TV onto the timing stack, either one of the builtin ones |
| for a timevar_id_t, or one provided by client code to libgccjit. */ |
| |
| void |
| timer::push_internal (struct timevar_def *tv) |
| { |
| struct timevar_stack_def *context; |
| struct timevar_time_def now; |
| |
| gcc_assert (tv); |
| |
| /* Mark this timing variable as used. */ |
| tv->used = 1; |
| |
| /* Can't push a standalone timer. */ |
| gcc_assert (!tv->standalone); |
| |
| /* What time is it? */ |
| get_time (&now); |
| |
| /* If the stack isn't empty, attribute the current elapsed time to |
| the old topmost element. */ |
| if (m_stack) |
| timevar_accumulate (&m_stack->timevar->elapsed, &m_start_time, &now); |
| |
| /* Reset the start time; from now on, time is attributed to |
| TIMEVAR. */ |
| m_start_time = now; |
| |
| /* See if we have a previously-allocated stack instance. If so, |
| take it off the list. If not, malloc a new one. */ |
| if (m_unused_stack_instances != NULL) |
| { |
| context = m_unused_stack_instances; |
| m_unused_stack_instances = m_unused_stack_instances->next; |
| } |
| else |
| context = XNEW (struct timevar_stack_def); |
| |
| /* Fill it in and put it on the stack. */ |
| context->timevar = tv; |
| context->next = m_stack; |
| m_stack = context; |
| } |
| |
| /* Pop the topmost timing variable element off the timing stack. The |
| popped variable must be TIMEVAR. Elapsed time since the that |
| element was pushed on, or since it was last exposed on top of the |
| stack when the element above it was popped off, is credited to that |
| timing variable. */ |
| |
| void |
| timer::pop (timevar_id_t timevar) |
| { |
| gcc_assert (&m_timevars[timevar] == m_stack->timevar); |
| |
| pop_internal (); |
| } |
| |
| /* Pop the topmost item from the stack, either one of the builtin ones |
| for a timevar_id_t, or one provided by client code to libgccjit. */ |
| |
| void |
| timer::pop_internal () |
| { |
| struct timevar_time_def now; |
| struct timevar_stack_def *popped = m_stack; |
| |
| /* What time is it? */ |
| get_time (&now); |
| |
| /* Attribute the elapsed time to the element we're popping. */ |
| timevar_accumulate (&popped->timevar->elapsed, &m_start_time, &now); |
| |
| /* Take the item off the stack. */ |
| m_stack = m_stack->next; |
| |
| /* Record the elapsed sub-time to the parent as well. */ |
| if (m_stack && time_report_details) |
| { |
| if (! m_stack->timevar->children) |
| m_stack->timevar->children = new child_map_t (5); |
| bool existed_p; |
| timevar_time_def &time |
| = m_stack->timevar->children->get_or_insert (popped->timevar, &existed_p); |
| if (! existed_p) |
| memset (&time, 0, sizeof (timevar_time_def)); |
| timevar_accumulate (&time, &m_start_time, &now); |
| } |
| |
| /* Reset the start time; from now on, time is attributed to the |
| element just exposed on the stack. */ |
| m_start_time = now; |
| |
| /* Don't delete the stack element; instead, add it to the list of |
| unused elements for later use. */ |
| popped->next = m_unused_stack_instances; |
| m_unused_stack_instances = popped; |
| } |
| |
| /* Start timing TIMEVAR independently of the timing stack. Elapsed |
| time until timevar_stop is called for the same timing variable is |
| attributed to TIMEVAR. */ |
| |
| void |
| timevar_start (timevar_id_t timevar) |
| { |
| if (!g_timer) |
| return; |
| |
| g_timer->start (timevar); |
| } |
| |
| /* See timevar_start above. */ |
| |
| void |
| timer::start (timevar_id_t timevar) |
| { |
| struct timevar_def *tv = &m_timevars[timevar]; |
| |
| /* Mark this timing variable as used. */ |
| tv->used = 1; |
| |
| /* Don't allow the same timing variable to be started more than |
| once. */ |
