blob: 669c4ac9a5498c1e7734f596e299439055f6e92c [file] [log] [blame]
//===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// This file is a part of ThreadSanitizer (TSan), a race detector.
// Main internal TSan header file.
// Ground rules:
// - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
// function-scope locals)
// - All functions/classes/etc reside in namespace __tsan, except for those
// declared in tsan_interface.h.
// - Platform-specific files should be used instead of ifdefs (*).
// - No system headers included in header files (*).
// - Platform specific headres included only into platform-specific files (*).
// (*) Except when inlining is critical for performance.
#ifndef TSAN_RTL_H
#define TSAN_RTL_H
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_asm.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
#include "sanitizer_common/sanitizer_libignore.h"
#include "sanitizer_common/sanitizer_suppressions.h"
#include "sanitizer_common/sanitizer_thread_registry.h"
#include "sanitizer_common/sanitizer_vector.h"
#include "tsan_clock.h"
#include "tsan_defs.h"
#include "tsan_flags.h"
#include "tsan_ignoreset.h"
#include "tsan_mman.h"
#include "tsan_mutexset.h"
#include "tsan_platform.h"
#include "tsan_report.h"
#include "tsan_shadow.h"
#include "tsan_stack_trace.h"
#include "tsan_sync.h"
#include "tsan_trace.h"
# error "ThreadSanitizer is supported only on 64-bit platforms"
namespace __tsan {
struct MapUnmapCallback;
#if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__)
struct AP32 {
static const uptr kSpaceBeg = 0;
static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
static const uptr kMetadataSize = 0;
typedef __sanitizer::CompactSizeClassMap SizeClassMap;
static const uptr kRegionSizeLog = 20;
using AddressSpaceView = LocalAddressSpaceView;
typedef __tsan::MapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
typedef SizeClassAllocator32<AP32> PrimaryAllocator;
struct AP64 { // Allocator64 parameters. Deliberately using a short name.
# if defined(__s390x__)
typedef MappingS390x Mapping;
# else
typedef Mapping48AddressSpace Mapping;
# endif
static const uptr kSpaceBeg = Mapping::kHeapMemBeg;
static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg;
static const uptr kMetadataSize = 0;
typedef DefaultSizeClassMap SizeClassMap;
typedef __tsan::MapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
using AddressSpaceView = LocalAddressSpaceView;
typedef SizeClassAllocator64<AP64> PrimaryAllocator;
typedef CombinedAllocator<PrimaryAllocator> Allocator;
typedef Allocator::AllocatorCache AllocatorCache;
Allocator *allocator();
struct ThreadSignalContext;
struct JmpBuf {
uptr sp;
int int_signal_send;
bool in_blocking_func;
uptr in_signal_handler;
uptr *shadow_stack_pos;
// A Processor represents a physical thread, or a P for Go.
// It is used to store internal resources like allocate cache, and does not
// participate in race-detection logic (invisible to end user).
// In C++ it is tied to an OS thread just like ThreadState, however ideally
// it should be tied to a CPU (this way we will have fewer allocator caches).
// In Go it is tied to a P, so there are significantly fewer Processor's than
// ThreadState's (which are tied to Gs).
// A ThreadState must be wired with a Processor to handle events.
struct Processor {
ThreadState *thr; // currently wired thread, or nullptr
AllocatorCache alloc_cache;
InternalAllocatorCache internal_alloc_cache;
DenseSlabAllocCache block_cache;
DenseSlabAllocCache sync_cache;
DenseSlabAllocCache clock_cache;
DDPhysicalThread *dd_pt;
// ScopedGlobalProcessor temporary setups a global processor for the current
// thread, if it does not have one. Intended for interceptors that can run
// at the very thread end, when we already destroyed the thread processor.
struct ScopedGlobalProcessor {
// This struct is stored in TLS.
struct ThreadState {
FastState fast_state;
// Synch epoch represents the threads's epoch before the last synchronization
// action. It allows to reduce number of shadow state updates.
// For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
// if we are processing write to X from the same thread at epoch=200,
// we do nothing, because both writes happen in the same 'synch epoch'.
// That is, if another memory access does not race with the former write,
// it does not race with the latter as well.
// QUESTION: can we can squeeze this into ThreadState::Fast?
// E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
// taken by epoch between synchs.
