blob: 929191d24aa0f0ef3ab34aa5fad53ee4303f7f09 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- G N A T . D Y N A M I C _ H T A B L E S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2002-2014, AdaCore --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Ada.Unchecked_Deallocation;
package body GNAT.Dynamic_HTables is
-------------------
-- Static_HTable --
-------------------
package body Static_HTable is
type Table_Type is array (Header_Num) of Elmt_Ptr;
type Instance_Data is record
Table : Table_Type;
Iterator_Index : Header_Num;
Iterator_Ptr : Elmt_Ptr;
Iterator_Started : Boolean := False;
end record;
function Get_Non_Null (T : Instance) return Elmt_Ptr;
-- Returns Null_Ptr if Iterator_Started is False or if the Table is
-- empty. Returns Iterator_Ptr if non null, or the next non null
-- element in table if any.
---------
-- Get --
---------
function Get (T : Instance; K : Key) return Elmt_Ptr is
Elmt : Elmt_Ptr;
begin
if T = null then
return Null_Ptr;
end if;
Elmt := T.Table (Hash (K));
loop
if Elmt = Null_Ptr then
return Null_Ptr;
elsif Equal (Get_Key (Elmt), K) then
return Elmt;
else
Elmt := Next (Elmt);
end if;
end loop;
end Get;
---------------
-- Get_First --
---------------
function Get_First (T : Instance) return Elmt_Ptr is
begin
if T = null then
return Null_Ptr;
end if;
T.Iterator_Started := True;
T.Iterator_Index := T.Table'First;
T.Iterator_Ptr := T.Table (T.Iterator_Index);
return Get_Non_Null (T);
end Get_First;
--------------
-- Get_Next --
--------------
function Get_Next (T : Instance) return Elmt_Ptr is
begin
if T = null or else not T.Iterator_Started then
return Null_Ptr;
end if;
T.Iterator_Ptr := Next (T.Iterator_Ptr);
return Get_Non_Null (T);
end Get_Next;
------------------
-- Get_Non_Null --
------------------
function Get_Non_Null (T : Instance) return Elmt_Ptr is
begin
if T = null then
return Null_Ptr;
end if;
while T.Iterator_Ptr = Null_Ptr loop
if T.Iterator_Index = T.Table'Last then
T.Iterator_Started := False;
return Null_Ptr;
end if;
T.Iterator_Index := T.Iterator_Index + 1;
T.Iterator_Ptr := T.Table (T.Iterator_Index);
end loop;
return T.Iterator_Ptr;
end Get_Non_Null;
------------
-- Remove --
------------
procedure Remove (T : Instance; K : Key) is
Index : constant Header_Num := Hash (K);
Elmt : Elmt_Ptr;
Next_Elmt : Elmt_Ptr;
begin
if T = null then
return;
end if;
Elmt := T.Table (Index);
if Elmt = Null_Ptr then
return;
elsif Equal (Get_Key (Elmt), K) then
T.Table (Index) := Next (Elmt);
else
loop
Next_Elmt := Next (Elmt);
if Next_Elmt = Null_Ptr then
return;
elsif Equal (Get_Key (Next_Elmt), K) then
Set_Next (Elmt, Next (Next_Elmt));
return;
else
Elmt := Next_Elmt;
end if;
end loop;
end if;
end Remove;
-----------
-- Reset --
-----------
procedure Reset (T : in out Instance) is
procedure Free is
new Ada.Unchecked_Deallocation (Instance_Data, Instance);
begin
if T = null then
return;
end if;
for J in T.Table'Range loop
T.Table (J) := Null_Ptr;
end loop;
Free (T);
end Reset;
---------
-- Set --
---------
procedure Set (T : in out Instance; E : Elmt_Ptr) is
Index : Header_Num;
begin
if T = null then
T := new Instance_Data;
end if;
Index := Hash (Get_Key (E));
Set_Next (E, T.Table (Index));
T.Table (Index) := E;
end Set;
end Static_HTable;
-------------------
-- Simple_HTable --
-------------------