| gcc_assert (!tv->standalone); |
| tv->standalone = 1; |
| |
| get_time (&tv->start_time); |
| } |
| |
| /* Stop timing TIMEVAR. Time elapsed since timevar_start was called |
| is attributed to it. */ |
| |
| void |
| timevar_stop (timevar_id_t timevar) |
| { |
| if (!g_timer) |
| return; |
| |
| g_timer->stop (timevar); |
| } |
| |
| /* See timevar_stop above. */ |
| |
| void |
| timer::stop (timevar_id_t timevar) |
| { |
| struct timevar_def *tv = &m_timevars[timevar]; |
| struct timevar_time_def now; |
| |
| /* TIMEVAR must have been started via timevar_start. */ |
| gcc_assert (tv->standalone); |
| tv->standalone = 0; /* Enable a restart. */ |
| |
| get_time (&now); |
| timevar_accumulate (&tv->elapsed, &tv->start_time, &now); |
| } |
| |
| |
| /* Conditionally start timing TIMEVAR independently of the timing stack. |
| If the timer is already running, leave it running and return true. |
| Otherwise, start the timer and return false. |
| Elapsed time until the corresponding timevar_cond_stop |
| is called for the same timing variable is attributed to TIMEVAR. */ |
| |
| bool |
| timevar_cond_start (timevar_id_t timevar) |
| { |
| if (!g_timer) |
| return false; |
| |
| return g_timer->cond_start (timevar); |
| } |
| |
| /* See timevar_cond_start above. */ |
| |
| bool |
| timer::cond_start (timevar_id_t timevar) |
| { |
| struct timevar_def *tv = &m_timevars[timevar]; |
| |
| /* Mark this timing variable as used. */ |
| tv->used = 1; |
| |
| if (tv->standalone) |
| return true; /* The timevar is already running. */ |
| |
| /* Don't allow the same timing variable |
| to be unconditionally started more than once. */ |
| tv->standalone = 1; |
| |
| get_time (&tv->start_time); |
| return false; /* The timevar was not already running. */ |
| } |
| |
| /* Conditionally stop timing TIMEVAR. The RUNNING parameter must come |
| from the return value of a dynamically matching timevar_cond_start. |
| If the timer had already been RUNNING, do nothing. Otherwise, time |
| elapsed since timevar_cond_start was called is attributed to it. */ |
| |
| void |
| timevar_cond_stop (timevar_id_t timevar, bool running) |
| { |
| if (!g_timer || running) |
| return; |
| |
| g_timer->cond_stop (timevar); |
| } |
| |
| /* See timevar_cond_stop above. */ |
| |
| void |
| timer::cond_stop (timevar_id_t timevar) |
| { |
| struct timevar_def *tv; |
| struct timevar_time_def now; |
| |
| tv = &m_timevars[timevar]; |
| |
| /* TIMEVAR must have been started via timevar_cond_start. */ |
| gcc_assert (tv->standalone); |
| tv->standalone = 0; /* Enable a restart. */ |
| |
| get_time (&now); |
| timevar_accumulate (&tv->elapsed, &tv->start_time, &now); |
| } |
| |
| /* Push the named item onto the timing stack. */ |
| |
| void |
| timer::push_client_item (const char *item_name) |
| { |
| gcc_assert (item_name); |
| |
| /* Lazily create the named_items instance. */ |
| if (!m_jit_client_items) |
| m_jit_client_items = new named_items (this); |
| |
| m_jit_client_items->push (item_name); |
| } |
| |
| /* Pop the top-most client item from the timing stack. */ |
| |
| void |
| timer::pop_client_item () |
| { |
| gcc_assert (m_jit_client_items); |
| m_jit_client_items->pop (); |
| } |
| |
| /* Validate that phase times are consistent. */ |
| |
| void |
| timer::validate_phases (FILE *fp) const |
| { |
| unsigned int /* timevar_id_t */ id; |
| const timevar_time_def *total = &m_timevars[TV_TOTAL].elapsed; |
| uint64_t phase_user = 0; |
| uint64_t phase_sys = 0; |
| uint64_t phase_wall = 0; |
| size_t phase_ggc_mem = 0; |
| static char phase_prefix[] = "phase "; |
| |
| for (id = 0; id < (unsigned int) TIMEVAR_LAST; ++id) |
| { |
| const timevar_def *tv = &m_timevars[(timevar_id_t) id]; |
