|  | /* Implementation of the MINLOC intrinsic | 
|  | Copyright (C) 2017-2025 Free Software Foundation, Inc. | 
|  | Contributed by Thomas Koenig | 
|  |  | 
|  | This file is part of the GNU Fortran runtime library (libgfortran). | 
|  |  | 
|  | Libgfortran is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 3 of the License, or (at your option) any later version. | 
|  |  | 
|  | Libgfortran is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | Under Section 7 of GPL version 3, you are granted additional | 
|  | permissions described in the GCC Runtime Library Exception, version | 
|  | 3.1, as published by the Free Software Foundation. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License and | 
|  | a copy of the GCC Runtime Library Exception along with this program; | 
|  | see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "libgfortran.h" | 
|  |  | 
|  |  | 
|  | #if defined (HAVE_GFC_UINTEGER_4) && defined (HAVE_GFC_INTEGER_4) | 
|  |  | 
|  | #define HAVE_BACK_ARG 1 | 
|  |  | 
|  | #include <string.h> | 
|  | #include <assert.h> | 
|  |  | 
|  | static inline int | 
|  | compare_fcn (const GFC_UINTEGER_4 *a, const GFC_UINTEGER_4 *b, gfc_charlen_type n) | 
|  | { | 
|  | if (sizeof (GFC_UINTEGER_4) == 1) | 
|  | return memcmp (a, b, n); | 
|  | else | 
|  | return memcmp_char4 (a, b, n); | 
|  | } | 
|  |  | 
|  | extern void minloc1_4_s4 (gfc_array_i4 * const restrict, | 
|  | gfc_array_s4 * const restrict, const index_type * const restrict , GFC_LOGICAL_4 back, | 
|  | gfc_charlen_type); | 
|  | export_proto(minloc1_4_s4); | 
|  |  | 
|  | void | 
|  | minloc1_4_s4 (gfc_array_i4 * const restrict retarray, | 
|  | gfc_array_s4 * const restrict array, | 
|  | const index_type * const restrict pdim, GFC_LOGICAL_4 back, | 
|  | gfc_charlen_type string_len) | 
|  | { | 
|  | index_type count[GFC_MAX_DIMENSIONS]; | 
|  | index_type extent[GFC_MAX_DIMENSIONS]; | 
|  | index_type sstride[GFC_MAX_DIMENSIONS]; | 
|  | index_type dstride[GFC_MAX_DIMENSIONS]; | 
|  | const GFC_UINTEGER_4 * restrict base; | 
|  | GFC_INTEGER_4 * restrict dest; | 
|  | index_type rank; | 
|  | index_type n; | 
|  | index_type len; | 
|  | index_type delta; | 
|  | index_type dim; | 
|  | int continue_loop; | 
|  |  | 
|  | /* Make dim zero based to avoid confusion.  */ | 
|  | rank = GFC_DESCRIPTOR_RANK (array) - 1; | 
|  | dim = (*pdim) - 1; | 
|  |  | 
|  | if (unlikely (dim < 0 || dim > rank)) | 
|  | { | 
|  | runtime_error ("Dim argument incorrect in MINLOC intrinsic: " | 
|  | "is %ld, should be between 1 and %ld", | 
|  | (long int) dim + 1, (long int) rank + 1); | 
|  | } | 
|  |  | 
|  | len = GFC_DESCRIPTOR_EXTENT(array,dim); | 
|  | if (len < 0) | 
|  | len = 0; | 
|  | delta = GFC_DESCRIPTOR_STRIDE(array,dim) * string_len; | 
|  |  | 
|  | for (n = 0; n < dim; n++) | 
|  | { | 
|  | sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * string_len; | 
|  | extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); | 
|  |  | 
|  | if (extent[n] < 0) | 
|  | extent[n] = 0; | 
|  | } | 
|  | for (n = dim; n < rank; n++) | 
|  | { | 
|  | sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1) * string_len; | 
|  | extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); | 