// This way we can save one load from tls.
u64 fast_synch_epoch;
// Technically `current` should be a separate THREADLOCAL variable;
// but it is placed here in order to share cache line with previous fields.
ThreadState* current;
// This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
// We do not distinguish beteween ignoring reads and writes
// for better performance.
int ignore_reads_and_writes;
atomic_sint32_t pending_signals;
int ignore_sync;
int suppress_reports;
// Go does not support ignores.
IgnoreSet mop_ignore_set;
IgnoreSet sync_ignore_set;
// C/C++ uses fixed size shadow stack.
uptr shadow_stack[kShadowStackSize];
// Go uses malloc-allocated shadow stack with dynamic size.
uptr *shadow_stack;
uptr *shadow_stack_end;
uptr *shadow_stack_pos;
RawShadow *racy_shadow_addr;
RawShadow racy_state[2];
MutexSet mset;
ThreadClock clock;
Vector<JmpBuf> jmp_bufs;
int ignore_interceptors;
const Tid tid;
const int unique_id;
bool in_symbolizer;
bool in_ignored_lib;
bool is_inited;
bool is_dead;
bool is_freeing;
bool is_vptr_access;
const uptr stk_addr;
const uptr stk_size;
const uptr tls_addr;
const uptr tls_size;
ThreadContext *tctx;
DDLogicalThread *dd_lt;
// Current wired Processor, or nullptr. Required to handle any events.
Processor *proc1;
Processor *proc() { return proc1; }
Processor *proc();
atomic_uintptr_t in_signal_handler;
ThreadSignalContext *signal_ctx;
StackID last_sleep_stack_id;
ThreadClock last_sleep_clock;
// Set in regions of runtime that must be signal-safe and fork-safe.
// If set, malloc must not be called.
int nomalloc;
const ReportDesc *current_report;
// Current position in tctx->trace.Back()->events (Event*).
atomic_uintptr_t trace_pos;
// PC of the last memory access, used to compute PC deltas in the trace.
uptr trace_prev_pc;
Sid sid;
Epoch epoch;
explicit ThreadState(Context *ctx, Tid tid, int unique_id, u64 epoch,
unsigned reuse_count, uptr stk_addr, uptr stk_size,
uptr tls_addr, uptr tls_size);
ThreadState *cur_thread();
void set_cur_thread(ThreadState *thr);
void cur_thread_finalize();
inline ThreadState *cur_thread_init() { return cur_thread(); }
# else
extern THREADLOCAL char cur_thread_placeholder[];
inline ThreadState *cur_thread() {
return reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current;
inline ThreadState *cur_thread_init() {
ThreadState *thr = reinterpret_cast<ThreadState *>(cur_thread_placeholder);
if (UNLIKELY(!thr->current))
thr->current = thr;
return thr->current;
inline void set_cur_thread(ThreadState *thr) {
reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current = thr;
inline void cur_thread_finalize() { }
#endif // SANITIZER_GO
class ThreadContext final : public ThreadContextBase {
explicit ThreadContext(Tid tid);
ThreadState *thr;
StackID creation_stack_id;
SyncClock sync;
// Epoch at which the thread had started.
// If we see an event from the thread stamped by an older epoch,
// the event is from a dead thread that shared tid with this thread.
u64 epoch0;
u64 epoch1;
v3::Trace trace;
// Override superclass callbacks.
void OnDead() override;
void OnJoined(void *arg) override;
void OnFinished() override;
void OnStarted(void *arg) override;
void OnCreated(void *arg) override;
void OnReset() override;
void OnDetached(void *arg) override;
struct RacyStacks {
MD5Hash hash[2];
bool operator==(const RacyStacks &other) const;
struct RacyAddress {
uptr addr_min;
uptr addr_max;
struct FiredSuppression {
ReportType type;
uptr pc_or_addr;
Suppression *supp;
struct Context {
bool initialized;
bool after_multithreaded_fork;
MetaMap metamap;
Mutex report_mtx;
int nreported;
atomic_uint64_t last_symbolize_time_ns;
void *background_thread;
atomic_uint32_t stop_background_thread;
ThreadRegistry thread_registry;
Mutex racy_mtx;
Vector<RacyStacks> racy_stacks;
Vector<RacyAddress> racy_addresses;
// Number of fired suppressions may be large enough.
