| /* Double.java -- object wrapper for double primitive |
| Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. |
| |
| This file is part of GNU Classpath. |
| |
| GNU Classpath is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2, or (at your option) |
| any later version. |
| |
| GNU Classpath is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GNU Classpath; see the file COPYING. If not, write to the |
| Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| 02111-1307 USA. |
| |
| Linking this library statically or dynamically with other modules is |
| making a combined work based on this library. Thus, the terms and |
| conditions of the GNU General Public License cover the whole |
| combination. |
| |
| As a special exception, the copyright holders of this library give you |
| permission to link this library with independent modules to produce an |
| executable, regardless of the license terms of these independent |
| modules, and to copy and distribute the resulting executable under |
| terms of your choice, provided that you also meet, for each linked |
| independent module, the terms and conditions of the license of that |
| module. An independent module is a module which is not derived from |
| or based on this library. If you modify this library, you may extend |
| this exception to your version of the library, but you are not |
| obligated to do so. If you do not wish to do so, delete this |
| exception statement from your version. */ |
| |
| |
| package java.lang; |
| |
| import gnu.classpath.Configuration; |
| |
| /* Written using "Java Class Libraries", 2nd edition, ISBN 0-201-31002-3 |
| * "The Java Language Specification", ISBN 0-201-63451-1 |
| * plus online API docs for JDK 1.2 beta from http://www.javasoft.com. |
| * Status: Believed complete and correct. |
| */ |
| |
| /** |
| * Instances of class <code>Double</code> represent primitive |
| * <code>double</code> values. |
| * |
| * Additionally, this class provides various helper functions and variables |
| * related to doubles. |
| * |
| * @author Paul Fisher |
| * @author Andrew Haley <aph@cygnus.com> |
| * @since JDK 1.0 |
| */ |
| public final class Double extends Number implements Comparable |
| { |
| /** |
| * The minimum positive value a <code>double</code> may represent |
| * is 5e-324. |
| */ |
| public static final double MIN_VALUE = 5e-324; |
| |
| /** |
| * The maximum positive value a <code>double</code> may represent |
| * is 1.7976931348623157e+308. |
| */ |
| public static final double MAX_VALUE = 1.7976931348623157e+308; |
| |
| /** |
| * The value of a double representation -1.0/0.0, negative |
| * infinity. |
| */ |
| public static final double NEGATIVE_INFINITY = -1.0d/0.0d; |
| |
| /** |
| * The value of a double representing 1.0/0.0, positive infinity. |
| */ |
| public static final double POSITIVE_INFINITY = 1.0d/0.0d; |
| |
| /** |
| * All IEEE 754 values of NaN have the same value in Java. |
| */ |
| public static final double NaN = 0.0d/0.0d; |
| |
| /** |
| * The primitive type <code>double</code> is represented by this |
| * <code>Class</code> object. |
| */ |
| public static final Class TYPE = VMClassLoader.getPrimitiveClass('D'); |
| |
| /** |
| * The immutable value of this Double. |
| */ |
| private final double value; |
| |
| private static final long serialVersionUID = -9172774392245257468L; |
| |
| /** |
| * Load native routines necessary for this class. |
| */ |
| static |
| { |
| if (Configuration.INIT_LOAD_LIBRARY) |
| { |
| System.loadLibrary ("javalang"); |
| initIDs (); |
| } |
| } |
| |
| /** |
| * Create a <code>Double</code> from the primitive <code>double</code> |
| * specified. |
| * |
| * @param value the <code>double</code> argument |
| */ |
| public Double (double value) |
| { |
| this.value = value; |
| } |
| |
| /** |
| * Create a <code>Double</code> from the specified |
| * <code>String</code>. |
| * |
| * This method calls <code>Double.parseDouble()</code>. |
| * |
| * @exception NumberFormatException when the <code>String</code> cannot |
| * be parsed into a <code>Float</code>. |
| * @param s the <code>String</code> to convert |
| * @see #parseDouble(java.lang.String) |
| */ |
| public Double (String s) throws NumberFormatException |
| { |
| value = parseDouble (s); |
| } |
| |
| /** |
| * Convert the <code>double</code> value of this <code>Double</code> |
| * to a <code>String</code>. This method calls |