|  |  | 
|  | if (extent[n] < 0) | 
|  | extent[n] = 0; | 
|  | } | 
|  |  | 
|  | if (retarray->base_addr == NULL) | 
|  | { | 
|  | size_t alloc_size, str; | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | { | 
|  | if (n == 0) | 
|  | str = 1; | 
|  | else | 
|  | str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; | 
|  |  | 
|  | GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); | 
|  |  | 
|  | } | 
|  |  | 
|  | retarray->offset = 0; | 
|  | retarray->dtype.rank = rank; | 
|  |  | 
|  | alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; | 
|  |  | 
|  | retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4)); | 
|  | if (alloc_size == 0) | 
|  | return; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (rank != GFC_DESCRIPTOR_RANK (retarray)) | 
|  | runtime_error ("rank of return array incorrect in" | 
|  | " MINLOC intrinsic: is %ld, should be %ld", | 
|  | (long int) (GFC_DESCRIPTOR_RANK (retarray)), | 
|  | (long int) rank); | 
|  |  | 
|  | if (unlikely (compile_options.bounds_check)) | 
|  | bounds_ifunction_return ((array_t *) retarray, extent, | 
|  | "return value", "MINLOC"); | 
|  | } | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | { | 
|  | count[n] = 0; | 
|  | dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); | 
|  | if (extent[n] <= 0) | 
|  | return; | 
|  | } | 
|  |  | 
|  | base = array->base_addr; | 
|  | dest = retarray->base_addr; | 
|  |  | 
|  | continue_loop = 1; | 
|  | while (continue_loop) | 
|  | { | 
|  | const GFC_UINTEGER_4 * restrict src; | 
|  | GFC_INTEGER_4 result; | 
|  | src = base; | 
|  | { | 
|  |  | 
|  | const GFC_UINTEGER_4 *minval; | 
|  | minval = NULL; | 
|  | result = 0; | 
|  | if (len <= 0) | 
|  | *dest = 0; | 
|  | else | 
|  | { | 
|  | for (n = 0; n < len; n++, src += delta) | 
|  | { | 
|  |  | 
|  | if (minval == NULL || (back ? compare_fcn (src, minval, string_len) <= 0 : | 
|  | compare_fcn (src, minval, string_len) < 0)) | 
|  | { | 
|  | minval = src; | 
|  | result = (GFC_INTEGER_4)n + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | *dest = result; | 
|  | } | 
|  | } | 
|  | /* Advance to the next element.  */ | 
|  | count[0]++; | 
|  | base += sstride[0]; | 
|  | dest += dstride[0]; | 
|  | n = 0; | 
|  | while (count[n] == extent[n]) | 
|  | { | 
|  | /* When we get to the end of a dimension, reset it and increment | 
|  | the next dimension.  */ | 
|  | count[n] = 0; | 
|  | /* We could precalculate these products, but this is a less | 
|  | frequently used path so probably not worth it.  */ | 
|  | base -= sstride[n] * extent[n]; | 
|  | dest -= dstride[n] * extent[n]; | 
|  | n++; | 
|  | if (n >= rank) | 
|  | { | 
|  | /* Break out of the loop.  */ | 
|  | continue_loop = 0; | 
|  | break; | 
|  | } | 
|  | else | 
|  | { | 
|  | count[n]++; | 
|  | base += sstride[n]; | 
|  | dest += dstride[n]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | extern void mminloc1_4_s4 (gfc_array_i4 * const restrict, | 
|  | gfc_array_s4 * const restrict, const index_type * const restrict, | 
|  | gfc_array_l1 * const restrict, GFC_LOGICAL_4 back, gfc_charlen_type); | 
|  | export_proto(mminloc1_4_s4); | 
|  |  | 
|  | void | 
|  | mminloc1_4_s4 (gfc_array_i4 * const restrict retarray, | 