Mutex fired_suppressions_mtx;
InternalMmapVector<FiredSuppression> fired_suppressions;
DDetector *dd;
ClockAlloc clock_alloc;
Flags flags;
fd_t memprof_fd;
Mutex slot_mtx;
extern Context *ctx; // The one and the only global runtime context.
ALWAYS_INLINE Flags *flags() {
return &ctx->flags;
struct ScopedIgnoreInterceptors {
ScopedIgnoreInterceptors() {
~ScopedIgnoreInterceptors() {
const char *GetObjectTypeFromTag(uptr tag);
const char *GetReportHeaderFromTag(uptr tag);
uptr TagFromShadowStackFrame(uptr pc);
class ScopedReportBase {
void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, StackTrace stack,
const MutexSet *mset);
void AddStack(StackTrace stack, bool suppressable = false);
void AddThread(const ThreadContext *tctx, bool suppressable = false);
void AddThread(Tid unique_tid, bool suppressable = false);
void AddUniqueTid(Tid unique_tid);
void AddMutex(const SyncVar *s);
u64 AddMutex(u64 id);
void AddLocation(uptr addr, uptr size);
void AddSleep(StackID stack_id);
void SetCount(int count);
const ReportDesc *GetReport() const;
ScopedReportBase(ReportType typ, uptr tag);
ReportDesc *rep_;
// Symbolizer makes lots of intercepted calls. If we try to process them,
// at best it will cause deadlocks on internal mutexes.
ScopedIgnoreInterceptors ignore_interceptors_;
void AddDeadMutex(u64 id);
ScopedReportBase(const ScopedReportBase &) = delete;
void operator=(const ScopedReportBase &) = delete;
class ScopedReport : public ScopedReportBase {
explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone);
ScopedErrorReportLock lock_;
bool ShouldReport(ThreadState *thr, ReportType typ);
ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack);
void RestoreStack(Tid tid, const u64 epoch, VarSizeStackTrace *stk,
MutexSet *mset, uptr *tag = nullptr);
// The stack could look like:
// <start> | <main> | <foo> | tag | <bar>
// This will extract the tag and keep:
// <start> | <main> | <foo> | <bar>
template<typename StackTraceTy>
void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) {
if (stack->size < 2) return;
uptr possible_tag_pc = stack->trace[stack->size - 2];
uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc);
if (possible_tag == kExternalTagNone) return;
stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1];
stack->size -= 1;
if (tag) *tag = possible_tag;
template<typename StackTraceTy>
void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack,
uptr *tag = nullptr) {
uptr size = thr->shadow_stack_pos - thr->shadow_stack;
uptr start = 0;
if (size + !!toppc > kStackTraceMax) {
start = size + !!toppc - kStackTraceMax;
size = kStackTraceMax - !!toppc;
stack->Init(&thr->shadow_stack[start], size, toppc);
ExtractTagFromStack(stack, tag);
#define GET_STACK_TRACE_FATAL(thr, pc) \
VarSizeStackTrace stack; \
ObtainCurrentStack(thr, pc, &stack); \
void MapShadow(uptr addr, uptr size);
void MapThreadTrace(uptr addr, uptr size, const char *name);
void DontNeedShadowFor(uptr addr, uptr size);
void UnmapShadow(ThreadState *thr, uptr addr, uptr size);
void InitializeShadowMemory();
void InitializeInterceptors();
void InitializeLibIgnore();
void InitializeDynamicAnnotations();
void ForkBefore(ThreadState *thr, uptr pc);
void ForkParentAfter(ThreadState *thr, uptr pc);
void ForkChildAfter(ThreadState *thr, uptr pc);
void ReportRace(ThreadState *thr);
bool OutputReport(ThreadState *thr, const ScopedReport &srep);
bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
bool IsExpectedReport(uptr addr, uptr size);