| |
| /* Don't evaluate timing variables that were never used. */ |
| if (!tv->used) |
| continue; |
| |
| if (startswith (tv->name, phase_prefix)) |
| { |
| phase_user += tv->elapsed.user; |
| phase_sys += tv->elapsed.sys; |
| phase_wall += tv->elapsed.wall; |
| phase_ggc_mem += tv->elapsed.ggc_mem; |
| } |
| } |
| |
| if (phase_user > total->user |
| || phase_sys > total->sys |
| || phase_wall > total->wall |
| || phase_ggc_mem > total->ggc_mem) |
| { |
| |
| fprintf (fp, "Timing error: total of phase timers exceeds total time.\n"); |
| if (phase_user > total->user) |
| fprintf (fp, "user %13" PRIu64 " > %13" PRIu64 "\n", |
| phase_user, total->user); |
| if (phase_sys > total->sys) |
| fprintf (fp, "sys %13" PRIu64 " > %13" PRIu64 "\n", |
| phase_sys, total->sys); |
| if (phase_wall > total->wall) |
| fprintf (fp, "wall %13" PRIu64 " > %13" PRIu64 "\n", |
| phase_wall, total->wall); |
| if (phase_ggc_mem > total->ggc_mem) |
| fprintf (fp, "ggc_mem %13lu > %13lu\n", (unsigned long)phase_ggc_mem, |
| (unsigned long)total->ggc_mem); |
| gcc_unreachable (); |
| } |
| } |
| |
| #define nanosec_to_floating_sec(NANO) ((double)(NANO) * 1e-9) |
| #define percent_of(TOTAL, SUBTOTAL) \ |
| ((TOTAL) == 0 ? 0 : ((double)SUBTOTAL / TOTAL) * 100) |
| /* Helper function for timer::print. */ |
| |
| void |
| timer::print_row (FILE *fp, |
| const timevar_time_def *total, |
| const char *name, const timevar_time_def &elapsed) |
| { |
| /* The timing variable name. */ |
| fprintf (fp, " %-35s:", name); |
| |
| #ifdef HAVE_USER_TIME |
| /* Print user-mode time for this process. */ |
| fprintf (fp, "%7.2f (%3.0f%%)", |
| nanosec_to_floating_sec (elapsed.user), |
| percent_of (total->user, elapsed.user)); |
| #endif /* HAVE_USER_TIME */ |
| |
| #ifdef HAVE_SYS_TIME |
| /* Print system-mode time for this process. */ |
| fprintf (fp, "%7.2f (%3.0f%%)", |
| nanosec_to_floating_sec (elapsed.sys), |
| percent_of (total->sys, elapsed.sys)); |
| #endif /* HAVE_SYS_TIME */ |
| |
| #ifdef HAVE_WALL_TIME |
| /* Print wall clock time elapsed. */ |
| fprintf (fp, "%7.2f (%3.0f%%)", |
| nanosec_to_floating_sec (elapsed.wall), |
| percent_of (total->wall, elapsed.wall)); |
| #endif /* HAVE_WALL_TIME */ |
| |
| /* Print the amount of ggc memory allocated. */ |
| fprintf (fp, PRsa (6) " (%3.0f%%)", |
| SIZE_AMOUNT (elapsed.ggc_mem), |
| (total->ggc_mem == 0 |
| ? 0 |
| : (float) elapsed.ggc_mem / total->ggc_mem) * 100); |
| |
| putc ('\n', fp); |
| } |
| |
| /* Return whether ELAPSED is all zero. */ |
| |
| bool |
| timer::all_zero (const timevar_time_def &elapsed) |
| { |
| /* 5000000 nanosec == 5e-3 seconds. */ |
| uint64_t tiny = 5000000; |
| return (elapsed.user < tiny |
| && elapsed.sys < tiny |
| && elapsed.wall < tiny |
| && elapsed.ggc_mem < GGC_MEM_BOUND); |
| } |
| |
| /* Summarize timing variables to FP. The timing variable TV_TOTAL has |
| a special meaning -- it's considered to be the total elapsed time, |
| for normalizing the others, and is displayed last. */ |
| |
| void |
| timer::print (FILE *fp) |
| { |
| /* Only print stuff if we have some sort of time information. */ |
| #if defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME) || defined (HAVE_WALL_TIME) |
| unsigned int /* timevar_id_t */ id; |
| const timevar_time_def *total = &m_timevars[TV_TOTAL].elapsed; |
| struct timevar_time_def now; |
| |
| /* Update timing information in case we're calling this from GDB. */ |
| |
| if (fp == 0) |
| fp = stderr; |
| |
| /* What time is it? */ |
| get_time (&now); |
| |
| /* If the stack isn't empty, attribute the current elapsed time to |
| the old topmost element. */ |
| if (m_stack) |
| timevar_accumulate (&m_stack->timevar->elapsed, &m_start_time, &now); |