|  | gfc_array_s4 * const restrict array, | 
|  | const index_type * const restrict pdim, | 
|  | gfc_array_l1 * const restrict mask, GFC_LOGICAL_4 back, | 
|  | gfc_charlen_type string_len) | 
|  | { | 
|  | index_type count[GFC_MAX_DIMENSIONS]; | 
|  | index_type extent[GFC_MAX_DIMENSIONS]; | 
|  | index_type sstride[GFC_MAX_DIMENSIONS]; | 
|  | index_type dstride[GFC_MAX_DIMENSIONS]; | 
|  | index_type mstride[GFC_MAX_DIMENSIONS]; | 
|  | GFC_INTEGER_4 * restrict dest; | 
|  | const GFC_UINTEGER_4 * restrict base; | 
|  | const GFC_LOGICAL_1 * restrict mbase; | 
|  | index_type rank; | 
|  | index_type dim; | 
|  | index_type n; | 
|  | index_type len; | 
|  | index_type delta; | 
|  | index_type mdelta; | 
|  | int mask_kind; | 
|  |  | 
|  | if (mask == NULL) | 
|  | { | 
|  | #ifdef HAVE_BACK_ARG | 
|  | minloc1_4_s4 (retarray, array, pdim, back, string_len); | 
|  | #else | 
|  | minloc1_4_s4 (retarray, array, pdim, string_len); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | dim = (*pdim) - 1; | 
|  | rank = GFC_DESCRIPTOR_RANK (array) - 1; | 
|  |  | 
|  |  | 
|  | if (unlikely (dim < 0 || dim > rank)) | 
|  | { | 
|  | runtime_error ("Dim argument incorrect in MINLOC intrinsic: " | 
|  | "is %ld, should be between 1 and %ld", | 
|  | (long int) dim + 1, (long int) rank + 1); | 
|  | } | 
|  |  | 
|  | len = GFC_DESCRIPTOR_EXTENT(array,dim); | 
|  | if (len < 0) | 
|  | len = 0; | 
|  |  | 
|  | mbase = mask->base_addr; | 
|  |  | 
|  | mask_kind = GFC_DESCRIPTOR_SIZE (mask); | 
|  |  | 
|  | if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 | 
|  | #ifdef HAVE_GFC_LOGICAL_16 | 
|  | || mask_kind == 16 | 
|  | #endif | 
|  | ) | 
|  | mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); | 
|  | else | 
|  | runtime_error ("Funny sized logical array"); | 
|  |  | 
|  | delta = GFC_DESCRIPTOR_STRIDE(array,dim) * string_len; | 
|  | mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim); | 
|  |  | 
|  | for (n = 0; n < dim; n++) | 
|  | { | 
|  | sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * string_len; | 
|  | mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); | 
|  | extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); | 
|  |  | 
|  | if (extent[n] < 0) | 
|  | extent[n] = 0; | 
|  |  | 
|  | } | 
|  | for (n = dim; n < rank; n++) | 
|  | { | 
|  | sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1) * string_len; | 
|  | mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1); | 
|  | extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); | 
|  |  | 
|  | if (extent[n] < 0) | 
|  | extent[n] = 0; | 
|  | } | 
|  |  | 
|  | if (retarray->base_addr == NULL) | 
|  | { | 
|  | size_t alloc_size, str; | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | { | 
|  | if (n == 0) | 
|  | str = 1; | 
|  | else | 
|  | str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; | 
|  |  | 
|  | GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); | 
|  |  | 
|  | } | 
|  |  | 
|  | alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; | 
|  |  | 
|  | retarray->offset = 0; | 
|  | retarray->dtype.rank = rank; | 
|  |  | 
|  | retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4)); | 