# define DPrintf Printf
# define DPrintf(...)
# define DPrintf2 Printf
# define DPrintf2(...)
StackID CurrentStackId(ThreadState *thr, uptr pc);
ReportStack *SymbolizeStackId(StackID stack_id);
void PrintCurrentStack(ThreadState *thr, uptr pc);
void PrintCurrentStackSlow(uptr pc); // uses libunwind
MBlock *JavaHeapBlock(uptr addr, uptr *start);
void Initialize(ThreadState *thr);
void MaybeSpawnBackgroundThread();
int Finalize(ThreadState *thr);
void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
void MemoryAccessImpl(ThreadState *thr, uptr addr,
int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
u64 *shadow_mem, Shadow cur);
void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
uptr size, bool is_write);
void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
AccessType typ);
const int kSizeLog1 = 0;
const int kSizeLog2 = 1;
const int kSizeLog4 = 2;
const int kSizeLog8 = 3;
void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
AccessType typ) {
int size_log;
switch (size) {
case 1:
size_log = kSizeLog1;
case 2:
size_log = kSizeLog2;
case 4:
size_log = kSizeLog4;
DCHECK_EQ(size, 8);
size_log = kSizeLog8;
bool is_write = !(typ & kAccessRead);
bool is_atomic = typ & kAccessAtomic;
if (typ & kAccessVptr)
thr->is_vptr_access = true;
if (typ & kAccessFree)
thr->is_freeing = true;
MemoryAccess(thr, pc, addr, size_log, is_write, is_atomic);
if (typ & kAccessVptr)
thr->is_vptr_access = false;
if (typ & kAccessFree)
thr->is_freeing = false;
void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
uptr size);
void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
void ThreadIgnoreEnd(ThreadState *thr);
void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
void ThreadIgnoreSyncEnd(ThreadState *thr);
void FuncEntry(ThreadState *thr, uptr pc);
void FuncExit(ThreadState *thr);
Tid ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
void ThreadStart(ThreadState *thr, Tid tid, tid_t os_id,
ThreadType thread_type);
void ThreadFinish(ThreadState *thr);
Tid ThreadConsumeTid(ThreadState *thr, uptr pc, uptr uid);
void ThreadJoin(ThreadState *thr, uptr pc, Tid tid);
void ThreadDetach(ThreadState *thr, uptr pc, Tid tid);
void ThreadFinalize(ThreadState *thr);
void ThreadSetName(ThreadState *thr, const char *name);
int ThreadCount(ThreadState *thr);
void ProcessPendingSignalsImpl(ThreadState *thr);
void ThreadNotJoined(ThreadState *thr, uptr pc, Tid tid, uptr uid);
Processor *ProcCreate();
void ProcDestroy(Processor *proc);
void ProcWire(Processor *proc, ThreadState *thr);
void ProcUnwire(Processor *proc, ThreadState *thr);
// Note: the parameter is called flagz, because flags is already taken
// by the global function that returns flags.
void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0,
int rec = 1);
int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD
void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);
void Acquire(ThreadState *thr, uptr pc, uptr addr);
// AcquireGlobal synchronizes the current thread with all other threads.
// In terms of happens-before relation, it draws a HB edge from all threads
// (where they happen to execute right now) to the current thread. We use it to
// handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
// right before executing finalizers. This provides a coarse, but simple
// approximation of the actual required synchronization.
void AcquireGlobal(ThreadState *thr);
void Release(ThreadState *thr, uptr pc, uptr addr);
void ReleaseStoreAcquire(ThreadState *thr, uptr pc, uptr addr);
void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
void AfterSleep(ThreadState *thr, uptr pc);
void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
void ReleaseStoreAcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
// The hacky call uses custom calling convention and an assembly thunk.
// It is considerably faster that a normal call for the caller
// if it is not executed (it is intended for slow paths from hot functions).
// The trick is that the call preserves all registers and the compiler
// does not treat it as a call.
// If it does not work for you, use normal call.
#if !SANITIZER_DEBUG && defined(__x86_64__) && !SANITIZER_MAC
// The caller may not create the stack frame for itself at all,
// so we create a reserve stack frame for it (1024b must be enough).