| |
| /* Reset the start time; from now on, time is attributed to |
| TIMEVAR. */ |
| m_start_time = now; |
| |
| fprintf (fp, "\n%-35s%16s%14s%14s%14s\n", "Time variable", "usr", "sys", |
| "wall", "GGC"); |
| if (m_jit_client_items) |
| fputs ("GCC items:\n", fp); |
| for (id = 0; id < (unsigned int) TIMEVAR_LAST; ++id) |
| { |
| const timevar_def *tv = &m_timevars[(timevar_id_t) id]; |
| |
| /* Don't print the total execution time here; that goes at the |
| end. */ |
| if ((timevar_id_t) id == TV_TOTAL) |
| continue; |
| |
| /* Don't print timing variables that were never used. */ |
| if (!tv->used) |
| continue; |
| |
| bool any_children_with_time = false; |
| if (tv->children) |
| for (child_map_t::iterator i = tv->children->begin (); |
| i != tv->children->end (); ++i) |
| if (! all_zero ((*i).second)) |
| { |
| any_children_with_time = true; |
| break; |
| } |
| |
| /* Don't print timing variables if we're going to get a row of |
| zeroes. Unless there are children with non-zero time. */ |
| if (! any_children_with_time |
| && all_zero (tv->elapsed)) |
| continue; |
| |
| print_row (fp, total, tv->name, tv->elapsed); |
| |
| if (tv->children) |
| for (child_map_t::iterator i = tv->children->begin (); |
| i != tv->children->end (); ++i) |
| { |
| timevar_def *tv2 = (*i).first; |
| /* Don't print timing variables if we're going to get a row of |
| zeroes. */ |
| if (! all_zero ((*i).second)) |
| { |
| char lname[256]; |
| snprintf (lname, 256, "`- %s", tv2->name); |
| print_row (fp, total, lname, (*i).second); |
| } |
| } |
| } |
| if (m_jit_client_items) |
| m_jit_client_items->print (fp, total); |
| |
| /* Print total time. */ |
| fprintf (fp, " %-35s:", "TOTAL"); |
| #ifdef HAVE_USER_TIME |
| fprintf (fp, "%7.2f ", nanosec_to_floating_sec (total->user)); |
| #endif |
| #ifdef HAVE_SYS_TIME |
| fprintf (fp, "%8.2f ", nanosec_to_floating_sec (total->sys)); |
| #endif |
| #ifdef HAVE_WALL_TIME |
| fprintf (fp, "%8.2f ", nanosec_to_floating_sec (total->wall)); |
| #endif |
| fprintf (fp, PRsa (7) "\n", SIZE_AMOUNT (total->ggc_mem)); |
| |
| if (CHECKING_P || flag_checking) |
| fprintf (fp, "Extra diagnostic checks enabled; compiler may run slowly.\n"); |
| if (CHECKING_P) |
| fprintf (fp, "Configure with --enable-checking=release to disable checks.\n"); |
| #ifndef ENABLE_ASSERT_CHECKING |
| fprintf (fp, "Internal checks disabled; compiler is not suited for release.\n"); |
| fprintf (fp, "Configure with --enable-checking=release to enable checks.\n"); |
| #endif |
| |
| #endif /* defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME) |
| || defined (HAVE_WALL_TIME) */ |
| |
| validate_phases (fp); |
| } |
| |
| /* Create a json value representing this object, suitable for use |
| in SARIF output. */ |
| |
| json::object * |
| make_json_for_timevar_time_def (const timevar_time_def &ttd) |
| { |
| json::object *obj = new json::object (); |
| obj->set_float ("user", nanosec_to_floating_sec (ttd.user)); |
| obj->set_float ("sys", nanosec_to_floating_sec (ttd.sys)); |
| obj->set_float ("wall", nanosec_to_floating_sec (ttd.wall)); |
| obj->set_integer ("ggc_mem", ttd.ggc_mem); |
| return obj; |
| } |
| #undef nanosec_to_floating_sec |
| #undef percent_of |
| |
| /* Create a json value representing this object, suitable for use |
| in SARIF output. */ |
| |
| json::value * |
| timer::timevar_def::make_json () const |
| { |
| json::object *timevar_obj = new json::object (); |
| timevar_obj->set_string ("name", name); |
| timevar_obj->set ("elapsed", make_json_for_timevar_time_def (elapsed)); |
| |
| if (children) |
| { |
| bool any_children_with_time = false; |
| for (auto i : *children) |
| if (!all_zero (i.second)) |