|  | if (alloc_size == 0) | 
|  | return; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (rank != GFC_DESCRIPTOR_RANK (retarray)) | 
|  | runtime_error ("rank of return array incorrect in MINLOC intrinsic"); | 
|  |  | 
|  | if (unlikely (compile_options.bounds_check)) | 
|  | { | 
|  | bounds_ifunction_return ((array_t *) retarray, extent, | 
|  | "return value", "MINLOC"); | 
|  | bounds_equal_extents ((array_t *) mask, (array_t *) array, | 
|  | "MASK argument", "MINLOC"); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | { | 
|  | count[n] = 0; | 
|  | dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); | 
|  | if (extent[n] <= 0) | 
|  | return; | 
|  | } | 
|  |  | 
|  | dest = retarray->base_addr; | 
|  | base = array->base_addr; | 
|  |  | 
|  | while (base) | 
|  | { | 
|  | const GFC_UINTEGER_4 * restrict src; | 
|  | const GFC_LOGICAL_1 * restrict msrc; | 
|  | GFC_INTEGER_4 result; | 
|  | src = base; | 
|  | msrc = mbase; | 
|  | { | 
|  |  | 
|  | const GFC_UINTEGER_4 *minval; | 
|  | minval = base; | 
|  | result = 0; | 
|  | for (n = 0; n < len; n++, src += delta, msrc += mdelta) | 
|  | { | 
|  |  | 
|  | if (*msrc) | 
|  | { | 
|  | minval = src; | 
|  | result = (GFC_INTEGER_4)n + 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | for (; n < len; n++, src += delta, msrc += mdelta) | 
|  | { | 
|  | if (*msrc && (back ? compare_fcn (src, minval, string_len) <= 0 : | 
|  | compare_fcn (src, minval, string_len) < 0)) | 
|  | { | 
|  | minval = src; | 
|  | result = (GFC_INTEGER_4)n + 1; | 
|  | } | 
|  |  | 
|  | } | 
|  | *dest = result; | 
|  | } | 
|  | /* Advance to the next element.  */ | 
|  | count[0]++; | 
|  | base += sstride[0]; | 
|  | mbase += mstride[0]; | 
|  | dest += dstride[0]; | 
|  | n = 0; | 
|  | while (count[n] == extent[n]) | 
|  | { | 
|  | /* When we get to the end of a dimension, reset it and increment | 
|  | the next dimension.  */ | 
|  | count[n] = 0; | 
|  | /* We could precalculate these products, but this is a less | 
|  | frequently used path so probably not worth it.  */ | 
|  | base -= sstride[n] * extent[n]; | 
|  | mbase -= mstride[n] * extent[n]; | 
|  | dest -= dstride[n] * extent[n]; | 
|  | n++; | 
|  | if (n >= rank) | 
|  | { | 
|  | /* Break out of the loop.  */ | 
|  | base = NULL; | 
|  | break; | 
|  | } | 
|  | else | 
|  | { | 
|  | count[n]++; | 
|  | base += sstride[n]; | 
|  | mbase += mstride[n]; | 
|  | dest += dstride[n]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | extern void sminloc1_4_s4 (gfc_array_i4 * const restrict, | 
|  | gfc_array_s4 * const restrict, const index_type * const restrict, | 
|  | GFC_LOGICAL_4 *, GFC_LOGICAL_4 back, gfc_charlen_type); | 
|  | export_proto(sminloc1_4_s4); | 
|  |  | 
|  | void | 
|  | sminloc1_4_s4 (gfc_array_i4 * const restrict retarray, | 
|  | gfc_array_s4 * const restrict array, | 
|  | const index_type * const restrict pdim, | 
|  | GFC_LOGICAL_4 * mask , GFC_LOGICAL_4 back, gfc_charlen_type string_len) | 
|  | { | 
|  | index_type count[GFC_MAX_DIMENSIONS]; | 
|  | index_type extent[GFC_MAX_DIMENSIONS]; | 
|  | index_type dstride[GFC_MAX_DIMENSIONS]; | 
|  | GFC_INTEGER_4 * restrict dest; | 
|  | index_type rank; | 
|  | index_type n; | 
|  | index_type dim; | 