package body Simple_HTable is
procedure Free is new
Ada.Unchecked_Deallocation (Element_Wrapper, Elmt_Ptr);
---------
-- Get --
---------
function Get (T : Instance; K : Key) return Element is
Tmp : Elmt_Ptr;
begin
if T = Nil then
return No_Element;
end if;
Tmp := Tab.Get (Tab.Instance (T), K);
if Tmp = null then
return No_Element;
else
return Tmp.E;
end if;
end Get;
---------------
-- Get_First --
---------------
function Get_First (T : Instance) return Element is
Tmp : constant Elmt_Ptr := Tab.Get_First (Tab.Instance (T));
begin
if Tmp = null then
return No_Element;
else
return Tmp.E;
end if;
end Get_First;
-------------
-- Get_Key --
-------------
function Get_Key (E : Elmt_Ptr) return Key is
begin
return E.K;
end Get_Key;
--------------
-- Get_Next --
--------------
function Get_Next (T : Instance) return Element is
Tmp : constant Elmt_Ptr := Tab.Get_Next (Tab.Instance (T));
begin
if Tmp = null then
return No_Element;
else
return Tmp.E;
end if;
end Get_Next;
----------
-- Next --
----------
function Next (E : Elmt_Ptr) return Elmt_Ptr is
begin
return E.Next;
end Next;
------------
-- Remove --
------------
procedure Remove (T : Instance; K : Key) is
Tmp : Elmt_Ptr;
begin
Tmp := Tab.Get (Tab.Instance (T), K);
if Tmp /= null then
Tab.Remove (Tab.Instance (T), K);
Free (Tmp);
end if;
end Remove;
-----------
-- Reset --
-----------
procedure Reset (T : in out Instance) is
E1, E2 : Elmt_Ptr;
begin
E1 := Tab.Get_First (Tab.Instance (T));
while E1 /= null loop
E2 := Tab.Get_Next (Tab.Instance (T));
Free (E1);
E1 := E2;
end loop;
Tab.Reset (Tab.Instance (T));
end Reset;
---------
-- Set --
---------
procedure Set (T : in out Instance; K : Key; E : Element) is
Tmp : constant Elmt_Ptr := Tab.Get (Tab.Instance (T), K);
begin
if Tmp = null then
Tab.Set (Tab.Instance (T), new Element_Wrapper'(K, E, null));
else
Tmp.E := E;
end if;
end Set;
--------------
-- Set_Next --
--------------
procedure Set_Next (E : Elmt_Ptr; Next : Elmt_Ptr) is
begin
E.Next := Next;
end Set_Next;
end Simple_HTable;
------------------------
-- Load_Factor_HTable --
------------------------
package body Load_Factor_HTable is
Min_Size_Increase : constant := 5;
-- The minimum increase expressed as number of buckets. This value is
-- used to determine the new size of small tables and/or small growth
-- percentages.
procedure Attach
(Elmt : not null Element_Ptr;
Chain : not null Element_Ptr);
-- Prepend an element to a bucket chain. Elmt is inserted after the
-- dummy head of Chain.
function Create_Buckets (Size : Positive) return Buckets_Array_Ptr;
-- Allocate and initialize a new set of buckets. The buckets are created
-- in the range Range_Type'First .. Range_Type'First + Size - 1.
procedure Detach (Elmt : not null Element_Ptr);
-- Remove an element from an arbitrary bucket chain
function Find
(Key : Key_Type;
Chain : not null Element_Ptr) return Element_Ptr;
-- Try to locate the element which contains a particular key within a
-- bucket chain. If no such element exists, return No_Element.
procedure Free is
new Ada.Unchecked_Deallocation (Buckets_Array, Buckets_Array_Ptr);
procedure Free is
new Ada.Unchecked_Deallocation (Element, Element_Ptr);
function Is_Empty_Chain (Chain : not null Element_Ptr) return Boolean;
-- Determine whether a bucket chain contains only one element, namely
-- the dummy head.