| { |
| any_children_with_time = true; |
| break; |
| } |
| if (any_children_with_time) |
| { |
| json::array *children_arr = new json::array (); |
| timevar_obj->set ("children", children_arr); |
| for (auto i : *children) |
| { |
| /* Don't emit timing variables if we're going to get a row of |
| zeroes. */ |
| if (all_zero (i.second)) |
| continue; |
| json::object *child_obj = new json::object; |
| children_arr->append (child_obj); |
| child_obj->set_string ("name", i.first->name); |
| child_obj->set ("elapsed", |
| make_json_for_timevar_time_def (i.second)); |
| } |
| } |
| } |
| |
| return timevar_obj; |
| } |
| |
| /* Create a json value representing this object, suitable for use |
| in SARIF output. */ |
| |
| json::value * |
| timer::make_json () const |
| { |
| /* Only generate stuff if we have some sort of time information. */ |
| #if defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME) || defined (HAVE_WALL_TIME) |
| json::object *report_obj = new json::object (); |
| json::array *json_arr = new json::array (); |
| report_obj->set ("timevars", json_arr); |
| |
| for (unsigned id = 0; id < (unsigned int) TIMEVAR_LAST; ++id) |
| { |
| const timevar_def *tv = &m_timevars[(timevar_id_t) id]; |
| |
| /* Don't print the total execution time here; this isn't initialized |
| by the time the sarif output runs. */ |
| if ((timevar_id_t) id == TV_TOTAL) |
| continue; |
| |
| /* Don't emit timing variables that were never used. */ |
| if (!tv->used) |
| continue; |
| |
| bool any_children_with_time = false; |
| if (tv->children) |
| for (child_map_t::iterator i = tv->children->begin (); |
| i != tv->children->end (); ++i) |
| if (! all_zero ((*i).second)) |
| { |
| any_children_with_time = true; |
| break; |
| } |
| |
| /* Don't emit timing variables if we're going to get a row of |
| zeroes. Unless there are children with non-zero time. */ |
| if (! any_children_with_time |
| && all_zero (tv->elapsed)) |
| continue; |
| |
| json_arr->append (tv->make_json ()); |
| } |
| |
| /* Special-case for total. */ |
| { |
| /* Get our own total up till now, without affecting TV_TOTAL. */ |
| struct timevar_time_def total_now; |
| struct timevar_time_def total_elapsed; |
| get_time (&total_now); |
| timevar_diff (&total_elapsed, m_timevars[TV_TOTAL].start_time, total_now); |
| |
| json::object *total_obj = new json::object(); |
| json_arr->append (total_obj); |
| total_obj->set_string ("name", "TOTAL"); |
| total_obj->set ("elapsed", make_json_for_timevar_time_def (total_elapsed)); |
| } |
| |
| if (m_jit_client_items) |
| report_obj->set ("client_items", m_jit_client_items->make_json ()); |
| |
| report_obj->set_bool ("CHECKING_P", CHECKING_P); |
| report_obj->set_bool ("flag_checking", flag_checking); |
| |
| return report_obj; |
| |
| #else /* defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME) |
| || defined (HAVE_WALL_TIME) */ |
| return NULL; |
| #endif /* defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME) |
| || defined (HAVE_WALL_TIME) */ |
| } |
| |
| /* Get the name of the topmost item. For use by jit for validating |
| inputs to gcc_jit_timer_pop. */ |
| const char * |
| timer::get_topmost_item_name () const |
| { |
| if (m_stack) |
| return m_stack->timevar->name; |
| else |
| return NULL; |
| } |
| |
| /* Prints a message to stderr stating that time elapsed in STR is |
| TOTAL (given in microseconds). */ |
| |
| void |
| print_time (const char *str, long total) |
| { |
| long all_time = get_run_time (); |
| fprintf (stderr, |
| "time in %s: %ld.%06ld (%ld%%)\n", |
| str, total / 1000000, total % 1000000, |
| all_time == 0 ? 0 |
| : (long) (((100.0 * (double) total) / (double) all_time) + .5)); |
| } |