|  | `/* Implementation of the MATMUL intrinsic | 
|  | Copyright (C) 2002-2025 Free Software Foundation, Inc. | 
|  | Contributed by Paul Brook <paul@nowt.org> | 
|  |  | 
|  | This file is part of the GNU Fortran runtime library (libgfortran). | 
|  |  | 
|  | Libgfortran is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 3 of the License, or (at your option) any later version. | 
|  |  | 
|  | Libgfortran is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | Under Section 7 of GPL version 3, you are granted additional | 
|  | permissions described in the GCC Runtime Library Exception, version | 
|  | 3.1, as published by the Free Software Foundation. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License and | 
|  | a copy of the GCC Runtime Library Exception along with this program; | 
|  | see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "libgfortran.h" | 
|  | #include <assert.h>' | 
|  |  | 
|  | include(iparm.m4)dnl | 
|  |  | 
|  | `#if defined (HAVE_'rtype_name`) | 
|  |  | 
|  | /* Dimensions: retarray(x,y) a(x, count) b(count,y). | 
|  | Either a or b can be rank 1.  In this case x or y is 1.  */ | 
|  |  | 
|  | extern void matmul_'rtype_code` ('rtype` * const restrict, | 
|  | gfc_array_l1 * const restrict, gfc_array_l1 * const restrict); | 
|  | export_proto(matmul_'rtype_code`); | 
|  |  | 
|  | void | 
|  | matmul_'rtype_code` ('rtype` * const restrict retarray, | 
|  | gfc_array_l1 * const restrict a, gfc_array_l1 * const restrict b) | 
|  | { | 
|  | const GFC_LOGICAL_1 * restrict abase; | 
|  | const GFC_LOGICAL_1 * restrict bbase; | 
|  | 'rtype_name` * restrict dest; | 
|  | index_type rxstride; | 
|  | index_type rystride; | 
|  | index_type xcount; | 
|  | index_type ycount; | 
|  | index_type xstride; | 
|  | index_type ystride; | 
|  | index_type x; | 
|  | index_type y; | 
|  | int a_kind; | 
|  | int b_kind; | 
|  |  | 
|  | const GFC_LOGICAL_1 * restrict pa; | 
|  | const GFC_LOGICAL_1 * restrict pb; | 
|  | index_type astride; | 
|  | index_type bstride; | 
|  | index_type count; | 
|  | index_type n; | 
|  |  | 
|  | assert (GFC_DESCRIPTOR_RANK (a) == 2 | 
|  | || GFC_DESCRIPTOR_RANK (b) == 2); | 
|  |  | 
|  | if (retarray->base_addr == NULL) | 
|  | { | 
|  | if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1); | 
|  | } | 
|  | else if (GFC_DESCRIPTOR_RANK (b) == 1) | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); | 
|  | } | 
|  | else | 
|  | { | 
|  | GFC_DIMENSION_SET(retarray->dim[0], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); | 
|  |  | 
|  | GFC_DIMENSION_SET(retarray->dim[1], 0, | 
|  | GFC_DESCRIPTOR_EXTENT(b,1) - 1, | 
|  | GFC_DESCRIPTOR_EXTENT(retarray,0)); | 
|  | } | 
|  |  | 
|  | retarray->base_addr | 
|  | = xmallocarray (size0 ((array_t *) retarray), sizeof ('rtype_name`)); | 
|  | retarray->offset = 0; | 
|  | } | 
|  | else if (unlikely (compile_options.bounds_check)) | 
|  | { | 
|  | index_type ret_extent, arg_extent; | 
|  |  | 
|  | if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic: is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  | } | 
|  | else if (GFC_DESCRIPTOR_RANK (b) == 1) | 
|  | { | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic: is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  | } | 
|  | else | 
|  | { | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic for dimension 1:" | 