#define HACKY_CALL(f) \
__asm__ __volatile__("sub $1024, %%rsp;" \
".hidden " #f "_thunk;" \
"call " #f "_thunk;" \
"add $1024, %%rsp;" \
::: "memory", "cc");
#define HACKY_CALL(f) f()
void TraceSwitch(ThreadState *thr);
uptr TraceTopPC(ThreadState *thr);
uptr TraceSize();
uptr TraceParts();
Trace *ThreadTrace(Tid tid);
extern "C" void __tsan_trace_switch();
void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
EventType typ, u64 addr) {
if (!kCollectHistory)
DCHECK_GE((int)typ, 0);
DCHECK_LE((int)typ, 7);
DCHECK_EQ(GetLsb(addr, kEventPCBits), addr);
u64 pos = fs.GetTracePos();
if (UNLIKELY((pos % kTracePartSize) == 0)) {
Event *trace = (Event*)GetThreadTrace(fs.tid());
Event *evp = &trace[pos];
Event ev = (u64)addr | ((u64)typ << kEventPCBits);
*evp = ev;
uptr ALWAYS_INLINE HeapEnd() {
return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
ThreadState *FiberCreate(ThreadState *thr, uptr pc, unsigned flags);
void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber);
void FiberSwitch(ThreadState *thr, uptr pc, ThreadState *fiber, unsigned flags);
// These need to match __tsan_switch_to_fiber_* flags defined in
// tsan_interface.h. See documentation there as well.
enum FiberSwitchFlags {
FiberSwitchFlagNoSync = 1 << 0, // __tsan_switch_to_fiber_no_sync
ALWAYS_INLINE void ProcessPendingSignals(ThreadState *thr) {
if (UNLIKELY(atomic_load_relaxed(&thr->pending_signals)))
extern bool is_initialized;
void LazyInitialize(ThreadState *thr) {
// If we can use .preinit_array, assume that __tsan_init
// called from .preinit_array initializes runtime before
// any instrumented code.
if (UNLIKELY(!is_initialized))
namespace v3 {
void TraceSwitchPart(ThreadState *thr);
bool RestoreStack(Tid tid, EventType type, Sid sid, Epoch epoch, uptr addr,
uptr size, AccessType typ, VarSizeStackTrace *pstk,
MutexSet *pmset, uptr *ptag);
template <typename EventT>
ALWAYS_INLINE WARN_UNUSED_RESULT bool TraceAcquire(ThreadState *thr,
EventT **ev) {
Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos));
// TraceSwitch acquires these mutexes,
// so we lock them here to detect deadlocks more reliably.
{ Lock lock(&ctx->slot_mtx); }
{ Lock lock(&thr->tctx->trace.mtx); }
TracePart *current = thr->tctx->;
if (current) {
DCHECK_GE(pos, &current->events[0]);
DCHECK_LE(pos, &current->events[TracePart::kSize]);
} else {
DCHECK_EQ(pos, nullptr);
// TracePart is allocated with mmap and is at least 4K aligned.
// So the following check is a faster way to check for part end.
// It may have false positives in the middle of the trace,
// they are filtered out in TraceSwitch.
if (UNLIKELY(((uptr)(pos + 1) & TracePart::kAlignment) == 0))
return false;
*ev = reinterpret_cast<EventT *>(pos);
return true;
template <typename EventT>
ALWAYS_INLINE void TraceRelease(ThreadState *thr, EventT *evp) {
DCHECK_LE(evp + 1, &thr->tctx->>events[TracePart::kSize]);
atomic_store_relaxed(&thr->trace_pos, (uptr)(evp + 1));
template <typename EventT>
void TraceEvent(ThreadState *thr, EventT ev) {
EventT *evp;
if (!TraceAcquire(thr, &evp)) {
UNUSED bool res = TraceAcquire(thr, &evp);
*evp = ev;
TraceRelease(thr, evp);
ALWAYS_INLINE WARN_UNUSED_RESULT bool TryTraceFunc(ThreadState *thr,
uptr pc = 0) {
if (!kCollectHistory)
return true;
EventFunc *ev;
if (UNLIKELY(!TraceAcquire(thr, &ev)))
return false;
ev->is_access = 0;
ev->is_func = 1;
ev->pc = pc;
TraceRelease(thr, ev);
return true;
bool TryTraceMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
AccessType typ);
bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
AccessType typ);
void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
AccessType typ);
void TraceFunc(ThreadState *thr, uptr pc = 0);
void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr,
StackID stk);
void TraceMutexUnlock(ThreadState *thr, uptr addr);
void TraceTime(ThreadState *thr);
} // namespace v3
extern void (*on_initialize)(void);
extern int (*on_finalize)(int);
} // namespace __tsan
#endif // TSAN_RTL_H