------------
-- Attach --
------------
procedure Attach
(Elmt : not null Element_Ptr;
Chain : not null Element_Ptr)
is
begin
Chain.Next.Prev := Elmt;
Elmt.Next := Chain.Next;
Chain.Next := Elmt;
Elmt.Prev := Chain;
end Attach;
--------------------
-- Create_Buckets --
--------------------
function Create_Buckets (Size : Positive) return Buckets_Array_Ptr is
Low_Bound : constant Range_Type := Range_Type'First;
Buckets : Buckets_Array_Ptr;
begin
Buckets :=
new Buckets_Array (Low_Bound .. Low_Bound + Range_Type (Size) - 1);
-- Ensure that the dummy head of each bucket chain points to itself
-- in both directions.
for Index in Buckets'Range loop
declare
Bucket : Element renames Buckets (Index);
begin
Bucket.Prev := Bucket'Unchecked_Access;
Bucket.Next := Bucket'Unchecked_Access;
end;
end loop;
return Buckets;
end Create_Buckets;
------------------
-- Current_Size --
------------------
function Current_Size (T : Table) return Positive is
begin
-- The table should have been properly initialized during object
-- elaboration.
if T.Buckets = null then
raise Program_Error;
-- The size of the table is determined by the number of buckets
else
return T.Buckets'Length;
end if;
end Current_Size;
------------
-- Detach --
------------
procedure Detach (Elmt : not null Element_Ptr) is
begin
if Elmt.Prev /= null and Elmt.Next /= null then
Elmt.Prev.Next := Elmt.Next;
Elmt.Next.Prev := Elmt.Prev;
Elmt.Prev := null;
Elmt.Next := null;
end if;
end Detach;
--------------
-- Finalize --
--------------
procedure Finalize (T : in out Table) is
Bucket : Element_Ptr;
Elmt : Element_Ptr;
begin
-- Inspect the buckets and deallocate bucket chains
for Index in T.Buckets'Range loop
Bucket := T.Buckets (Index)'Unchecked_Access;
-- The current bucket chain contains an element other than the
-- dummy head.
while not Is_Empty_Chain (Bucket) loop
-- Skip the dummy head, remove and deallocate the element
Elmt := Bucket.Next;
Detach (Elmt);
Free (Elmt);
end loop;
end loop;
-- Deallocate the buckets
Free (T.Buckets);
end Finalize;
----------
-- Find --
----------
function Find
(Key : Key_Type;
Chain : not null Element_Ptr) return Element_Ptr
is
Elmt : Element_Ptr;
begin
-- Skip the dummy head, inspect the bucket chain for an element whose
-- key matches the requested key. Since each bucket chain is circular
-- the search must stop once the dummy head is encountered.
Elmt := Chain.Next;
while Elmt /= Chain loop
if Equal (Elmt.Key, Key) then
return Elmt;
end if;
Elmt := Elmt.Next;
end loop;
return No_Element;
end Find;
---------
-- Get --
---------
function Get (T : Table; Key : Key_Type) return Value_Type is
Bucket : Element_Ptr;
Elmt : Element_Ptr;
begin
-- Obtain the bucket chain where the (key, value) pair should reside
-- by calculating the proper hash location.