| * <code>Double.toString(double)</code> to do its dirty work. |
| * |
| * @return the <code>String</code> representation of this <code>Double</code>. |
| * @see #toString(double) |
| */ |
| public String toString () |
| { |
| return toString (value); |
| } |
| |
| /** |
| * If the <code>Object</code> is not <code>null</code>, is an |
| * <code>instanceof</code> <code>Double</code>, and represents |
| * the same primitive <code>double</code> value return |
| * <code>true</code>. Otherwise <code>false</code> is returned. |
| * <p> |
| * Note that there are two differences between <code>==</code> and |
| * <code>equals()</code>. <code>0.0d == -0.0d</code> returns <code>true</code> |
| * but <code>new Double(0.0d).equals(new Double(-0.0d))</code> returns |
| * <code>false</code>. And <code>Double.NaN == Double.NaN</code> returns |
| * <code>false</code>, but |
| * <code>new Double(Double.NaN).equals(new Double(Double.NaN))</code> returns |
| * <code>true</code>. |
| * |
| * @param obj the object to compare to |
| * @return whether the objects are semantically equal. |
| */ |
| public boolean equals (Object obj) |
| { |
| if (!(obj instanceof Double)) |
| return false; |
| |
| double d = ((Double) obj).value; |
| |
| // GCJ LOCAL: this implementation is probably faster than |
| // Classpath's, especially once we inline doubleToLongBits. |
| return doubleToLongBits (value) == doubleToLongBits (d); |
| // END GCJ LOCAL |
| } |
| |
| /** |
| * The hashcode is the value of the expression: <br> |
| * <br> |
| * <code>(int)(v^(v>>>32))</code><br> |
| * <br> |
| * where v is defined by: <br> |
| * <code>long v = Double.doubleToLongBits(this.longValue());</code><br> |
| */ |
| public int hashCode () |
| { |
| long v = doubleToLongBits (value); |
| return (int) (v ^ (v >>> 32)); |
| } |
| |
| /** |
| * Return the value of this <code>Double</code> when cast to an |
| * <code>int</code>. |
| */ |
| public int intValue () |
| { |
| return (int) value; |
| } |
| |
| /** |
| * Return the value of this <code>Double</code> when cast to a |
| * <code>long</code>. |
| */ |
| public long longValue () |
| { |
| return (long) value; |
| } |
| |
| /** |
| * Return the value of this <code>Double</code> when cast to a |
| * <code>float</code>. |
| */ |
| public float floatValue () |
| { |
| return (float) value; |
| } |
| |
| /** |
| * Return the primitive <code>double</code> value represented by this |
| * <code>Double</code>. |
| */ |
| public double doubleValue () |
| { |
| return value; |
| } |
| |
| /** |
| * Return the result of calling <code>new Double(java.lang.String)</code>. |
| * |
| * @param s the <code>String</code> to convert to a <code>Double</code>. |
| * @return a new <code>Double</code> representing the <code>String</code>'s |
| * numeric value. |
| * |
| * @exception NullPointerException thrown if <code>String</code> is |
| * <code>null</code>. |
| * @exception NumberFormatException thrown if <code>String</code> cannot |
| * be parsed as a <code>double</code>. |
| * @see #Double(java.lang.String) |
| * @see #parseDouble(java.lang.String) |
| */ |
| public static Double valueOf (String s) throws NumberFormatException |
| { |
| return new Double (s); |
| } |
| |
| /** |
| * Return <code>true</code> if the value of this <code>Double</code> |
| * is the same as <code>NaN</code>, otherwise return <code>false</code>. |
| * @return whether this <code>Double</code> is <code>NaN</code>. |
| */ |
| public boolean isNaN () |
| { |
| return isNaN (value); |
| } |
| |
| /** |
| * Return <code>true</code> if the <code>double</code> has the same |
| * value as <code>NaN</code>, otherwise return <code>false</code>. |
| * |
| * @param v the <code>double</code> to compare |
| * @return whether the argument is <code>NaN</code>. |
| */ |
| public static boolean isNaN (double v) |
| { |
| // This works since NaN != NaN is the only reflexive inequality |
| // comparison which returns true. |
| return v != v; |
| } |
| |
| /** |
| * Return <code>true</code> if the value of this <code>Double</code> |
| * is the same as <code>NEGATIVE_INFINITY</code> or |
| * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>. |
| * |
| * @return whether this <code>Double</code> is (-/+) infinity. |
| */ |
| public boolean isInfinite () |
| { |
| return isInfinite (value); |
| } |
| |
| /** |
| * Return <code>true</code> if the <code>double</code> has a value |
| * equal to either <code>NEGATIVE_INFINITY</code> or |
| * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>. |
| * |
| * @param v the <code>double</code> to compare |
| * @return whether the argument is (-/+) infinity. |
| */ |
| public static boolean isInfinite (double v) |
| { |
| return (v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY); |
| } |
| |
| /** |
| * Returns 0 if the <code>double</code> value of the argument is |
| * equal to the value of this <code>Double</code>. Returns a number |
| * less than zero if the value of this <code>Double</code> is less |
| * than the <code>double</code> value of the argument, and returns a |
| * number greater than zero if the value of this <code>Double</code> |
| * is greater than the <code>double</code> value of the argument. |
| * <br> |
| * <code>Double.NaN</code> is greater than any number other than itself, |
| * even <code>Double.POSITIVE_INFINITY</code>. |
| * <br> |
| * <code>0.0d</code> is greater than <code>-0.0d</code>. |
| * |
| * @param d the Double to compare to. |
| * @return 0 if the <code>Double</code>s are the same, < 0 if this |
| * <code>Double</code> is less than the <code>Double</code> in |
| * in question, or > 0 if it is greater. |
| * @since 1.2 |
| */ |
| public int compareTo (Double d) |
| { |
| return compare (value, d.value); |
| } |
| |
| /** |
| * Returns 0 if the first argument is equal to the second argument. |
| * Returns a number less than zero if the first argument is less than the |
| * second argument, and returns a number greater than zero if the first |
| * argument is greater than the second argument. |
| * <br> |
| * <code>Double.NaN</code> is greater than any number other than itself, |
| * even <code>Double.POSITIVE_INFINITY</code>. |
| * <br> |
| * <code>0.0d</code> is greater than <code>-0.0d</code>. |
| * |
| * @param x the first double to compare. |
| * @param y the second double to compare. |
| * @return 0 if the arguments are the same, < 0 if the |
| * first argument is less than the second argument in |
| * in question, or > 0 if it is greater. |
| * @since 1.4 |
| */ |
| public static int compare (double x, double y) |
| { |
| if (isNaN (x)) |
| return isNaN (y) ? 0 : 1; |
| if (isNaN (y)) |
| return -1; |
| // recall that 0.0 == -0.0, so we convert to infinites and try again |
| if (x == 0 && y == 0) |
| return (int) (1 / x - 1 / y); |
| if (x == y) |
| return 0; |
| |
| return x > y ? 1 : -1; |
| } |
| |
| /** |
| * Compares the specified <code>Object</code> to this <code>Double</code> |
| * if and only if the <code>Object</code> is an instanceof |
| * <code>Double</code>. |
| * |
| * @param o the Object to compare to. |
| * @return 0 if the <code>Double</code>s are the same, < 0 if this |
| * <code>Double</code> is less than the <code>Double</code> in |
| * in question, or > 0 if it is greater. |
| * @throws ClassCastException if the argument is not a <code>Double</code> |
| */ |
| public int compareTo (Object o) |
| { |
| return compareTo ((Double) o); |
| } |
| |
| /** |
| * Convert the <code>double</code> to a <code>String</code>. |
| * <P> |
| * |
| * Floating-point string representation is fairly complex: here is a |
| * rundown of the possible values. "<CODE>[-]</CODE>" indicates that a |
| * negative sign will be printed if the value (or exponent) is negative. |
| * "<CODE><number></CODE>" means a string of digits (0-9). |
| * "<CODE><digit></CODE>" means a single digit (0-9). |
| * <P> |
| * |
| * <TABLE BORDER=1> |
| * <TR><TH>Value of Float</TH><TH>String Representation</TH></TR> |
| * <TR> |
| * <TD>[+-] 0</TD> |
| * <TD>[<CODE>-</CODE>]<CODE>0.0</CODE></TD> |
| * </TR> |
| * <TR> |
| * <TD>Between [+-] 10<SUP>-3</SUP> and 10<SUP>7</SUP></TD> |
| * <TD><CODE>[-]number.number</CODE></TD> |
| * </TR> |
| * <TR> |
| * <TD>Other numeric value</TD> |
| * <TD><CODE>[-]<digit>.<number>E[-]<number></CODE></TD> |
| * </TR> |
| * <TR> |
| * <TD>[+-] infinity</TD> |
| * <TD><CODE>[-]Infinity</CODE></TD> |
| * </TR> |
| * <TR> |
| * <TD>NaN</TD> |
| * <TD><CODE>NaN</CODE></TD> |
| * </TR> |
| * </TABLE> |
| * |
| * Yes, negative zero <EM>is</EM> a possible value. Note that there is |
| * <EM>always</EM> a <CODE>.</CODE> and at least one digit printed after |
| * it: even if the number is 3, it will be printed as <CODE>3.0</CODE>. |
| * After the ".", all digits will be printed except trailing zeros. No |
| * truncation or rounding is done by this function. |
| * |
| * |
| * @XXX specify where we are not in accord with the spec. |