|  | " is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  |  | 
|  | arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); | 
|  | if (arg_extent != ret_extent) | 
|  | runtime_error ("Incorrect extent in return array in" | 
|  | " MATMUL intrinsic for dimension 2:" | 
|  | " is %ld, should be %ld", | 
|  | (long int) ret_extent, (long int) arg_extent); | 
|  | } | 
|  | } | 
|  |  | 
|  | abase = a->base_addr; | 
|  | a_kind = GFC_DESCRIPTOR_SIZE (a); | 
|  |  | 
|  | if (a_kind == 1 || a_kind == 2 || a_kind == 4 || a_kind == 8 | 
|  | #ifdef HAVE_GFC_LOGICAL_16 | 
|  | || a_kind == 16 | 
|  | #endif | 
|  | ) | 
|  | abase = GFOR_POINTER_TO_L1 (abase, a_kind); | 
|  | else | 
|  | internal_error (NULL, "Funny sized logical array"); | 
|  |  | 
|  | bbase = b->base_addr; | 
|  | b_kind = GFC_DESCRIPTOR_SIZE (b); | 
|  |  | 
|  | if (b_kind == 1 || b_kind == 2 || b_kind == 4 || b_kind == 8 | 
|  | #ifdef HAVE_GFC_LOGICAL_16 | 
|  | || b_kind == 16 | 
|  | #endif | 
|  | ) | 
|  | bbase = GFOR_POINTER_TO_L1 (bbase, b_kind); | 
|  | else | 
|  | internal_error (NULL, "Funny sized logical array"); | 
|  |  | 
|  | dest = retarray->base_addr; | 
|  | ' | 
|  | sinclude(`matmul_asm_'rtype_code`.m4')dnl | 
|  | ` | 
|  | if (GFC_DESCRIPTOR_RANK (retarray) == 1) | 
|  | { | 
|  | rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); | 
|  | rystride = rxstride; | 
|  | } | 
|  | else | 
|  | { | 
|  | rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); | 
|  | rystride = GFC_DESCRIPTOR_STRIDE(retarray,1); | 
|  | } | 
|  |  | 
|  | /* If we have rank 1 parameters, zero the absent stride, and set the size to | 
|  | one.  */ | 
|  | if (GFC_DESCRIPTOR_RANK (a) == 1) | 
|  | { | 
|  | astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0); | 
|  | count = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | xstride = 0; | 
|  | rxstride = 0; | 
|  | xcount = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,1); | 
|  | count = GFC_DESCRIPTOR_EXTENT(a,1); | 
|  | xstride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0); | 
|  | xcount = GFC_DESCRIPTOR_EXTENT(a,0); | 
|  | } | 
|  | if (GFC_DESCRIPTOR_RANK (b) == 1) | 
|  | { | 
|  | bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0); | 
|  | assert(count == GFC_DESCRIPTOR_EXTENT(b,0)); | 
|  | ystride = 0; | 
|  | rystride = 0; | 
|  | ycount = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0); | 
|  | assert(count == GFC_DESCRIPTOR_EXTENT(b,0)); | 
|  | ystride = GFC_DESCRIPTOR_STRIDE_BYTES(b,1); | 
|  | ycount = GFC_DESCRIPTOR_EXTENT(b,1); | 
|  | } | 
|  |  | 
|  | for (y = 0; y < ycount; y++) | 
|  | { | 
|  | for (x = 0; x < xcount; x++) | 
|  | { | 
|  | /* Do the summation for this element.  For real and integer types | 
|  | this is the same as DOT_PRODUCT.  For complex types we use do | 
|  | a*b, not conjg(a)*b.  */ | 
|  | pa = abase; | 
|  | pb = bbase; | 
|  | *dest = 0; | 
|  |  | 
|  | for (n = 0; n < count; n++) | 
|  | { | 
|  | if (*pa && *pb) | 
|  | { | 
|  | *dest = 1; | 
|  | break; | 
|  | } | 
|  | pa += astride; | 
|  | pb += bstride; | 
|  | } | 
|  |  | 
|  | dest += rxstride; | 
|  | abase += xstride; | 
|  | } | 
|  | abase -= xstride * xcount; | 
|  | bbase += ystride; | 
|  | dest += rystride - (rxstride * xcount); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif | 
|  | ' |