Bucket := T.Buckets (Hash (Key, Current_Size (T)))'Unchecked_Access;
-- Try to find an element whose key matches the requested key
Elmt := Find (Key, Bucket);
-- The hash table does not contain a matching (key, value) pair
if Elmt = No_Element then
return No_Value;
else
return Elmt.Val;
end if;
end Get;
----------------
-- Initialize --
----------------
procedure Initialize (T : in out Table) is
begin
pragma Assert (T.Buckets = null);
T.Buckets := Create_Buckets (Initial_Size);
T.Element_Count := 0;
end Initialize;
--------------------
-- Is_Empty_Chain --
--------------------
function Is_Empty_Chain (Chain : not null Element_Ptr) return Boolean is
begin
return Chain.Next = Chain and Chain.Prev = Chain;
end Is_Empty_Chain;
------------
-- Remove --
------------
procedure Remove (T : in out Table; Key : Key_Type) is
Bucket : Element_Ptr;
Elmt : Element_Ptr;
begin
-- Obtain the bucket chain where the (key, value) pair should reside
-- by calculating the proper hash location.
Bucket := T.Buckets (Hash (Key, Current_Size (T)))'Unchecked_Access;
-- Try to find an element whose key matches the requested key
Elmt := Find (Key, Bucket);
-- Remove and deallocate the (key, value) pair
if Elmt /= No_Element then
Detach (Elmt);
Free (Elmt);
end if;
end Remove;
---------
-- Set --
---------
procedure Set
(T : in out Table;
Key : Key_Type;
Val : Value_Type)
is
Curr_Size : constant Positive := Current_Size (T);
procedure Grow;
-- Grow the table to a new size according to the desired percentage
-- and relocate all existing elements to the new buckets.
----------
-- Grow --
----------
procedure Grow is
Buckets : Buckets_Array_Ptr;
Elmt : Element_Ptr;
Hash_Loc : Range_Type;
Old_Bucket : Element_Ptr;
Old_Buckets : Buckets_Array_Ptr := T.Buckets;
Size : Positive;
begin
-- Calculate the new size and allocate a new set of buckets. Note
-- that a table with a small size or a small growth percentage may
-- not always grow (for example, 10 buckets and 3% increase). In
-- that case, enforce a minimum increase.
Size :=
Positive'Max (Curr_Size * ((100 + Growth_Percentage) / 100),
Min_Size_Increase);
Buckets := Create_Buckets (Size);
-- Inspect the old buckets and transfer all elements by rehashing
-- all (key, value) pairs in the new buckets.
for Index in Old_Buckets'Range loop
Old_Bucket := Old_Buckets (Index)'Unchecked_Access;
-- The current bucket chain contains an element other than the
-- dummy head.
while not Is_Empty_Chain (Old_Bucket) loop
-- Skip the dummy head and find the new hash location
Elmt := Old_Bucket.Next;
Hash_Loc := Hash (Elmt.Key, Size);
-- Remove the element from the old buckets and insert it
-- into the new buckets. Note that there is no need to check
-- for duplicates because the hash table did not have any to
-- begin with.
Detach (Elmt);
Attach
(Elmt => Elmt,
Chain => Buckets (Hash_Loc)'Unchecked_Access);
end loop;
end loop;
-- Associate the new buckets with the table and reclaim the
-- storage occupied by the old buckets.
T.Buckets := Buckets;
Free (Old_Buckets);
end Grow;
-- Local variables
subtype LLF is Long_Long_Float;
Count : Natural renames T.Element_Count;
Bucket : Element_Ptr;
Hash_Loc : Range_Type;
-- Start of processing for Set
begin
-- Find the bucket where the (key, value) pair should be inserted by
-- computing the proper hash location.
Hash_Loc := Hash (Key, Curr_Size);
Bucket := T.Buckets (Hash_Loc)'Unchecked_Access;
-- Ensure that the key is not already present in the bucket in order
-- to avoid duplicates.
if Find (Key, Bucket) = No_Element then
Attach
(Elmt => new Element'(Key, Val, null, null),
Chain => Bucket);
Count := Count + 1;
-- Multiple insertions may cause long bucket chains and decrease
-- the performance of basic operations. If this is the case, grow
-- the table and rehash all existing elements.
if (LLF (Count) / LLF (Curr_Size)) > LLF (Load_Factor) then
Grow;
end if;
end if;
end Set;
end Load_Factor_HTable;
end GNAT.Dynamic_HTables;