| * |
| * @param d the <code>double</code> to convert |
| * @return the <code>String</code> representing the <code>double</code>. |
| */ |
| public static String toString (double d) |
| { |
| return toString (d, false); |
| } |
| |
| static native String toString (double d, boolean isFloat); |
| |
| /** |
| * Return the long bits of the specified <code>double</code>. |
| * The result of this function can be used as the argument to |
| * <code>Double.longBitsToDouble(long)</code> to obtain the |
| * original <code>double</code> value. |
| * |
| * @param value the <code>double</code> to convert |
| * @return the bits of the <code>double</code>. |
| */ |
| public static native long doubleToLongBits (double value); |
| |
| /** |
| * Return the long bits of the specified <code>double</code>. |
| * The result of this function can be used as the argument to |
| * <code>Double.longBitsToDouble(long)</code> to obtain the |
| * original <code>double</code> value. This method differs from |
| * <code>doubleToLongBits</code> in that it does not collapse |
| * NaN values. |
| * |
| * @param value the <code>double</code> to convert |
| * @return the bits of the <code>double</code>. |
| */ |
| public static native long doubleToRawLongBits (double value); |
| |
| /** |
| * Return the <code>double</code> represented by the long |
| * bits specified. |
| * |
| * @param bits the long bits representing a <code>double</code> |
| * @return the <code>double</code> represented by the bits. |
| */ |
| public static native double longBitsToDouble (long bits); |
| |
| /** |
| * Parse the specified <code>String</code> as a <code>double</code>. |
| * |
| * The number is really read as <em>n * 10<sup>exponent</sup></em>. The |
| * first number is <em>n</em>, and if there is an "<code>E</code>" |
| * ("<code>e</code>" is also acceptable), then the integer after that is |
| * the exponent. |
| * <P> |
| * Here are the possible forms the number can take: |
| * <BR> |
| * <TABLE BORDER=1> |
| * <TR><TH>Form</TH><TH>Examples</TH></TR> |
| * <TR><TD><CODE>[+-]<number>[.]</CODE></TD><TD>345., -10, 12</TD></TR> |
| * <TR><TD><CODE>[+-]<number>.<number></CODE></TD><TD>40.2, 80.00, -12.30</TD></TR> |
| * <TR><TD><CODE>[+-]<number>[.]E[+-]<number></CODE></TD><TD>80E12, -12e+7, 4.E-123</TD></TR> |
| * <TR><TD><CODE>[+-]<number>.<number>E[+-]<number></CODE></TD><TD>6.02e-22, -40.2E+6, 12.3e9</TD></TR> |
| * </TABLE> |
| * |
| * "<code>[+-]</code>" means either a plus or minus sign may go there, or |
| * neither, in which case + is assumed. |
| * <BR> |
| * "<code>[.]</code>" means a dot may be placed here, but is optional. |
| * <BR> |
| * "<code><number></code>" means a string of digits (0-9), basically |
| * an integer. "<code><number>.<number></code>" is basically |
| * a real number, a floating-point value. |
| * <P> |
| * |
| * Remember that a <code>double</code> has a limited range. If the |
| * number you specify is greater than <code>Double.MAX_VALUE</code> or less |
| * than <code>-Double.MAX_VALUE</code>, it will be set at |
| * <code>Double.POSITIVE_INFINITY</code> or |
| * <code>Double.NEGATIVE_INFINITY</code>, respectively. |
| * <P> |
| * Note also that <code>double</code> does not have perfect precision. Many |
| * numbers cannot be precisely represented. The number you specify |
| * will be rounded to the nearest representable value. |
| * <code>Double.MIN_VALUE</code> is the margin of error for |
| * <code>double</code> values. |
| * <P> |
| * If an unexpected character is found in the <code>String</code>, a |
| * <code>NumberFormatException</code> will be thrown. Spaces are not |
| * allowed, and will cause the same exception. |
| * |
| * @XXX specify where/how we are not in accord with the spec. |
| * |
| * @param str the <code>String</code> to convert |
| * @return the value of the <code>String</code> as a <code>double</code>. |
| * @exception NumberFormatException when the string cannot be parsed to a |
| * <code>double</code>. |
| * @exception NullPointerException when the string is null. |
| * @see #MIN_VALUE |
| * @see #MAX_VALUE |
| * @see #POSITIVE_INFINITY |
| * @see #NEGATIVE_INFINITY |
| * @since 1.2 |
| */ |
| public static native double parseDouble (String s) |
| throws NumberFormatException; |
| |
| /** |
| * Initialize JNI cache. This method is called only by the |
| * static initializer when using JNI. |
| */ |
| private static native void initIDs (); |
| } |