|  |  | 
|  |  | 
|  | if (mask == NULL || *mask) | 
|  | { | 
|  | #ifdef HAVE_BACK_ARG | 
|  | minloc1_4_s4 (retarray, array, pdim, back, string_len); | 
|  | #else | 
|  | minloc1_4_s4 (retarray, array, pdim, string_len); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  | /* Make dim zero based to avoid confusion.  */ | 
|  | dim = (*pdim) - 1; | 
|  | rank = GFC_DESCRIPTOR_RANK (array) - 1; | 
|  |  | 
|  | if (unlikely (dim < 0 || dim > rank)) | 
|  | { | 
|  | runtime_error ("Dim argument incorrect in MINLOC intrinsic: " | 
|  | "is %ld, should be between 1 and %ld", | 
|  | (long int) dim + 1, (long int) rank + 1); | 
|  | } | 
|  |  | 
|  | for (n = 0; n < dim; n++) | 
|  | { | 
|  | extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); | 
|  |  | 
|  | if (extent[n] <= 0) | 
|  | extent[n] = 0; | 
|  | } | 
|  |  | 
|  | for (n = dim; n < rank; n++) | 
|  | { | 
|  | extent[n] = GFC_DESCRIPTOR_EXTENT(array,n + 1); | 
|  |  | 
|  | if (extent[n] <= 0) | 
|  | extent[n] = 0; | 
|  | } | 
|  |  | 
|  | if (retarray->base_addr == NULL) | 
|  | { | 
|  | size_t alloc_size, str; | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | { | 
|  | if (n == 0) | 
|  | str = 1; | 
|  | else | 
|  | str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; | 
|  |  | 
|  | GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); | 
|  |  | 
|  | } | 
|  |  | 
|  | retarray->offset = 0; | 
|  | retarray->dtype.rank = rank; | 
|  |  | 
|  | alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; | 
|  |  | 
|  | retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4)); | 
|  | if (alloc_size == 0) | 
|  | return; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (rank != GFC_DESCRIPTOR_RANK (retarray)) | 
|  | runtime_error ("rank of return array incorrect in" | 
|  | " MINLOC intrinsic: is %ld, should be %ld", | 
|  | (long int) (GFC_DESCRIPTOR_RANK (retarray)), | 
|  | (long int) rank); | 
|  |  | 
|  | if (unlikely (compile_options.bounds_check)) | 
|  | { | 
|  | for (n=0; n < rank; n++) | 
|  | { | 
|  | index_type ret_extent; | 
|  |  | 
|  | ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n); | 
|  | if (extent[n] != ret_extent) | 
|  | runtime_error ("Incorrect extent in return value of" | 
|  | " MINLOC intrinsic in dimension %ld:" | 
|  | " is %ld, should be %ld", (long int) n + 1, | 
|  | (long int) ret_extent, (long int) extent[n]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | { | 
|  | count[n] = 0; | 
|  | dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); | 
|  | } | 
|  |  | 
|  | dest = retarray->base_addr; | 
|  |  | 
|  | while(1) | 
|  | { | 
|  | *dest = 0; | 
|  | count[0]++; | 
|  | dest += dstride[0]; | 
|  | n = 0; | 
|  | while (count[n] == extent[n]) | 
|  | { | 
|  | /* When we get to the end of a dimension, reset it and increment | 
|  | the next dimension.  */ | 
|  | count[n] = 0; | 
|  | /* We could precalculate these products, but this is a less | 
|  | frequently used path so probably not worth it.  */ | 
|  | dest -= dstride[n] * extent[n]; | 
|  | n++; | 
|  | if (n >= rank) | 
|  | return; | 
|  | else | 
|  | { | 
|  | count[n]++; | 
|  | dest += dstride[n]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif |