| /* Standard problems for dataflow support routines. |
| Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, |
| 2008, 2009 Free Software Foundation, Inc. |
| Originally contributed by Michael P. Hayes |
| (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com) |
| Major rewrite contributed by Danny Berlin (dberlin@dberlin.org) |
| and Kenneth Zadeck (zadeck@naturalbridge.com). |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "rtl.h" |
| #include "tm_p.h" |
| #include "insn-config.h" |
| #include "recog.h" |
| #include "function.h" |
| #include "regs.h" |
| #include "output.h" |
| #include "alloc-pool.h" |
| #include "flags.h" |
| #include "hard-reg-set.h" |
| #include "basic-block.h" |
| #include "sbitmap.h" |
| #include "bitmap.h" |
| #include "timevar.h" |
| #include "df.h" |
| #include "except.h" |
| #include "dce.h" |
| #include "vecprim.h" |
| |
| /* Note that turning REG_DEAD_DEBUGGING on will cause |
| gcc.c-torture/unsorted/dump-noaddr.c to fail because it prints |
| addresses in the dumps. */ |
| #if 0 |
| #define REG_DEAD_DEBUGGING |
| #endif |
| |
| #define DF_SPARSE_THRESHOLD 32 |
| |
| static bitmap seen_in_block = NULL; |
| static bitmap seen_in_insn = NULL; |
| |
| |
| /*---------------------------------------------------------------------------- |
| Public functions access functions for the dataflow problems. |
| ----------------------------------------------------------------------------*/ |
| /* Get the live at out set for BB no matter what problem happens to be |
| defined. This function is used by the register allocators who |
| choose different dataflow problems depending on the optimization |
| level. */ |
| |
| bitmap |
| df_get_live_out (basic_block bb) |
| { |
| gcc_assert (df_lr); |
| |
| if (df_live) |
| return DF_LIVE_OUT (bb); |
| else |
| return DF_LR_OUT (bb); |
| } |
| |
| /* Get the live at in set for BB no matter what problem happens to be |
| defined. This function is used by the register allocators who |
| choose different dataflow problems depending on the optimization |
| level. */ |
| |
| bitmap |
| df_get_live_in (basic_block bb) |
| { |
| gcc_assert (df_lr); |
| |
| if (df_live) |
| return DF_LIVE_IN (bb); |
| else |
| return DF_LR_IN (bb); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| Utility functions. |
| ----------------------------------------------------------------------------*/ |
| |
| /* Generic versions to get the void* version of the block info. Only |
| used inside the problem instance vectors. */ |
| |
| /* Grow the bb_info array. */ |
| |
| void |
| df_grow_bb_info (struct dataflow *dflow) |
| { |
| unsigned int new_size = last_basic_block + 1; |
| if (dflow->block_info_size < new_size) |
| { |
| new_size += new_size / 4; |
| dflow->block_info = XRESIZEVEC (void *, dflow->block_info, new_size); |
| memset (dflow->block_info + dflow->block_info_size, 0, |
| (new_size - dflow->block_info_size) *sizeof (void *)); |
| dflow->block_info_size = new_size; |
| } |
| } |
| |
| /* Dump a def-use or use-def chain for REF to FILE. */ |
| |
| void |
| df_chain_dump (struct df_link *link, FILE *file) |
| { |
| fprintf (file, "{ "); |
| for (; link; link = link->next) |
| { |
| fprintf (file, "%c%d(bb %d insn %d) ", |
| DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u', |
| DF_REF_ID (link->ref), |
| DF_REF_BBNO (link->ref), |
| DF_REF_IS_ARTIFICIAL (link->ref) ? -1 : DF_REF_INSN_UID (link->ref)); |
| } |
| fprintf (file, "}"); |
| } |
| |
| |
| /* Print some basic block info as part of df_dump. */ |
| |
| void |
| df_print_bb_index (basic_block bb, FILE *file) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| fprintf (file, "\n( "); |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| { |
| basic_block pred = e->src; |
| fprintf (file, "%d%s ", pred->index, e->flags & EDGE_EH ? "(EH)" : ""); |
| } |
| fprintf (file, ")->[%d]->( ", bb->index); |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| { |
| basic_block succ = e->dest; |
| fprintf (file, "%d%s ", succ->index, e->flags & EDGE_EH ? "(EH)" : ""); |
| } |
| fprintf (file, ")\n"); |
| } |
| |
| |
| |
| /* Make sure that the seen_in_insn and seen_in_block sbitmaps are set |
| up correctly. */ |
| |
| static void |
| df_set_seen (void) |
| { |
| seen_in_block = BITMAP_ALLOC (&df_bitmap_obstack); |
| seen_in_insn = BITMAP_ALLOC (&df_bitmap_obstack); |
| } |
| |
| |
| static void |
| df_unset_seen (void) |
| { |
| BITMAP_FREE (seen_in_block); |
| BITMAP_FREE (seen_in_insn); |
| } |
| |
| |
| |
| /*---------------------------------------------------------------------------- |
| REACHING DEFINITIONS |
| |
| Find the locations in the function where each definition site for a |
| pseudo reaches. In and out bitvectors are built for each basic |
| block. The id field in the ref is used to index into these sets. |
| See df.h for details. |
| ----------------------------------------------------------------------------*/ |
| |
| /* This problem plays a large number of games for the sake of |
| efficiency. |
| |
| 1) The order of the bits in the bitvectors. After the scanning |
| phase, all of the defs are sorted. All of the defs for the reg 0 |
| are first, followed by all defs for reg 1 and so on. |
| |
| 2) There are two kill sets, one if the number of defs is less or |
| equal to DF_SPARSE_THRESHOLD and another if the number of defs is |
| greater. |
| |
| <= : Data is built directly in the kill set. |
| |
| > : One level of indirection is used to keep from generating long |
| strings of 1 bits in the kill sets. Bitvectors that are indexed |
| by the regnum are used to represent that there is a killing def |
| for the register. The confluence and transfer functions use |
| these along with the bitmap_clear_range call to remove ranges of |
| bits without actually generating a knockout vector. |
| |
| The kill and sparse_kill and the dense_invalidated_by_call and |
| sparse_invalidated_by_call both play this game. */ |
| |
| /* Private data used to compute the solution for this problem. These |
| data structures are not accessible outside of this module. */ |
| struct df_rd_problem_data |
| { |
| /* The set of defs to regs invalidated by call. */ |
| bitmap sparse_invalidated_by_call; |
| /* The set of defs to regs invalidate by call for rd. */ |
| bitmap dense_invalidated_by_call; |
| /* An obstack for the bitmaps we need for this problem. */ |
| bitmap_obstack rd_bitmaps; |
| }; |
| |
| /* Set basic block info. */ |
| |
| static void |
| df_rd_set_bb_info (unsigned int index, |
| struct df_rd_bb_info *bb_info) |
| { |
| gcc_assert (df_rd); |
| gcc_assert (index < df_rd->block_info_size); |
| df_rd->block_info[index] = bb_info; |
| } |
| |
| |
| /* Free basic block info. */ |
| |
| static void |
| df_rd_free_bb_info (basic_block bb ATTRIBUTE_UNUSED, |
| void *vbb_info) |
| { |
| struct df_rd_bb_info *bb_info = (struct df_rd_bb_info *) vbb_info; |
| if (bb_info) |
| { |
| BITMAP_FREE (bb_info->kill); |
| BITMAP_FREE (bb_info->sparse_kill); |
| BITMAP_FREE (bb_info->gen); |
| BITMAP_FREE (bb_info->in); |
| BITMAP_FREE (bb_info->out); |
| pool_free (df_rd->block_pool, bb_info); |
| } |
| } |
| |
| |
| /* Allocate or reset bitmaps for DF_RD blocks. The solution bits are |
| not touched unless the block is new. */ |
| |
| static void |
| df_rd_alloc (bitmap all_blocks) |
| { |
| unsigned int bb_index; |
| bitmap_iterator bi; |
| struct df_rd_problem_data *problem_data; |
| |
| if (!df_rd->block_pool) |
| df_rd->block_pool = create_alloc_pool ("df_rd_block pool", |
| sizeof (struct df_rd_bb_info), 50); |
| |
| if (df_rd->problem_data) |
| { |
| problem_data = (struct df_rd_problem_data *) df_rd->problem_data; |
| bitmap_clear (problem_data->sparse_invalidated_by_call); |
| bitmap_clear (problem_data->dense_invalidated_by_call); |
| } |
| else |
| { |
| problem_data = XNEW (struct df_rd_problem_data); |
| df_rd->problem_data = problem_data; |
| |
| bitmap_obstack_initialize (&problem_data->rd_bitmaps); |
| problem_data->sparse_invalidated_by_call |
| = BITMAP_ALLOC (&problem_data->rd_bitmaps); |
| problem_data->dense_invalidated_by_call |
| = BITMAP_ALLOC (&problem_data->rd_bitmaps); |
| } |
| |
| df_grow_bb_info (df_rd); |
| |
| /* Because of the clustering of all use sites for the same pseudo, |
| we have to process all of the blocks before doing the |
| analysis. */ |
| |
| EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) |
| { |
| struct df_rd_bb_info *bb_info = df_rd_get_bb_info (bb_index); |
| if (bb_info) |
| { |
| bitmap_clear (bb_info->kill); |
| bitmap_clear (bb_info->sparse_kill); |
| bitmap_clear (bb_info->gen); |
| } |
| else |
| { |
| bb_info = (struct df_rd_bb_info *) pool_alloc (df_rd->block_pool); |
| df_rd_set_bb_info (bb_index, bb_info); |
| bb_info->kill = BITMAP_ALLOC (&problem_data->rd_bitmaps); |
| bb_info->sparse_kill = BITMAP_ALLOC (&problem_data->rd_bitmaps); |
| bb_info->gen = BITMAP_ALLOC (&problem_data->rd_bitmaps); |
| bb_info->in = BITMAP_ALLOC (&problem_data->rd_bitmaps); |
| bb_info->out = BITMAP_ALLOC (&problem_data->rd_bitmaps); |
| } |
| } |
| df_rd->optional_p = true; |
| } |
| |
| |
| /* Process a list of DEFs for df_rd_bb_local_compute. */ |
| |
| static void |
| df_rd_bb_local_compute_process_def (struct df_rd_bb_info *bb_info, |
| df_ref *def_rec, |
| enum df_ref_flags top_flag) |
| { |
| while (*def_rec) |
| { |
| df_ref def = *def_rec; |
| if (top_flag == (DF_REF_FLAGS (def) & DF_REF_AT_TOP)) |
| { |
| unsigned int regno = DF_REF_REGNO (def); |
| unsigned int begin = DF_DEFS_BEGIN (regno); |
| unsigned int n_defs = DF_DEFS_COUNT (regno); |
| |
| if ((!(df->changeable_flags & DF_NO_HARD_REGS)) |
| || (regno >= FIRST_PSEUDO_REGISTER)) |
| { |
| /* Only the last def(s) for a regno in the block has any |
| effect. */ |
| if (!bitmap_bit_p (seen_in_block, regno)) |
| { |
| /* The first def for regno in insn gets to knock out the |
| defs from other instructions. */ |
| if ((!bitmap_bit_p (seen_in_insn, regno)) |
| /* If the def is to only part of the reg, it does |
| not kill the other defs that reach here. */ |
| && (!(DF_REF_FLAGS (def) & |
| (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)))) |
| { |
| if (n_defs > DF_SPARSE_THRESHOLD) |
| { |
| bitmap_set_bit (bb_info->sparse_kill, regno); |
| bitmap_clear_range(bb_info->gen, begin, n_defs); |
| } |
| else |
| { |
| bitmap_set_range (bb_info->kill, begin, n_defs); |
| bitmap_clear_range (bb_info->gen, begin, n_defs); |
| } |
| } |
| |
| bitmap_set_bit (seen_in_insn, regno); |
| /* All defs for regno in the instruction may be put into |
| the gen set. */ |
| if (!(DF_REF_FLAGS (def) |
| & (DF_REF_MUST_CLOBBER | DF_REF_MAY_CLOBBER))) |
| bitmap_set_bit (bb_info->gen, DF_REF_ID (def)); |
| } |
| } |
| } |
| def_rec++; |
| } |
| } |
| |
| /* Compute local reaching def info for basic block BB. */ |
| |
| static void |
| df_rd_bb_local_compute (unsigned int bb_index) |
| { |
| basic_block bb = BASIC_BLOCK (bb_index); |
| struct df_rd_bb_info *bb_info = df_rd_get_bb_info (bb_index); |
| rtx insn; |
| |
| bitmap_clear (seen_in_block); |
| bitmap_clear (seen_in_insn); |
| |
| /* Artificials are only hard regs. */ |
| if (!(df->changeable_flags & DF_NO_HARD_REGS)) |
| df_rd_bb_local_compute_process_def (bb_info, |
| df_get_artificial_defs (bb_index), |
| 0); |
| |
| FOR_BB_INSNS_REVERSE (bb, insn) |
| { |
| unsigned int uid = INSN_UID (insn); |
| |
| if (!INSN_P (insn)) |
| continue; |
| |
| df_rd_bb_local_compute_process_def (bb_info, |
| DF_INSN_UID_DEFS (uid), 0); |
| |
| /* This complex dance with the two bitmaps is required because |
| instructions can assign twice to the same pseudo. This |
| generally happens with calls that will have one def for the |
| result and another def for the clobber. If only one vector |
| is used and the clobber goes first, the result will be |
| lost. */ |
| bitmap_ior_into (seen_in_block, seen_in_insn); |
| bitmap_clear (seen_in_insn); |
| } |
| |
| /* Process the artificial defs at the top of the block last since we |
| are going backwards through the block and these are logically at |
| the start. */ |
| if (!(df->changeable_flags & DF_NO_HARD_REGS)) |
| df_rd_bb_local_compute_process_def (bb_info, |
| df_get_artificial_defs (bb_index), |
| DF_REF_AT_TOP); |
| } |
| |
| |
| /* Compute local reaching def info for each basic block within BLOCKS. */ |
| |
| static void |
| df_rd_local_compute (bitmap all_blocks) |
| { |
| unsigned int bb_index; |
| bitmap_iterator bi; |
| unsigned int regno; |
| struct df_rd_problem_data *problem_data |
| = (struct df_rd_problem_data *) df_rd->problem_data; |
| bitmap sparse_invalidated = problem_data->sparse_invalidated_by_call; |
| bitmap dense_invalidated = problem_data->dense_invalidated_by_call; |
| |
| df_set_seen (); |
| |
| df_maybe_reorganize_def_refs (DF_REF_ORDER_BY_REG); |
| |
| EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) |
| { |
| df_rd_bb_local_compute (bb_index); |
| } |
| |
| /* Set up the knockout bit vectors to be applied across EH_EDGES. */ |
| EXECUTE_IF_SET_IN_BITMAP (regs_invalidated_by_call_regset, 0, regno, bi) |
| { |
| if (DF_DEFS_COUNT (regno) > DF_SPARSE_THRESHOLD) |
| bitmap_set_bit (sparse_invalidated, regno); |
| else |
| bitmap_set_range (dense_invalidated, |
| DF_DEFS_BEGIN (regno), |
| DF_DEFS_COUNT (regno)); |
| } |
| df_unset_seen (); |
| } |
| |
| |
| /* Initialize the solution bit vectors for problem. */ |
| |
| static void |
| df_rd_init_solution (bitmap all_blocks) |
| { |
| unsigned int bb_index; |
| bitmap_iterator bi; |
| |
| EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) |
| { |
| struct df_rd_bb_info *bb_info = df_rd_get_bb_info (bb_index); |
| |
| bitmap_copy (bb_info->out, bb_info->gen); |
| bitmap_clear (bb_info->in); |
| } |
| } |
| |
| /* In of target gets or of out of source. */ |
| |
| static void |
| df_rd_confluence_n (edge e) |
| { |
| bitmap op1 = df_rd_get_bb_info (e->dest->index)->in; |
| bitmap op2 = df_rd_get_bb_info (e->src->index)->out; |
| |
| if (e->flags & EDGE_FAKE) |
| return; |
| |
| if (e->flags & EDGE_EH) |
| { |
| struct df_rd_problem_data *problem_data |
| = (struct df_rd_problem_data *) df_rd->problem_data; |
| bitmap sparse_invalidated = problem_data->sparse_invalidated_by_call; |
| bitmap dense_invalidated = problem_data->dense_invalidated_by_call; |
| bitmap_iterator bi; |
| unsigned int regno; |
| bitmap tmp = BITMAP_ALLOC (&df_bitmap_obstack); |
| |
| bitmap_copy (tmp, op2); |
| bitmap_and_compl_into (tmp, dense_invalidated); |
| |
| EXECUTE_IF_SET_IN_BITMAP (sparse_invalidated, 0, regno, bi) |
| { |
| bitmap_clear_range (tmp, |
| DF_DEFS_BEGIN (regno), |
| DF_DEFS_COUNT (regno)); |
| } |
| bitmap_ior_into (op1, tmp); |
| BITMAP_FREE (tmp); |
| } |
| else |
| bitmap_ior_into (op1, op2); |
| } |
| |
| |
| /* Transfer function. */ |
| |
| static bool |
| df_rd_transfer_function (int bb_index) |
| { |
| struct df_rd_bb_info *bb_info = df_rd_get_bb_info (bb_index); |
| unsigned int regno; |
| bitmap_iterator bi; |
| bitmap in = bb_info->in; |
| bitmap out = bb_info->out; |
| bitmap gen = bb_info->gen; |
| bitmap kill = bb_info->kill; |
| bitmap sparse_kill = bb_info->sparse_kill; |
| |
| if (bitmap_empty_p (sparse_kill)) |
| return bitmap_ior_and_compl (out, gen, in, kill); |
| else |
| { |
| struct df_rd_problem_data *problem_data; |
| bool changed = false; |
| bitmap tmp; |
| |
| /* Note that TMP is _not_ a temporary bitmap if we end up replacing |
| OUT with TMP. Therefore, allocate TMP in the RD bitmaps obstack. */ |
| problem_data = (struct df_rd_problem_data *) df_rd->problem_data; |
| tmp = BITMAP_ALLOC (&problem_data->rd_bitmaps); |
| |
| bitmap_copy (tmp, in); |
| EXECUTE_IF_SET_IN_BITMAP (sparse_kill, 0, regno, bi) |
| { |
| bitmap_clear_range (tmp, |
| DF_DEFS_BEGIN (regno), |
| DF_DEFS_COUNT (regno)); |
| } |
| bitmap_and_compl_into (tmp, kill); |
| bitmap_ior_into (tmp, gen); |
| changed = !bitmap_equal_p (tmp, out); |
| if (changed) |
| { |
| BITMAP_FREE (out); |
| bb_info->out = tmp; |
| } |
| else |
| BITMAP_FREE (tmp); |
| return changed; |
| } |
| } |
| |
| |
| /* Free all storage associated with the problem. */ |
| |
| static void |
| df_rd_free (void) |
| { |
| struct df_rd_problem_data *problem_data |
| = (struct df_rd_problem_data *) df_rd->problem_data; |
| |
| if (problem_data) |
| { |
| free_alloc_pool (df_rd->block_pool); |
| bitmap_obstack_release (&problem_data->rd_bitmaps); |
| |
| df_rd->block_info_size = 0; |
| free (df_rd->block_info); |
| free (df_rd->problem_data); |
| } |
| free (df_rd); |
| } |
| |
| |
| /* Debugging info. */ |
| |
| static void |
| df_rd_start_dump (FILE *file) |
| { |
| struct df_rd_problem_data *problem_data |
| = (struct df_rd_problem_data *) df_rd->problem_data; |
| unsigned int m = DF_REG_SIZE(df); |
| unsigned int regno; |
| |
| if (!df_rd->block_info) |
| return; |
| |
| fprintf (file, ";; Reaching defs:\n\n"); |
| |
| fprintf (file, " sparse invalidated \t"); |
| dump_bitmap (file, problem_data->sparse_invalidated_by_call); |
| fprintf (file, " dense invalidated \t"); |
| dump_bitmap (file, problem_data->dense_invalidated_by_call); |
| |
| for (regno = 0; regno < m; regno++) |
| if (DF_DEFS_COUNT (regno)) |
| fprintf (file, "%d[%d,%d] ", regno, |
| DF_DEFS_BEGIN (regno), |
| DF_DEFS_COUNT (regno)); |
| fprintf (file, "\n"); |
| |
| } |
| |
| |
| /* Debugging info at top of bb. */ |
| |
| static void |
| df_rd_top_dump (basic_block bb, FILE *file) |
| { |
| struct df_rd_bb_info *bb_info = df_rd_get_bb_info (bb->index); |
| if (!bb_info || !bb_info->in) |
| return; |
| |
| fprintf (file, ";; rd in \t(%d)\n", (int) bitmap_count_bits (bb_info->in)); |
| dump_bitmap (file, bb_info->in); |
| fprintf (file, ";; rd gen \t(%d)\n", (int) bitmap_count_bits (bb_info->gen)); |
| dump_bitmap (file, bb_info->gen); |
| fprintf (file, ";; rd kill\t(%d)\n", (int) bitmap_count_bits (bb_info->kill)); |
| dump_bitmap (file, bb_info->kill); |
| } |
| |
| |
| /* Debugging info at top of bb. */ |
| |
| static void |
| df_rd_bottom_dump (basic_block bb, FILE *file) |
| { |
| struct df_rd_bb_info *bb_info = df_rd_get_bb_info (bb->index); |
| if (!bb_info || !bb_info->out) |
| return; |
| |
| fprintf (file, ";; rd out \t(%d)\n", (int) bitmap_count_bits (bb_info->out)); |
| dump_bitmap (file, bb_info->out); |
| } |
| |
| /* All of the information associated with every instance of the problem. */ |
| |
| static struct df_problem problem_RD = |
| { |
| DF_RD, /* Problem id. */ |
| DF_FORWARD, /* Direction. */ |
| df_rd_alloc, /* Allocate the problem specific data. */ |
| NULL, /* Reset global information. */ |
| df_rd_free_bb_info, /* Free basic block info. */ |
| df_rd_local_compute, /* Local compute function. */ |
| df_rd_init_solution, /* Init the solution specific data. */ |
| df_worklist_dataflow, /* Worklist solver. */ |
| NULL, /* Confluence operator 0. */ |
| df_rd_confluence_n, /* Confluence operator n. */ |
| df_rd_transfer_function, /* Transfer function. */ |
| NULL, /* Finalize function. */ |
| df_rd_free, /* Free all of the problem information. */ |
| df_rd_free, /* Remove this problem from the stack of dataflow problems. */ |
| df_rd_start_dump, /* Debugging. */ |
| df_rd_top_dump, /* Debugging start block. */ |
| df_rd_bottom_dump, /* Debugging end block. */ |
| NULL, /* Incremental solution verify start. */ |
| NULL, /* Incremental solution verify end. */ |
| NULL, /* Dependent problem. */ |
| TV_DF_RD, /* Timing variable. */ |
| true /* Reset blocks on dropping out of blocks_to_analyze. */ |
| }; |
| |
| |
| |
| /* Create a new DATAFLOW instance and add it to an existing instance |
| of DF. The returned structure is what is used to get at the |
| solution. */ |
| |
| void |
| df_rd_add_problem (void) |
| { |
| df_add_problem (&problem_RD); |
| } |
| |
| |
| |
| /*---------------------------------------------------------------------------- |
| LIVE REGISTERS |
| |
| Find the locations in the function where any use of a pseudo can |
| reach in the backwards direction. In and out bitvectors are built |
| for each basic block. The regno is used to index into these sets. |
| See df.h for details. |
| ----------------------------------------------------------------------------*/ |
| |
| /* Private data used to verify the solution for this problem. */ |
| struct df_lr_problem_data |
| { |
| bitmap *in; |
| bitmap *out; |
| }; |
| |
| |
| /* Set basic block info. */ |
| |
| static void |
| df_lr_set_bb_info (unsigned int index, |
| struct df_lr_bb_info *bb_info) |
| { |
| gcc_assert (df_lr); |
| gcc_assert (index < df_lr->block_info_size); |
| df_lr->block_info[index] = bb_info; |
| } |
| |
| |
| /* Free basic block info. */ |
| |
| static void |
| df_lr_free_bb_info (basic_block bb ATTRIBUTE_UNUSED, |
| void *vbb_info) |
| { |
| struct df_lr_bb_info *bb_info = (struct df_lr_bb_info *) vbb_info; |
| if (bb_info) |
| { |
| BITMAP_FREE (bb_info->use); |
| BITMAP_FREE (bb_info->def); |
| BITMAP_FREE (bb_info->in); |
| BITMAP_FREE (bb_info->out); |
| pool_free (df_lr->block_pool, bb_info); |
| } |
| } |
| |
| |
| /* Allocate or reset bitmaps for DF_LR blocks. The solution bits are |
| not touched unless the block is new. */ |
| |
| static void |
| df_lr_alloc (bitmap all_blocks ATTRIBUTE_UNUSED) |
| { |
| unsigned int bb_index; |
| bitmap_iterator bi; |
| |
| if (!df_lr->block_pool) |
| df_lr->block_pool = create_alloc_pool ("df_lr_block pool", |
| sizeof (struct df_lr_bb_info), 50); |
| |
| df_grow_bb_info (df_lr); |
| |
| EXECUTE_IF_SET_IN_BITMAP (df_lr->out_of_date_transfer_functions, 0, bb_index, bi) |
| { |
| struct df_lr_bb_info *bb_info = df_lr_get_bb_info (bb_index); |
| if (bb_info) |
| { |
| bitmap_clear (bb_info->def); |
| bitmap_clear (bb_info->use); |
| } |
| else |
| { |
| bb_info = (struct df_lr_bb_info *) pool_alloc (df_lr->block_pool); |
| df_lr_set_bb_info (bb_index, bb_info); |
| bb_info->use = BITMAP_ALLOC (NULL); |
| bb_info->def = BITMAP_ALLOC (NULL); |
| bb_info->in = BITMAP_ALLOC (NULL); |
| bb_info->out = BITMAP_ALLOC (NULL); |
| } |
| } |
| |
| df_lr->optional_p = false; |
| } |
| |
| |
| /* Reset the global solution for recalculation. */ |
| |
| static void |
| df_lr_reset (bitmap all_blocks) |
| { |
| unsigned int bb_index; |
| bitmap_iterator bi; |
| |
| EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) |
| { |
| struct df_lr_bb_info *bb_info = df_lr_get_bb_info (bb_index); |
| gcc_assert (bb_info); |
| bitmap_clear (bb_info->in); |
| bitmap_clear (bb_info->out); |
| } |
| } |
| |
| |
| /* Compute local live register info for basic block BB. */ |
| |
| static void |
| df_lr_bb_local_compute (unsigned int bb_index) |
| { |
| basic_block bb = BASIC_BLOCK (bb_index); |
| struct df_lr_bb_info *bb_info = df_lr_get_bb_info (bb_index); |
| rtx insn; |
| df_ref *def_rec; |
| df_ref *use_rec; |
| |
| /* Process the registers set in an exception handler. */ |
| for (def_rec = df_get_artificial_defs (bb_index); *def_rec; def_rec++) |
| { |
| df_ref def = *def_rec; |
| if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) == 0) |
| { |
| unsigned int dregno = DF_REF_REGNO (def); |
| bitmap_set_bit (bb_info->def, dregno); |
| bitmap_clear_bit (bb_info->use, dregno); |
| } |
| } |
| |
| /* Process the hardware registers that are always live. */ |
| for (use_rec = df_get_artificial_uses (bb_index); *use_rec; use_rec++) |
| { |
| df_ref use = *use_rec; |
| /* Add use to set of uses in this BB. */ |
| if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == 0) |
| bitmap_set_bit (bb_info->use, DF_REF_REGNO (use)); |
| } |
| |
| FOR_BB_INSNS_REVERSE (bb, insn) |
| { |
| unsigned int uid = INSN_UID (insn); |
| |
| if (!INSN_P (insn)) |
| continue; |
| |
| for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) |
| { |
| df_ref def = *def_rec; |
| /* If the def is to only part of the reg, it does |
| not kill the other defs that reach here. */ |
| if (!(DF_REF_FLAGS (def) & (DF_REF_PARTIAL | DF_REF_CONDITIONAL))) |
| { |
| unsigned int dregno = DF_REF_REGNO (def); |
| bitmap_set_bit (bb_info->def, dregno); |
| bitmap_clear_bit (bb_info->use, dregno); |
| } |
| } |
| |
| for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++) |
| { |
| df_ref use = *use_rec; |
| /* Add use to set of uses in this BB. */ |
| bitmap_set_bit (bb_info->use, DF_REF_REGNO (use)); |
| } |
| } |
| |
| /* Process the registers set in an exception handler or the hard |
| frame pointer if this block is the target of a non local |
| goto. */ |
| for (def_rec = df_get_artificial_defs (bb_index); *def_rec; def_rec++) |
| { |
| df_ref def = *def_rec; |
| if (DF_REF_FLAGS (def) & DF_REF_AT_TOP) |
| { |
| unsigned int dregno = DF_REF_REGNO (def); |
| bitmap_set_bit (bb_info->def, dregno); |
| bitmap_clear_bit (bb_info->use, dregno); |
| } |
| } |
| |
| #ifdef EH_USES |
| /* Process the uses that are live into an exception handler. */ |
| for (use_rec = df_get_artificial_uses (bb_index); *use_rec; use_rec++) |
| { |
| df_ref use = *use_rec; |
| /* Add use to set of uses in this BB. */ |
| if (DF_REF_FLAGS (use) & DF_REF_AT_TOP) |
| bitmap_set_bit (bb_info->use, DF_REF_REGNO (use)); |
| } |
| #endif |
| |
| /* If the df_live problem is not defined, such as at -O0 and -O1, we |
| still need to keep the luids up to date. This is normally done |
| in the df_live problem since this problem has a forwards |
| scan. */ |
| if (!df_live) |
| df_recompute_luids (bb); |
| } |
| |
| |
| /* Compute local live register info for each basic block within BLOCKS. */ |
| |
| static void |
| df_lr_local_compute (bitmap all_blocks ATTRIBUTE_UNUSED) |
| { |
| unsigned int bb_index; |
| bitmap_iterator bi; |
| |
| bitmap_clear (df->hardware_regs_used); |
| |
| /* The all-important stack pointer must always be live. */ |
| bitmap_set_bit (df->hardware_regs_used, STACK_POINTER_REGNUM); |
| |
| /* Before reload, there are a few registers that must be forced |
| live everywhere -- which might not already be the case for |
| blocks within infinite loops. */ |
| if (!reload_completed) |
| { |
| /* Any reference to any pseudo before reload is a potential |
| reference of the frame pointer. */ |
| bitmap_set_bit (df->hardware_regs_used, FRAME_POINTER_REGNUM); |
| |
| #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM |
| /* Pseudos with argument area equivalences may require |
| reloading via the argument pointer. */ |
| if (fixed_regs[ARG_POINTER_REGNUM]) |
| bitmap_set_bit (df->hardware_regs_used, ARG_POINTER_REGNUM); |
| #endif |
| |
| /* Any constant, or pseudo with constant equivalences, may |
| require reloading from memory using the pic register. */ |
| if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM |
| && fixed_regs[PIC_OFFSET_TABLE_REGNUM]) |
| bitmap_set_bit (df->hardware_regs_used, PIC_OFFSET_TABLE_REGNUM); |
| } |
| |
| EXECUTE_IF_SET_IN_BITMAP (df_lr->out_of_date_transfer_functions, 0, bb_index, bi) |
| { |
| if (bb_index == EXIT_BLOCK) |
| { |
| /* The exit block is special for this problem and its bits are |
| computed from thin air. */ |
| struct df_lr_bb_info *bb_info = df_lr_get_bb_info (EXIT_BLOCK); |
| bitmap_copy (bb_info->use, df->exit_block_uses); |
| } |
| else |
| df_lr_bb_local_compute (bb_index); |
| } |
| |
| bitmap_clear (df_lr->out_of_date_transfer_functions); |
| } |
| |
| |
| /* Initialize the solution vectors. */ |
| |
| static void |
| df_lr_init (bitmap all_blocks) |
| { |
| unsigned int bb_index; |
| bitmap_iterator bi; |
| |
| EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) |
| { |
| struct df_lr_bb_info *bb_info = df_lr_get_bb_info (bb_index); |
| bitmap_copy (bb_info->in, bb_info->use); |
| bitmap_clear (bb_info->out); |
| } |
| } |
| |
| |
| /* Confluence function that processes infinite loops. This might be a |
| noreturn function that throws. And even if it isn't, getting the |
| unwind info right helps debugging. */ |
| static void |
| df_lr_confluence_0 (basic_block bb) |
| { |
| bitmap op1 = df_lr_get_bb_info (bb->index)->out; |
| if (bb != EXIT_BLOCK_PTR) |
| bitmap_copy (op1, df->hardware_regs_used); |
| } |
| |
| |
| /* Confluence function that ignores fake edges. */ |
| |
| static void |
| df_lr_confluence_n (edge e) |
| { |
| bitmap op1 = df_lr_get_bb_info (e->src->index)->out; |
| bitmap op2 = df_lr_get_bb_info (e->dest->index)->in; |
| |
| /* Call-clobbered registers die across exception and call edges. */ |
| /* ??? Abnormal call edges ignored for the moment, as this gets |
| confused by sibling call edges, which crashes reg-stack. */ |
| if (e->flags & EDGE_EH) |
| bitmap_ior_and_compl_into (op1, op2, regs_invalidated_by_call_regset); |
| else |
| bitmap_ior_into (op1, op2); |
| |
| bitmap_ior_into (op1, df->hardware_regs_used); |
| } |
| |
| |
| /* Transfer function. */ |
| |
| static bool |
| df_lr_transfer_function (int bb_index) |
| { |
| struct df_lr_bb_info *bb_info = df_lr_get_bb_info (bb_index); |
| bitmap in = bb_info->in; |
| bitmap out = bb_info->out; |
| bitmap use = bb_info->use; |
| bitmap def = bb_info->def; |
| |
| return bitmap_ior_and_compl (in, use, out, def); |
| } |
| |
| |
| /* Run the fast dce as a side effect of building LR. */ |
| |
| static void |
| df_lr_finalize (bitmap all_blocks) |
| { |
| df_lr->solutions_dirty = false; |
| if (df->changeable_flags & DF_LR_RUN_DCE) |
| { |
| run_fast_df_dce (); |
| |
| /* If dce deletes some instructions, we need to recompute the lr |
| solution before proceeding further. The problem is that fast |
| dce is a pessimestic dataflow algorithm. In the case where |
| it deletes a statement S inside of a loop, the uses inside of |
| S may not be deleted from the dataflow solution because they |
| were carried around the loop. While it is conservatively |
| correct to leave these extra bits, the standards of df |
| require that we maintain the best possible (least fixed |
| point) solution. The only way to do that is to redo the |
| iteration from the beginning. See PR35805 for an |
| example. */ |
| if (df_lr->solutions_dirty) |
| { |
| df_clear_flags (DF_LR_RUN_DCE); |
| df_lr_alloc (all_blocks); |
| df_lr_local_compute (all_blocks); |
| df_worklist_dataflow (df_lr, all_blocks, df->postorder, df->n_blocks); |
| df_lr_finalize (all_blocks); |
| df_set_flags (DF_LR_RUN_DCE); |
| } |
| } |
| } |
| |
| |
| /* Free all storage associated with the problem. */ |
| |
| static void |
| df_lr_free (void) |
| { |
| if (df_lr->block_info) |
| { |
| unsigned int i; |
| for (i = 0; i < df_lr->block_info_size; i++) |
| { |
| struct df_lr_bb_info *bb_info = df_lr_get_bb_info (i); |
| if (bb_info) |
| { |
| BITMAP_FREE (bb_info->use); |
| BITMAP_FREE (bb_info->def); |
| BITMAP_FREE (bb_info->in); |
| BITMAP_FREE (bb_info->out); |
| } |
| } |
| free_alloc_pool (df_lr->block_pool); |
| |
| df_lr->block_info_size = 0; |
| free (df_lr->block_info); |
| } |
| |
| BITMAP_FREE (df_lr->out_of_date_transfer_functions); |
| free (df_lr); |
| } |
| |
| |
| /* Debugging info at top of bb. */ |
| |
| static void |
| df_lr_top_dump (basic_block bb, FILE *file) |
| { |
| struct df_lr_bb_info *bb_info = df_lr_get_bb_info (bb->index); |
| struct df_lr_problem_data *problem_data; |
| if (!bb_info || !bb_info->in) |
| return; |
| |
| fprintf (file, ";; lr in \t"); |
| df_print_regset (file, bb_info->in); |
| if (df_lr->problem_data) |
| { |
| problem_data = (struct df_lr_problem_data *)df_lr->problem_data; |
| fprintf (file, ";; old in \t"); |
| df_print_regset (file, problem_data->in[bb->index]); |
| } |
| fprintf (file, ";; lr use \t"); |
| df_print_regset (file, bb_info->use); |
| fprintf (file, ";; lr def \t"); |
| df_print_regset (file, bb_info->def); |
| } |
| |
| |
| /* Debugging info at bottom of bb. */ |
| |
| static void |
| df_lr_bottom_dump (basic_block bb, FILE *file) |
| { |
| struct df_lr_bb_info *bb_info = df_lr_get_bb_info (bb->index); |
| struct df_lr_problem_data *problem_data; |
| if (!bb_info || !bb_info->out) |
| return; |
| |
| fprintf (file, ";; lr out \t"); |
| df_print_regset (file, bb_info->out); |
| if (df_lr->problem_data) |
| { |
| problem_data = (struct df_lr_problem_data *)df_lr->problem_data; |
| fprintf (file, ";; old out \t"); |
| df_print_regset (file, problem_data->out[bb->index]); |
| } |
| } |
| |
| |
| /* Build the datastructure to verify that the solution to the dataflow |
| equations is not dirty. */ |
| |
| static void |
| df_lr_verify_solution_start (void) |
| { |
| basic_block bb; |
| struct df_lr_problem_data *problem_data; |
| if (df_lr->solutions_dirty) |
| { |
| df_lr->problem_data = NULL; |
| return; |
| } |
| |
| /* Set it true so that the solution is recomputed. */ |
| df_lr->solutions_dirty = true; |
| |
| problem_data = XNEW (struct df_lr_problem_data); |
| df_lr->problem_data = problem_data; |
| problem_data->in = XNEWVEC (bitmap, last_basic_block); |
| problem_data->out = XNEWVEC (bitmap, last_basic_block); |
| |
| FOR_ALL_BB (bb) |
| { |
| problem_data->in[bb->index] = BITMAP_ALLOC (NULL); |
| problem_data->out[bb->index] = BITMAP_ALLOC (NULL); |
| bitmap_copy (problem_data->in[bb->index], DF_LR_IN (bb)); |
| bitmap_copy (problem_data->out[bb->index], DF_LR_OUT (bb)); |
| } |
| } |
| |
| |
| /* Compare the saved datastructure and the new solution to the dataflow |
| equations. */ |
| |
| static void |
| df_lr_verify_solution_end (void) |
| { |
| struct df_lr_problem_data *problem_data; |
| basic_block bb; |
| |
| if (df_lr->problem_data == NULL) |
| return; |
| |
| problem_data = (struct df_lr_problem_data *)df_lr->problem_data; |
| |
| if (df_lr->solutions_dirty) |
| /* Do not check if the solution is still dirty. See the comment |
| in df_lr_finalize for details. */ |
| df_lr->solutions_dirty = false; |
| else |
| FOR_ALL_BB (bb) |
| { |
| if ((!bitmap_equal_p (problem_data->in[bb->index], DF_LR_IN (bb))) |
| || (!bitmap_equal_p (problem_data->out[bb->index], DF_LR_OUT (bb)))) |
| { |
| /*df_dump (stderr);*/ |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Cannot delete them immediately because you may want to dump them |
| if the comparison fails. */ |
| FOR_ALL_BB (bb) |
| { |
| BITMAP_FREE (problem_data->in[bb->index]); |
| BITMAP_FREE (problem_data->out[bb->index]); |
| } |
| |
| free (problem_data->in); |
| free (problem_data->out); |
| free (problem_data); |
| df_lr->problem_data = NULL; |
| } |
| |
| |
| /* All of the information associated with every instance of the problem. */ |
| |
| static struct df_problem problem_LR = |
| { |
| DF_LR, /* Problem id. */ |
| DF_BACKWARD, /* Direction. */ |
| df_lr_alloc, /* Allocate the problem specific data. */ |
| df_lr_reset, /* Reset global information. */ |
| df_lr_free_bb_info, /* Free basic block info. */ |
| df_lr_local_compute, /* Local compute function. */ |
| df_lr_init, /* Init the solution specific data. */ |
| df_worklist_dataflow, /* Worklist solver. */ |
| df_lr_confluence_0, /* Confluence operator 0. */ |
| df_lr_confluence_n, /* Confluence operator n. */ |
| df_lr_transfer_function, /* Transfer function. */ |
| df_lr_finalize, /* Finalize function. */ |
| df_lr_free, /* Free all of the problem information. */ |
| NULL, /* Remove this problem from the stack of dataflow problems. */ |
| NULL, /* Debugging. */ |
| df_lr_top_dump, /* Debugging start block. */ |
| df_lr_bottom_dump, /* Debugging end block. */ |
| df_lr_verify_solution_start,/* Incremental solution verify start. */ |
| df_lr_verify_solution_end, /* Incremental solution verify end. */ |
| NULL, /* Dependent problem. */ |
| TV_DF_LR, /* Timing variable. */ |
| false /* Reset blocks on dropping out of blocks_to_analyze. */ |
| }; |
| |
| |
| /* Create a new DATAFLOW instance and add it to an existing instance |
| of DF. The returned structure is what is used to get at the |
| solution. */ |
| |
| void |
| df_lr_add_problem (void) |
| { |
| df_add_problem (&problem_LR); |
| /* These will be initialized when df_scan_blocks processes each |
| block. */ |
| df_lr->out_of_date_transfer_functions = BITMAP_ALLOC (NULL); |
| } |
| |
| |
| /* Verify that all of the lr related info is consistent and |
| correct. */ |
| |
| void |
| df_lr_verify_transfer_functions (void) |
| { |
| basic_block bb; |
| bitmap saved_def; |
| bitmap saved_use; |
| bitmap saved_adef; |
| bitmap saved_ause; |
| bitmap all_blocks; |
| |
| if (!df) |
| return; |
| |
| saved_def = BITMAP_ALLOC (NULL); |
| saved_use = BITMAP_ALLOC (NULL); |
| saved_adef = BITMAP_ALLOC (NULL); |
| saved_ause = BITMAP_ALLOC (NULL); |
| all_blocks = BITMAP_ALLOC (NULL); |
| |
| FOR_ALL_BB (bb) |
| { |
| struct df_lr_bb_info *bb_info = df_lr_get_bb_info (bb->index); |
| bitmap_set_bit (all_blocks, bb->index); |
| |
| if (bb_info) |
| { |
| /* Make a copy of the transfer functions and then compute |
| new ones to see if the transfer functions have |
| changed. */ |
| if (!bitmap_bit_p (df_lr->out_of_date_transfer_functions, |
| bb->index)) |
| { |
| bitmap_copy (saved_def, bb_info->def); |
| bitmap_copy (saved_use, bb_info->use); |
| bitmap_clear (bb_info->def); |
| bitmap_clear (bb_info->use); |
| |
| df_lr_bb_local_compute (bb->index); |
| gcc_assert (bitmap_equal_p (saved_def, bb_info->def)); |
| gcc_assert (bitmap_equal_p (saved_use, bb_info->use)); |
| } |
| } |
| else |
| { |
| /* If we do not have basic block info, the block must be in |
| the list of dirty blocks or else some one has added a |
| block behind our backs. */ |
| gcc_assert (bitmap_bit_p (df_lr->out_of_date_transfer_functions, |
| bb->index)); |
| } |
| /* Make sure no one created a block without following |
| procedures. */ |
| gcc_assert (df_scan_get_bb_info (bb->index)); |
| } |
| |
| /* Make sure there are no dirty bits in blocks that have been deleted. */ |
| gcc_assert (!bitmap_intersect_compl_p (df_lr->out_of_date_transfer_functions, |
| all_blocks)); |
| |
| BITMAP_FREE (saved_def); |
| BITMAP_FREE (saved_use); |
| BITMAP_FREE (saved_adef); |
| BITMAP_FREE (saved_ause); |
| BITMAP_FREE (all_blocks); |
| } |
| |
| |
| |
| /*---------------------------------------------------------------------------- |
| LIVE AND MUST-INITIALIZED REGISTERS. |
| |
| This problem first computes the IN and OUT bitvectors for the |
| must-initialized registers problems, which is a forward problem. |
| It gives the set of registers for which we MUST have an available |
| definition on any path from the entry block to the entry/exit of |
| a basic block. Sets generate a definition, while clobbers kill |
| a definition. |
| |
| In and out bitvectors are built for each basic block and are indexed by |
| regnum (see df.h for details). In and out bitvectors in struct |
| df_live_bb_info actually refers to the must-initialized problem; |
| |
| Then, the in and out sets for the LIVE problem itself are computed. |
| These are the logical AND of the IN and OUT sets from the LR problem |
| and the must-initialized problem. |
| ----------------------------------------------------------------------------*/ |
| |
| /* Private data used to verify the solution for this problem. */ |
| struct df_live_problem_data |
| { |
| bitmap *in; |
| bitmap *out; |
| }; |
| |
| /* Scratch var used by transfer functions. This is used to implement |
| an optimization to reduce the amount of space used to compute the |
| combined lr and live analysis. */ |
| static bitmap df_live_scratch; |
| |
| /* Set basic block info. */ |
| |
| static void |
| df_live_set_bb_info (unsigned int index, |
| struct df_live_bb_info *bb_info) |
| { |
| gcc_assert (df_live); |
| gcc_assert (index < df_live->block_info_size); |
| df_live->block_info[index] = bb_info; |
| } |
| |
| |
| /* Free basic block info. */ |
| |
| static void |
| df_live_free_bb_info (basic_block bb ATTRIBUTE_UNUSED, |
| void *vbb_info) |
| { |
| struct df_live_bb_info *bb_info = (struct df_live_bb_info *) vbb_info; |
| if (bb_info) |
| { |
| BITMAP_FREE (bb_info->gen); |
| BITMAP_FREE (bb_info->kill); |
| BITMAP_FREE (bb_info->in); |
| BITMAP_FREE (bb_info->out); |
| pool_free (df_live->block_pool, bb_info); |
| } |
| } |
| |
| |
| /* Allocate or reset bitmaps for DF_LIVE blocks. The solution bits are |
| not touched unless the block is new. */ |
| |
| static void |
| df_live_alloc (bitmap all_blocks ATTRIBUTE_UNUSED) |
| { |
| unsigned int bb_index; |
| bitmap_iterator bi; |
| |
| if (!df_live->block_pool) |
| df_live->block_pool = create_alloc_pool ("df_live_block pool", |
| sizeof (struct df_live_bb_info), 100); |
| if (!df_live_scratch) |
| df_live_scratch = BITMAP_ALLOC (NULL); |
| |
| df_grow_bb_info (df_live); |
| |
| EXECUTE_IF_SET_IN_BITMAP (df_live->out_of_date_transfer_functions, 0, bb_index, bi) |
| { |
| struct df_live_bb_info *bb_info = df_live_get_bb_info (bb_index); |
| if (bb_info) |
| { |
| bitmap_clear (bb_info->kill); |
| bitmap_clear (bb_info->gen); |
| } |
| else |
| { |
| bb_info = (struct df_live_bb_info *) pool_alloc (df_live->block_pool); |
| df_live_set_bb_info (bb_index, bb_info); |
| bb_info->kill = BITMAP_ALLOC (NULL); |
| bb_info->gen = BITMAP_ALLOC (NULL); |
| bb_info->in = BITMAP_ALLOC (NULL); |
| bb_info->out = BITMAP_ALLOC (NULL); |
| } |
| } |
| df_live->optional_p = (optimize <= 1); |
| } |
| |
| |
| /* Reset the global solution for recalculation. */ |
| |
| static void |
| df_live_reset (bitmap all_blocks) |
| { |
| unsigned int bb_index; |
| bitmap_iterator bi; |
| |
| EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) |
| { |
| struct df_live_bb_info *bb_info = df_live_get_bb_info (bb_index); |
| gcc_assert (bb_info); |
| bitmap_clear (bb_info->in); |
| bitmap_clear (bb_info->out); |
| } |
| } |
| |
| |
| /* Compute local uninitialized register info for basic block BB. */ |
| |
| static void |
| df_live_bb_local_compute (unsigned int bb_index) |
| { |
| basic_block bb = BASIC_BLOCK (bb_index); |
| struct df_live_bb_info *bb_info = df_live_get_bb_info (bb_index); |
| rtx insn; |
| df_ref *def_rec; |
| int luid = 0; |
| |
| FOR_BB_INSNS (bb, insn) |
| { |
| unsigned int uid = INSN_UID (insn); |
| struct df_insn_info *insn_info = DF_INSN_UID_GET (uid); |
| |
| /* Inserting labels does not always trigger the incremental |
| rescanning. */ |
| if (!insn_info) |
| { |
| gcc_assert (!INSN_P (insn)); |
| insn_info = df_insn_create_insn_record (insn); |
| } |
| |
| DF_INSN_INFO_LUID (insn_info) = luid; |
| if (!INSN_P (insn)) |
| continue; |
| |
| luid++; |
| for (def_rec = DF_INSN_INFO_DEFS (insn_info); *def_rec; def_rec++) |
| { |
| df_ref def = *def_rec; |
| unsigned int regno = DF_REF_REGNO (def); |
| |
| if (DF_REF_FLAGS_IS_SET (def, |
| DF_REF_PARTIAL | DF_REF_CONDITIONAL)) |
| /* All partial or conditional def |
| seen are included in the gen set. */ |
| bitmap_set_bit (bb_info->gen, regno); |
| else if (DF_REF_FLAGS_IS_SET (def, DF_REF_MUST_CLOBBER)) |
| /* Only must clobbers for the entire reg destroy the |
| value. */ |
| bitmap_set_bit (bb_info->kill, regno); |
| else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER)) |
| bitmap_set_bit (bb_info->gen, regno); |
| } |
| } |
| |
| for (def_rec = df_get_artificial_defs (bb_index); *def_rec; def_rec++) |
| { |
| df_ref def = *def_rec; |
| bitmap_set_bit (bb_info->gen, DF_REF_REGNO (def)); |
| } |
| } |
| |
| |
| /* Compute local uninitialized register info. */ |
| |
| static void |
| df_live_local_compute (bitmap all_blocks ATTRIBUTE_UNUSED) |
| { |
| unsigned int bb_index; |
| bitmap_iterator bi; |
| |
| df_grow_insn_info (); |
| |
| EXECUTE_IF_SET_IN_BITMAP (df_live->out_of_date_transfer_functions, |
| 0, bb_index, bi) |
| { |
| df_live_bb_local_compute (bb_index); |
| } |
| |
| bitmap_clear (df_live->out_of_date_transfer_functions); |
| } |
| |
| |
| /* Initialize the solution vectors. */ |
| |
| static void |
| df_live_init (bitmap all_blocks) |
| { |
| unsigned int bb_index; |
| bitmap_iterator bi; |
| |
| EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) |
| { |
| struct df_live_bb_info *bb_info = df_live_get_bb_info (bb_index); |
| struct df_lr_bb_info *bb_lr_info = df_lr_get_bb_info (bb_index); |
| |
| /* No register may reach a location where it is not used. Thus |
| we trim the rr result to the places where it is used. */ |
| bitmap_and (bb_info->out, bb_info->gen, bb_lr_info->out); |
| bitmap_clear (bb_info->in); |
| } |
| } |
| |
| /* Forward confluence function that ignores fake edges. */ |
| |
| static void |
| df_live_confluence_n (edge e) |
| { |
| bitmap op1 = df_live_get_bb_info (e->dest->index)->in; |
| bitmap op2 = df_live_get_bb_info (e->src->index)->out; |
| |
| if (e->flags & EDGE_FAKE) |
| return; |
| |
| bitmap_ior_into (op1, op2); |
| } |
| |
| |
| /* Transfer function for the forwards must-initialized problem. */ |
| |
| static bool |
| df_live_transfer_function (int bb_index) |
| { |
| struct df_live_bb_info *bb_info = df_live_get_bb_info (bb_index); |
| struct df_lr_bb_info *bb_lr_info = df_lr_get_bb_info (bb_index); |
| bitmap in = bb_info->in; |
| bitmap out = bb_info->out; |
| bitmap gen = bb_info->gen; |
| bitmap kill = bb_info->kill; |
| |
| /* We need to use a scratch set here so that the value returned from |
| this function invocation properly reflects if the sets changed in |
| a significant way; i.e. not just because the lr set was anded |
| in. */ |
| bitmap_and (df_live_scratch, gen, bb_lr_info->out); |
| /* No register may reach a location where it is not used. Thus |
| we trim the rr result to the places where it is used. */ |
| bitmap_and_into (in, bb_lr_info->in); |
| |
| return bitmap_ior_and_compl (out, df_live_scratch, in, kill); |
| } |
| |
| |
| /* And the LR info with the must-initialized registers, to produce the LIVE info. */ |
| |
| static void |
| df_live_finalize (bitmap all_blocks) |
| { |
| |
| if (df_live->solutions_dirty) |
| { |
| bitmap_iterator bi; |
| unsigned int bb_index; |
| |
| EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) |
| { |
| struct df_lr_bb_info *bb_lr_info = df_lr_get_bb_info (bb_index); |
| struct df_live_bb_info *bb_live_info = df_live_get_bb_info (bb_index); |
| |
| /* No register may reach a location where it is not used. Thus |
| we trim the rr result to the places where it is used. */ |
| bitmap_and_into (bb_live_info->in, bb_lr_info->in); |
| bitmap_and_into (bb_live_info->out, bb_lr_info->out); |
| } |
| |
| df_live->solutions_dirty = false; |
| } |
| } |
| |
| |
| /* Free all storage associated with the problem. */ |
| |
| static void |
| df_live_free (void) |
| { |
| if (df_live->block_info) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < df_live->block_info_size; i++) |
| { |
| struct df_live_bb_info *bb_info = df_live_get_bb_info (i); |
| if (bb_info) |
| { |
| BITMAP_FREE (bb_info->gen); |
| BITMAP_FREE (bb_info->kill); |
| BITMAP_FREE (bb_info->in); |
| BITMAP_FREE (bb_info->out); |
| } |
| } |
| |
| free_alloc_pool (df_live->block_pool); |
| df_live->block_info_size = 0; |
| free (df_live->block_info); |
| |
| if (df_live_scratch) |
| BITMAP_FREE (df_live_scratch); |
| } |
| BITMAP_FREE (df_live->out_of_date_transfer_functions); |
| free (df_live); |
| } |
| |
| |
| /* Debugging info at top of bb. */ |
| |
| static void |
| df_live_top_dump (basic_block bb, FILE *file) |
| { |
| struct df_live_bb_info *bb_info = df_live_get_bb_info (bb->index); |
| struct df_live_problem_data *problem_data; |
| |
| if (!bb_info || !bb_info->in) |
| return; |
| |
| fprintf (file, ";; live in \t"); |
| df_print_regset (file, bb_info->in); |
| if (df_live->problem_data) |
| { |
| problem_data = (struct df_live_problem_data *)df_live->problem_data; |
| fprintf (file, ";; old in \t"); |
| df_print_regset (file, problem_data->in[bb->index]); |
| } |
| fprintf (file, ";; live gen \t"); |
| df_print_regset (file, bb_info->gen); |
| fprintf (file, ";; live kill\t"); |
| df_print_regset (file, bb_info->kill); |
| } |
| |
| |
| /* Debugging info at bottom of bb. */ |
| |
| static void |
| df_live_bottom_dump (basic_block bb, FILE *file) |
| { |
| struct df_live_bb_info *bb_info = df_live_get_bb_info (bb->index); |
| struct df_live_problem_data *problem_data; |
| |
| if (!bb_info || !bb_info->out) |
| return; |
| |
| fprintf (file, ";; live out \t"); |
| df_print_regset (file, bb_info->out); |
| if (df_live->problem_data) |
| { |
| problem_data = (struct df_live_problem_data *)df_live->problem_data; |
| fprintf (file, ";; old out \t"); |
| df_print_regset (file, problem_data->out[bb->index]); |
| } |
| } |
| |
| |
| /* Build the datastructure to verify that the solution to the dataflow |
| equations is not dirty. */ |
| |
| static void |
| df_live_verify_solution_start (void) |
| { |
| basic_block bb; |
| struct df_live_problem_data *problem_data; |
| if (df_live->solutions_dirty) |
| { |
| df_live->problem_data = NULL; |
| return; |
| } |
| |
| /* Set it true so that the solution is recomputed. */ |
| df_live->solutions_dirty = true; |
| |
| problem_data = XNEW (struct df_live_problem_data); |
| df_live->problem_data = problem_data; |
| problem_data->in = XNEWVEC (bitmap, last_basic_block); |
| problem_data->out = XNEWVEC (bitmap, last_basic_block); |
| |
| FOR_ALL_BB (bb) |
| { |
| problem_data->in[bb->index] = BITMAP_ALLOC (NULL); |
| problem_data->out[bb->index] = BITMAP_ALLOC (NULL); |
| bitmap_copy (problem_data->in[bb->index], DF_LIVE_IN (bb)); |
| bitmap_copy (problem_data->out[bb->index], DF_LIVE_OUT (bb)); |
| } |
| } |
| |
| |
| /* Compare the saved datastructure and the new solution to the dataflow |
| equations. */ |
| |
| static void |
| df_live_verify_solution_end (void) |
| { |
| struct df_live_problem_data *problem_data; |
| basic_block bb; |
| |
| if (df_live->problem_data == NULL) |
| return; |
| |
| problem_data = (struct df_live_problem_data *)df_live->problem_data; |
| |
| FOR_ALL_BB (bb) |
| { |
| if ((!bitmap_equal_p (problem_data->in[bb->index], DF_LIVE_IN (bb))) |
| || (!bitmap_equal_p (problem_data->out[bb->index], DF_LIVE_OUT (bb)))) |
| { |
| /*df_dump (stderr);*/ |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Cannot delete them immediately because you may want to dump them |
| if the comparison fails. */ |
| FOR_ALL_BB (bb) |
| { |
| BITMAP_FREE (problem_data->in[bb->index]); |
| BITMAP_FREE (problem_data->out[bb->index]); |
| } |
| |
| free (problem_data->in); |
| free (problem_data->out); |
| free (problem_data); |
| df_live->problem_data = NULL; |
| } |
| |
| |
| /* All of the information associated with every instance of the problem. */ |
| |
| static struct df_problem problem_LIVE = |
| { |
| DF_LIVE, /* Problem id. */ |
| DF_FORWARD, /* Direction. */ |
| df_live_alloc, /* Allocate the problem specific data. */ |
| df_live_reset, /* Reset global information. */ |
| df_live_free_bb_info, /* Free basic block info. */ |
| df_live_local_compute, /* Local compute function. */ |
| df_live_init, /* Init the solution specific data. */ |
| df_worklist_dataflow, /* Worklist solver. */ |
| NULL, /* Confluence operator 0. */ |
| df_live_confluence_n, /* Confluence operator n. */ |
| df_live_transfer_function, /* Transfer function. */ |
| df_live_finalize, /* Finalize function. */ |
| df_live_free, /* Free all of the problem information. */ |
| df_live_free, /* Remove this problem from the stack of dataflow problems. */ |
| NULL, /* Debugging. */ |
| df_live_top_dump, /* Debugging start block. */ |
| df_live_bottom_dump, /* Debugging end block. */ |
| df_live_verify_solution_start,/* Incremental solution verify start. */ |
| df_live_verify_solution_end, /* Incremental solution verify end. */ |
| &problem_LR, /* Dependent problem. */ |
| TV_DF_LIVE, /* Timing variable. */ |
| false /* Reset blocks on dropping out of blocks_to_analyze. */ |
| }; |
| |
| |
| /* Create a new DATAFLOW instance and add it to an existing instance |
| of DF. The returned structure is what is used to get at the |
| solution. */ |
| |
| void |
| df_live_add_problem (void) |
| { |
| df_add_problem (&problem_LIVE); |
| /* These will be initialized when df_scan_blocks processes each |
| block. */ |
| df_live->out_of_date_transfer_functions = BITMAP_ALLOC (NULL); |
| } |
| |
| |
| /* Set all of the blocks as dirty. This needs to be done if this |
| problem is added after all of the insns have been scanned. */ |
| |
| void |
| df_live_set_all_dirty (void) |
| { |
| basic_block bb; |
| FOR_ALL_BB (bb) |
| bitmap_set_bit (df_live->out_of_date_transfer_functions, |
| bb->index); |
| } |
| |
| |
| /* Verify that all of the lr related info is consistent and |
| correct. */ |
| |
| void |
| df_live_verify_transfer_functions (void) |
| { |
| basic_block bb; |
| bitmap saved_gen; |
| bitmap saved_kill; |
| bitmap all_blocks; |
| |
| if (!df) |
| return; |
| |
| saved_gen = BITMAP_ALLOC (NULL); |
| saved_kill = BITMAP_ALLOC (NULL); |
| all_blocks = BITMAP_ALLOC (NULL); |
| |
| df_grow_insn_info (); |
| |
| FOR_ALL_BB (bb) |
| { |
| struct df_live_bb_info *bb_info = df_live_get_bb_info (bb->index); |
| bitmap_set_bit (all_blocks, bb->index); |
| |
| if (bb_info) |
| { |
| /* Make a copy of the transfer functions and then compute |
| new ones to see if the transfer functions have |
| changed. */ |
| if (!bitmap_bit_p (df_live->out_of_date_transfer_functions, |
| bb->index)) |
| { |
| bitmap_copy (saved_gen, bb_info->gen); |
| bitmap_copy (saved_kill, bb_info->kill); |
| bitmap_clear (bb_info->gen); |
| bitmap_clear (bb_info->kill); |
| |
| df_live_bb_local_compute (bb->index); |
| gcc_assert (bitmap_equal_p (saved_gen, bb_info->gen)); |
| gcc_assert (bitmap_equal_p (saved_kill, bb_info->kill)); |
| } |
| } |
| else |
| { |
| /* If we do not have basic block info, the block must be in |
| the list of dirty blocks or else some one has added a |
| block behind our backs. */ |
| gcc_assert (bitmap_bit_p (df_live->out_of_date_transfer_functions, |
| bb->index)); |
| } |
| /* Make sure no one created a block without following |
| procedures. */ |
| gcc_assert (df_scan_get_bb_info (bb->index)); |
| } |
| |
| /* Make sure there are no dirty bits in blocks that have been deleted. */ |
| gcc_assert (!bitmap_intersect_compl_p (df_live->out_of_date_transfer_functions, |
| all_blocks)); |
| BITMAP_FREE (saved_gen); |
| BITMAP_FREE (saved_kill); |
| BITMAP_FREE (all_blocks); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| CREATE DEF_USE (DU) and / or USE_DEF (UD) CHAINS |
| |
| Link either the defs to the uses and / or the uses to the defs. |
| |
| These problems are set up like the other dataflow problems so that |
| they nicely fit into the framework. They are much simpler and only |
| involve a single traversal of instructions and an examination of |
| the reaching defs information (the dependent problem). |
| ----------------------------------------------------------------------------*/ |
| |
| #define df_chain_problem_p(FLAG) (((enum df_chain_flags)df_chain->local_flags)&(FLAG)) |
| |
| /* Create a du or ud chain from SRC to DST and link it into SRC. */ |
| |
| struct df_link * |
| df_chain_create (df_ref src, df_ref dst) |
| { |
| struct df_link *head = DF_REF_CHAIN (src); |
| struct df_link *link = (struct df_link *) pool_alloc (df_chain->block_pool); |
| |
| DF_REF_CHAIN (src) = link; |
| link->next = head; |
| link->ref = dst; |
| return link; |
| } |
| |
| |
| /* Delete any du or ud chains that start at REF and point to |
| TARGET. */ |
| static void |
| df_chain_unlink_1 (df_ref ref, df_ref target) |
| { |
| struct df_link *chain = DF_REF_CHAIN (ref); |
| struct df_link *prev = NULL; |
| |
| while (chain) |
| { |
| if (chain->ref == target) |
| { |
| if (prev) |
| prev->next = chain->next; |
| else |
| DF_REF_CHAIN (ref) = chain->next; |
| pool_free (df_chain->block_pool, chain); |
| return; |
| } |
| prev = chain; |
| chain = chain->next; |
| } |
| } |
| |
| |
| /* Delete a du or ud chain that leave or point to REF. */ |
| |
| void |
| df_chain_unlink (df_ref ref) |
| { |
| struct df_link *chain = DF_REF_CHAIN (ref); |
| while (chain) |
| { |
| struct df_link *next = chain->next; |
| /* Delete the other side if it exists. */ |
| df_chain_unlink_1 (chain->ref, ref); |
| pool_free (df_chain->block_pool, chain); |
| chain = next; |
| } |
| DF_REF_CHAIN (ref) = NULL; |
| } |
| |
| |
| /* Copy the du or ud chain starting at FROM_REF and attach it to |
| TO_REF. */ |
| |
| void |
| df_chain_copy (df_ref to_ref, |
| struct df_link *from_ref) |
| { |
| while (from_ref) |
| { |
| df_chain_create (to_ref, from_ref->ref); |
| from_ref = from_ref->next; |
| } |
| } |
| |
| |
| /* Remove this problem from the stack of dataflow problems. */ |
| |
| static void |
| df_chain_remove_problem (void) |
| { |
| bitmap_iterator bi; |
| unsigned int bb_index; |
| |
| /* Wholesale destruction of the old chains. */ |
| if (df_chain->block_pool) |
| free_alloc_pool (df_chain->block_pool); |
| |
| EXECUTE_IF_SET_IN_BITMAP (df_chain->out_of_date_transfer_functions, 0, bb_index, bi) |
| { |
| rtx insn; |
| df_ref *def_rec; |
| df_ref *use_rec; |
| basic_block bb = BASIC_BLOCK (bb_index); |
| |
| if (df_chain_problem_p (DF_DU_CHAIN)) |
| for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++) |
| DF_REF_CHAIN (*def_rec) = NULL; |
| if (df_chain_problem_p (DF_UD_CHAIN)) |
| for (use_rec = df_get_artificial_uses (bb->index); *use_rec; use_rec++) |
| DF_REF_CHAIN (*use_rec) = NULL; |
| |
| FOR_BB_INSNS (bb, insn) |
| { |
| unsigned int uid = INSN_UID (insn); |
| |
| if (INSN_P (insn)) |
| { |
| if (df_chain_problem_p (DF_DU_CHAIN)) |
| for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) |
| DF_REF_CHAIN (*def_rec) = NULL; |
| if (df_chain_problem_p (DF_UD_CHAIN)) |
| { |
| for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++) |
| DF_REF_CHAIN (*use_rec) = NULL; |
| for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++) |
| DF_REF_CHAIN (*use_rec) = NULL; |
| } |
| } |
| } |
| } |
| |
| bitmap_clear (df_chain->out_of_date_transfer_functions); |
| df_chain->block_pool = NULL; |
| } |
| |
| |
| /* Remove the chain problem completely. */ |
| |
| static void |
| df_chain_fully_remove_problem (void) |
| { |
| df_chain_remove_problem (); |
| BITMAP_FREE (df_chain->out_of_date_transfer_functions); |
| free (df_chain); |
| } |
| |
| |
| /* Create def-use or use-def chains. */ |
| |
| static void |
| df_chain_alloc (bitmap all_blocks ATTRIBUTE_UNUSED) |
| { |
| df_chain_remove_problem (); |
| df_chain->block_pool = create_alloc_pool ("df_chain_block pool", |
| sizeof (struct df_link), 50); |
| df_chain->optional_p = true; |
| } |
| |
| |
| /* Reset all of the chains when the set of basic blocks changes. */ |
| |
| static void |
| df_chain_reset (bitmap blocks_to_clear ATTRIBUTE_UNUSED) |
| { |
| df_chain_remove_problem (); |
| } |
| |
| |
| /* Create the chains for a list of USEs. */ |
| |
| static void |
| df_chain_create_bb_process_use (bitmap local_rd, |
| df_ref *use_rec, |
| enum df_ref_flags top_flag) |
| { |
| bitmap_iterator bi; |
| unsigned int def_index; |
| |
| while (*use_rec) |
| { |
| df_ref use = *use_rec; |
| unsigned int uregno = DF_REF_REGNO (use); |
| if ((!(df->changeable_flags & DF_NO_HARD_REGS)) |
| || (uregno >= FIRST_PSEUDO_REGISTER)) |
| { |
| /* Do not want to go through this for an uninitialized var. */ |
| int count = DF_DEFS_COUNT (uregno); |
| if (count) |
| { |
| if (top_flag == (DF_REF_FLAGS (use) & DF_REF_AT_TOP)) |
| { |
| unsigned int first_index = DF_DEFS_BEGIN (uregno); |
| unsigned int last_index = first_index + count - 1; |
| |
| EXECUTE_IF_SET_IN_BITMAP (local_rd, first_index, def_index, bi) |
| { |
| df_ref def; |
| if (def_index > last_index) |
| break; |
| |
| def = DF_DEFS_GET (def_index); |
| if (df_chain_problem_p (DF_DU_CHAIN)) |
| df_chain_create (def, use); |
| if (df_chain_problem_p (DF_UD_CHAIN)) |
| df_chain_create (use, def); |
| } |
| } |
| } |
| } |
| |
| use_rec++; |
| } |
| } |
| |
| |
| /* Create chains from reaching defs bitmaps for basic block BB. */ |
| |
| static void |
| df_chain_create_bb (unsigned int bb_index) |
| { |
| basic_block bb = BASIC_BLOCK (bb_index); |
| struct df_rd_bb_info *bb_info = df_rd_get_bb_info (bb_index); |
| rtx insn; |
| bitmap cpy = BITMAP_ALLOC (NULL); |
| df_ref *def_rec; |
| |
| bitmap_copy (cpy, bb_info->in); |
| bitmap_set_bit (df_chain->out_of_date_transfer_functions, bb_index); |
| |
| /* Since we are going forwards, process the artificial uses first |
| then the artificial defs second. */ |
| |
| #ifdef EH_USES |
| /* Create the chains for the artificial uses from the EH_USES at the |
| beginning of the block. */ |
| |
| /* Artificials are only hard regs. */ |
| if (!(df->changeable_flags & DF_NO_HARD_REGS)) |
| df_chain_create_bb_process_use (cpy, |
| df_get_artificial_uses (bb->index), |
| DF_REF_AT_TOP); |
| #endif |
| |
| for (def_rec = df_get_artificial_defs (bb_index); *def_rec; def_rec++) |
| { |
| df_ref def = *def_rec; |
| if (DF_REF_FLAGS (def) & DF_REF_AT_TOP) |
| { |
| unsigned int dregno = DF_REF_REGNO (def); |
| if (!(DF_REF_FLAGS (def) & (DF_REF_PARTIAL | DF_REF_CONDITIONAL))) |
| bitmap_clear_range (cpy, |
| DF_DEFS_BEGIN (dregno), |
| DF_DEFS_COUNT (dregno)); |
| bitmap_set_bit (cpy, DF_REF_ID (def)); |
| } |
| } |
| |
| /* Process the regular instructions next. */ |
| FOR_BB_INSNS (bb, insn) |
| { |
| df_ref *def_rec; |
| unsigned int uid = INSN_UID (insn); |
| |
| if (!INSN_P (insn)) |
| continue; |
| |
| /* Now scan the uses and link them up with the defs that remain |
| in the cpy vector. */ |
| |
| df_chain_create_bb_process_use (cpy, DF_INSN_UID_USES (uid), 0); |
| |
| if (df->changeable_flags & DF_EQ_NOTES) |
| df_chain_create_bb_process_use (cpy, DF_INSN_UID_EQ_USES (uid), 0); |
| |
| |
| /* Since we are going forwards, process the defs second. This |
| pass only changes the bits in cpy. */ |
| for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) |
| { |
| df_ref def = *def_rec; |
| unsigned int dregno = DF_REF_REGNO (def); |
| if ((!(df->changeable_flags & DF_NO_HARD_REGS)) |
| || (dregno >= FIRST_PSEUDO_REGISTER)) |
| { |
| if (!(DF_REF_FLAGS (def) & (DF_REF_PARTIAL | DF_REF_CONDITIONAL))) |
| bitmap_clear_range (cpy, |
| DF_DEFS_BEGIN (dregno), |
| DF_DEFS_COUNT (dregno)); |
| if (!(DF_REF_FLAGS (def) |
| & (DF_REF_MUST_CLOBBER | DF_REF_MAY_CLOBBER))) |
| bitmap_set_bit (cpy, DF_REF_ID (def)); |
| } |
| } |
| } |
| |
| /* Create the chains for the artificial uses of the hard registers |
| at the end of the block. */ |
| if (!(df->changeable_flags & DF_NO_HARD_REGS)) |
| df_chain_create_bb_process_use (cpy, |
| df_get_artificial_uses (bb->index), |
| 0); |
| |
| BITMAP_FREE (cpy); |
| } |
| |
| /* Create def-use chains from reaching use bitmaps for basic blocks |
| in BLOCKS. */ |
| |
| static void |
| df_chain_finalize (bitmap all_blocks) |
| { |
| unsigned int bb_index; |
| bitmap_iterator bi; |
| |
| EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) |
| { |
| df_chain_create_bb (bb_index); |
| } |
| } |
| |
| |
| /* Free all storage associated with the problem. */ |
| |
| static void |
| df_chain_free (void) |
| { |
| free_alloc_pool (df_chain->block_pool); |
| BITMAP_FREE (df_chain->out_of_date_transfer_functions); |
| free (df_chain); |
| } |
| |
| |
| /* Debugging info. */ |
| |
| static void |
| df_chain_top_dump (basic_block bb, FILE *file) |
| { |
| if (df_chain_problem_p (DF_DU_CHAIN)) |
| { |
| rtx insn; |
| df_ref *def_rec = df_get_artificial_defs (bb->index); |
| if (*def_rec) |
| { |
| |
| fprintf (file, ";; DU chains for artificial defs\n"); |
| while (*def_rec) |
| { |
| df_ref def = *def_rec; |
| fprintf (file, ";; reg %d ", DF_REF_REGNO (def)); |
| df_chain_dump (DF_REF_CHAIN (def), file); |
| fprintf (file, "\n"); |
| def_rec++; |
| } |
| } |
| |
| FOR_BB_INSNS (bb, insn) |
| { |
| if (INSN_P (insn)) |
| { |
| struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn); |
| def_rec = DF_INSN_INFO_DEFS (insn_info); |
| if (*def_rec) |
| { |
| fprintf (file, ";; DU chains for insn luid %d uid %d\n", |
| DF_INSN_INFO_LUID (insn_info), INSN_UID (insn)); |
| |
| while (*def_rec) |
| { |
| df_ref def = *def_rec; |
| fprintf (file, ";; reg %d ", DF_REF_REGNO (def)); |
| if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE) |
| fprintf (file, "read/write "); |
| df_chain_dump (DF_REF_CHAIN (def), file); |
| fprintf (file, "\n"); |
| def_rec++; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| static void |
| df_chain_bottom_dump (basic_block bb, FILE *file) |
| { |
| if (df_chain_problem_p (DF_UD_CHAIN)) |
| { |
| rtx insn; |
| df_ref *use_rec = df_get_artificial_uses (bb->index); |
| |
| if (*use_rec) |
| { |
| fprintf (file, ";; UD chains for artificial uses\n"); |
| while (*use_rec) |
| { |
| df_ref use = *use_rec; |
| fprintf (file, ";; reg %d ", DF_REF_REGNO (use)); |
| df_chain_dump (DF_REF_CHAIN (use), file); |
| fprintf (file, "\n"); |
| use_rec++; |
| } |
| } |
| |
| FOR_BB_INSNS (bb, insn) |
| { |
| if (INSN_P (insn)) |
| { |
| struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn); |
| df_ref *eq_use_rec = DF_INSN_INFO_EQ_USES (insn_info); |
| use_rec = DF_INSN_INFO_USES (insn_info); |
| if (*use_rec || *eq_use_rec) |
| { |
| fprintf (file, ";; UD chains for insn luid %d uid %d\n", |
| DF_INSN_INFO_LUID (insn_info), INSN_UID (insn)); |
| |
| while (*use_rec) |
| { |
| df_ref use = *use_rec; |
| fprintf (file, ";; reg %d ", DF_REF_REGNO (use)); |
| if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE) |
| fprintf (file, "read/write "); |
| df_chain_dump (DF_REF_CHAIN (use), file); |
| fprintf (file, "\n"); |
| use_rec++; |
| } |
| while (*eq_use_rec) |
| { |
| df_ref use = *eq_use_rec; |
| fprintf (file, ";; eq_note reg %d ", DF_REF_REGNO (use)); |
| df_chain_dump (DF_REF_CHAIN (use), file); |
| fprintf (file, "\n"); |
| eq_use_rec++; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| static struct df_problem problem_CHAIN = |
| { |
| DF_CHAIN, /* Problem id. */ |
| DF_NONE, /* Direction. */ |
| df_chain_alloc, /* Allocate the problem specific data. */ |
| df_chain_reset, /* Reset global information. */ |
| NULL, /* Free basic block info. */ |
| NULL, /* Local compute function. */ |
| NULL, /* Init the solution specific data. */ |
| NULL, /* Iterative solver. */ |
| NULL, /* Confluence operator 0. */ |
| NULL, /* Confluence operator n. */ |
| NULL, /* Transfer function. */ |
| df_chain_finalize, /* Finalize function. */ |
| df_chain_free, /* Free all of the problem information. */ |
| df_chain_fully_remove_problem,/* Remove this problem from the stack of dataflow problems. */ |
| NULL, /* Debugging. */ |
| df_chain_top_dump, /* Debugging start block. */ |
| df_chain_bottom_dump, /* Debugging end block. */ |
| NULL, /* Incremental solution verify start. */ |
| NULL, /* Incremental solution verify end. */ |
| &problem_RD, /* Dependent problem. */ |
| TV_DF_CHAIN, /* Timing variable. */ |
| false /* Reset blocks on dropping out of blocks_to_analyze. */ |
| }; |
| |
| |
| /* Create a new DATAFLOW instance and add it to an existing instance |
| of DF. The returned structure is what is used to get at the |
| solution. */ |
| |
| void |
| df_chain_add_problem (enum df_chain_flags chain_flags) |
| { |
| df_add_problem (&problem_CHAIN); |
| df_chain->local_flags = (unsigned int)chain_flags; |
| df_chain->out_of_date_transfer_functions = BITMAP_ALLOC (NULL); |
| } |
| |
| #undef df_chain_problem_p |
| |
| |
| /*---------------------------------------------------------------------------- |
| BYTE LEVEL LIVE REGISTERS |
| |
| Find the locations in the function where any use of a pseudo can |
| reach in the backwards direction. In and out bitvectors are built |
| for each basic block. There are two mapping functions, |
| df_byte_lr_get_regno_start and df_byte_lr_get_regno_len that are |
| used to map regnos into bit vector positions. |
| |
| This problem differs from the regular df_lr function in the way |
| that subregs, *_extracts and strict_low_parts are handled. In lr |
| these are consider partial kills, here, the exact set of bytes is |
| modeled. Note that any reg that has none of these operations is |
| only modeled with a single bit since all operations access the |
| entire register. |
| |
| This problem is more brittle that the regular lr. It currently can |
| be used in dce incrementally, but cannot be used in an environment |
| where insns are created or modified. The problem is that the |
| mapping of regnos to bitmap positions is relatively compact, in |
| that if a pseudo does not do any of the byte wise operations, only |
| one slot is allocated, rather than a slot for each byte. If insn |
| are created, where a subreg is used for a reg that had no subregs, |
| the mapping would be wrong. Likewise, there are no checks to see |
| that new pseudos have been added. These issues could be addressed |
| by adding a problem specific flag to not use the compact mapping, |
| if there was a need to do so. |
| |
| ----------------------------------------------------------------------------*/ |
| |
| /* Private data used to verify the solution for this problem. */ |
| struct df_byte_lr_problem_data |
| { |
| /* Expanded versions of bitvectors used in lr. */ |
| bitmap invalidated_by_call; |
| bitmap hardware_regs_used; |
| |
| /* Indexed by regno, this is true if there are subregs, extracts or |
| strict_low_parts for this regno. */ |
| bitmap needs_expansion; |
| |
| /* The start position and len for each regno in the various bit |
| vectors. */ |
| unsigned int* regno_start; |
| unsigned int* regno_len; |
| /* An obstack for the bitmaps we need for this problem. */ |
| bitmap_obstack byte_lr_bitmaps; |
| }; |
| |
| |
| /* Get the starting location for REGNO in the df_byte_lr bitmaps. */ |
| |
| int |
| df_byte_lr_get_regno_start (unsigned int regno) |
| { |
| struct df_byte_lr_problem_data *problem_data |
| = (struct df_byte_lr_problem_data *)df_byte_lr->problem_data;; |
| return problem_data->regno_start[regno]; |
| } |
| |
| |
| /* Get the len for REGNO in the df_byte_lr bitmaps. */ |
| |
| int |
| df_byte_lr_get_regno_len (unsigned int regno) |
| { |
| struct df_byte_lr_problem_data *problem_data |
| = (struct df_byte_lr_problem_data *)df_byte_lr->problem_data;; |
| return problem_data->regno_len[regno]; |
| } |
| |
| |
| /* Set basic block info. */ |
| |
| static void |
| df_byte_lr_set_bb_info (unsigned int index, |
| struct df_byte_lr_bb_info *bb_info) |
| { |
| gcc_assert (df_byte_lr); |
| gcc_assert (index < df_byte_lr->block_info_size); |
| df_byte_lr->block_info[index] = bb_info; |
| } |
| |
| |
| /* Free basic block info. */ |
| |
| static void |
| df_byte_lr_free_bb_info (basic_block bb ATTRIBUTE_UNUSED, |
| void *vbb_info) |
| { |
| struct df_byte_lr_bb_info *bb_info = (struct df_byte_lr_bb_info *) vbb_info; |
| if (bb_info) |
| { |
| BITMAP_FREE (bb_info->use); |
| BITMAP_FREE (bb_info->def); |
| BITMAP_FREE (bb_info->in); |
| BITMAP_FREE (bb_info->out); |
| pool_free (df_byte_lr->block_pool, bb_info); |
| } |
| } |
| |
| |
| /* Check all of the refs in REF_REC to see if any of them are |
| extracts, subregs or strict_low_parts. */ |
| |
| static void |
| df_byte_lr_check_regs (df_ref *ref_rec) |
| { |
| struct df_byte_lr_problem_data *problem_data |
| = (struct df_byte_lr_problem_data *)df_byte_lr->problem_data; |
| |
| for (; *ref_rec; ref_rec++) |
| { |
| df_ref ref = *ref_rec; |
| if (DF_REF_FLAGS_IS_SET (ref, DF_REF_SIGN_EXTRACT |
| | DF_REF_ZERO_EXTRACT |
| | DF_REF_STRICT_LOW_PART) |
| || GET_CODE (DF_REF_REG (ref)) == SUBREG) |
| bitmap_set_bit (problem_data->needs_expansion, DF_REF_REGNO (ref)); |
| } |
| } |
| |
| |
| /* Expand bitmap SRC which is indexed by regno to DEST which is indexed by |
| regno_start and regno_len. */ |
| |
| static void |
| df_byte_lr_expand_bitmap (bitmap dest, bitmap src) |
| { |
| struct df_byte_lr_problem_data *problem_data |
| = (struct df_byte_lr_problem_data *)df_byte_lr->problem_data; |
| bitmap_iterator bi; |
| unsigned int i; |
| |
| bitmap_clear (dest); |
| EXECUTE_IF_SET_IN_BITMAP (src, 0, i, bi) |
| { |
| bitmap_set_range (dest, problem_data->regno_start[i], |
| problem_data->regno_len[i]); |
| } |
| } |
| |
| |
| /* Allocate or reset bitmaps for DF_BYTE_LR blocks. The solution bits are |
| not touched unless the block is new. */ |
| |
| static void |
| df_byte_lr_alloc (bitmap all_blocks ATTRIBUTE_UNUSED) |
| { |
| unsigned int bb_index; |
| bitmap_iterator bi; |
| basic_block bb; |
| unsigned int regno; |
| unsigned int index = 0; |
| unsigned int max_reg = max_reg_num(); |
| struct df_byte_lr_problem_data *problem_data |
| = problem_data = XNEW (struct df_byte_lr_problem_data); |
| |
| df_byte_lr->problem_data = problem_data; |
| |
| if (!df_byte_lr->block_pool) |
| df_byte_lr->block_pool = create_alloc_pool ("df_byte_lr_block pool", |
| sizeof (struct df_byte_lr_bb_info), 50); |
| |
| df_grow_bb_info (df_byte_lr); |
| |
| /* Create the mapping from regnos to slots. This does not change |
| unless the problem is destroyed and recreated. In particular, if |
| we end up deleting the only insn that used a subreg, we do not |
| want to redo the mapping because this would invalidate everything |
| else. */ |
| |
| bitmap_obstack_initialize (&problem_data->byte_lr_bitmaps); |
| problem_data->regno_start = XNEWVEC (unsigned int, max_reg); |
| problem_data->regno_len = XNEWVEC (unsigned int, max_reg); |
| problem_data->hardware_regs_used = BITMAP_ALLOC (&problem_data->byte_lr_bitmaps); |
| problem_data->invalidated_by_call = BITMAP_ALLOC (&problem_data->byte_lr_bitmaps); |
| problem_data->needs_expansion = BITMAP_ALLOC (&problem_data->byte_lr_bitmaps); |
| |
| /* Discover which regno's use subregs, extracts or |
| strict_low_parts. */ |
| FOR_EACH_BB (bb) |
| { |
| rtx insn; |
| FOR_BB_INSNS (bb, insn) |
| { |
| if (INSN_P (insn)) |
| { |
| struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn); |
| df_byte_lr_check_regs (DF_INSN_INFO_DEFS (insn_info)); |
| df_byte_lr_check_regs (DF_INSN_INFO_USES (insn_info)); |
| } |
| } |
| bitmap_set_bit (df_byte_lr->out_of_date_transfer_functions, bb->index); |
| } |
| |
| bitmap_set_bit (df_byte_lr->out_of_date_transfer_functions, ENTRY_BLOCK); |
| bitmap_set_bit (df_byte_lr->out_of_date_transfer_functions, EXIT_BLOCK); |
| |
| /* Allocate the slots for each regno. */ |
| for (regno = 0; regno < max_reg; regno++) |
| { |
| int len; |
| problem_data->regno_start[regno] = index; |
| if (bitmap_bit_p (problem_data->needs_expansion, regno)) |
| len = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno])); |
| else |
| len = 1; |
| |
| problem_data->regno_len[regno] = len; |
| index += len; |
| } |
| |
| df_byte_lr_expand_bitmap (problem_data->hardware_regs_used, |
| df->hardware_regs_used); |
| df_byte_lr_expand_bitmap (problem_data->invalidated_by_call, |
| regs_invalidated_by_call_regset); |
| |
| EXECUTE_IF_SET_IN_BITMAP (df_byte_lr->out_of_date_transfer_functions, 0, bb_index, bi) |
| { |
| struct df_byte_lr_bb_info *bb_info = df_byte_lr_get_bb_info (bb_index); |
| if (bb_info) |
| { |
| bitmap_clear (bb_info->def); |
| bitmap_clear (bb_info->use); |
| } |
| else |
| { |
| bb_info = (struct df_byte_lr_bb_info *) pool_alloc (df_byte_lr->block_pool); |
| df_byte_lr_set_bb_info (bb_index, bb_info); |
| bb_info->use = BITMAP_ALLOC (&problem_data->byte_lr_bitmaps); |
| bb_info->def = BITMAP_ALLOC (&problem_data->byte_lr_bitmaps); |
| bb_info->in = BITMAP_ALLOC (&problem_data->byte_lr_bitmaps); |
| bb_info->out = BITMAP_ALLOC (&problem_data->byte_lr_bitmaps); |
| } |
| } |
| |
| df_byte_lr->optional_p = true; |
| } |
| |
| |
| /* Reset the global solution for recalculation. */ |
| |
| static void |
| df_byte_lr_reset (bitmap all_blocks) |
| { |
| unsigned int bb_index; |
| bitmap_iterator bi; |
| |
| EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) |
| { |
| struct df_byte_lr_bb_info *bb_info = df_byte_lr_get_bb_info (bb_index); |
| gcc_assert (bb_info); |
| bitmap_clear (bb_info->in); |
| bitmap_clear (bb_info->out); |
| } |
| } |
| |
| |
| /* Compute local live register info for basic block BB. */ |
| |
| static void |
| df_byte_lr_bb_local_compute (unsigned int bb_index) |
| { |
| struct df_byte_lr_problem_data *problem_data |
| = (struct df_byte_lr_problem_data *)df_byte_lr->problem_data; |
| basic_block bb = BASIC_BLOCK (bb_index); |
| struct df_byte_lr_bb_info *bb_info = df_byte_lr_get_bb_info (bb_index); |
| rtx insn; |
| df_ref *def_rec; |
| df_ref *use_rec; |
| |
| /* Process the registers set in an exception handler. */ |
| for (def_rec = df_get_artificial_defs (bb_index); *def_rec; def_rec++) |
| { |
| df_ref def = *def_rec; |
| if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) == 0) |
| { |
| unsigned int dregno = DF_REF_REGNO (def); |
| unsigned int start = problem_data->regno_start[dregno]; |
| unsigned int len = problem_data->regno_len[dregno]; |
| bitmap_set_range (bb_info->def, start, len); |
| bitmap_clear_range (bb_info->use, start, len); |
| } |
| } |
| |
| /* Process the hardware registers that are always live. */ |
| for (use_rec = df_get_artificial_uses (bb_index); *use_rec; use_rec++) |
| { |
| df_ref use = *use_rec; |
| /* Add use to set of uses in this BB. */ |
| if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == 0) |
| { |
| unsigned int uregno = DF_REF_REGNO (use); |
| unsigned int start = problem_data->regno_start[uregno]; |
| unsigned int len = problem_data->regno_len[uregno]; |
| bitmap_set_range (bb_info->use, start, len); |
| } |
| } |
| |
| FOR_BB_INSNS_REVERSE (bb, insn) |
| { |
| unsigned int uid = INSN_UID (insn); |
| |
| if (!INSN_P (insn)) |
| continue; |
| |
| for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) |
| { |
| df_ref def = *def_rec; |
| /* If the def is to only part of the reg, it does |
| not kill the other defs that reach here. */ |
| if (!(DF_REF_FLAGS (def) & (DF_REF_CONDITIONAL))) |
| { |
| unsigned int dregno = DF_REF_REGNO (def); |
| unsigned int start = problem_data->regno_start[dregno]; |
| unsigned int len = problem_data->regno_len[dregno]; |
| unsigned int sb; |
| unsigned int lb; |
| if (!df_compute_accessed_bytes (def, DF_MM_MUST, &sb, &lb)) |
| { |
| start += sb; |
| len = lb - sb; |
| } |
| if (len) |
| { |
| bitmap_set_range (bb_info->def, start, len); |
| bitmap_clear_range (bb_info->use, start, len); |
| } |
| } |
| } |
| |
| for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++) |
| { |
| df_ref use = *use_rec; |
| unsigned int uregno = DF_REF_REGNO (use); |
| unsigned int start = problem_data->regno_start[uregno]; |
| unsigned int len = problem_data->regno_len[uregno]; |
| unsigned int sb; |
| unsigned int lb; |
| if (!df_compute_accessed_bytes (use, DF_MM_MAY, &sb, &lb)) |
| { |
| start += sb; |
| len = lb - sb; |
| } |
| /* Add use to set of uses in this BB. */ |
| if (len) |
| bitmap_set_range (bb_info->use, start, len); |
| } |
| } |
| |
| /* Process the registers set in an exception handler or the hard |
| frame pointer if this block is the target of a non local |
| goto. */ |
| for (def_rec = df_get_artificial_defs (bb_index); *def_rec; def_rec++) |
| { |
| df_ref def = *def_rec; |
| if (DF_REF_FLAGS (def) & DF_REF_AT_TOP) |
| { |
| unsigned int dregno = DF_REF_REGNO (def); |
| unsigned int start = problem_data->regno_start[dregno]; |
| unsigned int len = problem_data->regno_len[dregno]; |
| bitmap_set_range (bb_info->def, start, len); |
| bitmap_clear_range (bb_info->use, start, len); |
| } |
| } |
| |
| #ifdef EH_USES |
| /* Process the uses that are live into an exception handler. */ |
| for (use_rec = df_get_artificial_uses (bb_index); *use_rec; use_rec++) |
| { |
| df_ref use = *use_rec; |
| /* Add use to set of uses in this BB. */ |
| if (DF_REF_FLAGS (use) & DF_REF_AT_TOP) |
| { |
| unsigned int uregno = DF_REF_REGNO (use); |
| unsigned int start = problem_data->regno_start[uregno]; |
| unsigned int len = problem_data->regno_len[uregno]; |
| bitmap_set_range (bb_info->use, start, len); |
| } |
| } |
| #endif |
| } |
| |
| |
| /* Compute local live register info for each basic block within BLOCKS. */ |
| |
| static void |
| df_byte_lr_local_compute (bitmap all_blocks ATTRIBUTE_UNUSED) |
| { |
| unsigned int bb_index; |
| bitmap_iterator bi; |
| |
| EXECUTE_IF_SET_IN_BITMAP (df_byte_lr->out_of_date_transfer_functions, 0, bb_index, bi) |
| { |
| if (bb_index == EXIT_BLOCK) |
| { |
| /* The exit block is special for this problem and its bits are |
| computed from thin air. */ |
| struct df_byte_lr_bb_info *bb_info = df_byte_lr_get_bb_info (EXIT_BLOCK); |
| df_byte_lr_expand_bitmap (bb_info->use, df->exit_block_uses); |
| } |
| else |
| df_byte_lr_bb_local_compute (bb_index); |
| } |
| |
| bitmap_clear (df_byte_lr->out_of_date_transfer_functions); |
| } |
| |
| |
| /* Initialize the solution vectors. */ |
| |
| static void |
| df_byte_lr_init (bitmap all_blocks) |
| { |
| unsigned int bb_index; |
| bitmap_iterator bi; |
| |
| EXECUTE_IF_SET_IN_BITMAP (all_blocks, 0, bb_index, bi) |
| { |
| struct df_byte_lr_bb_info *bb_info = df_byte_lr_get_bb_info (bb_index); |
| bitmap_copy (bb_info->in, bb_info->use); |
| bitmap_clear (bb_info->out); |
| } |
| } |
| |
| |
| /* Confluence function that processes infinite loops. This might be a |
| noreturn function that throws. And even if it isn't, getting the |
| unwind info right helps debugging. */ |
| static void |
| df_byte_lr_confluence_0 (basic_block bb) |
| { |
| struct df_byte_lr_problem_data *problem_data |
| = (struct df_byte_lr_problem_data *)df_byte_lr->problem_data; |
| bitmap op1 = df_byte_lr_get_bb_info (bb->index)->out; |
| if (bb != EXIT_BLOCK_PTR) |
| bitmap_copy (op1, problem_data->hardware_regs_used); |
| } |
| |
| |
| /* Confluence function that ignores fake edges. */ |
| |
| static void |
| df_byte_lr_confluence_n (edge e) |
| { |
| struct df_byte_lr_problem_data *problem_data |
| = (struct df_byte_lr_problem_data *)df_byte_lr->problem_data; |
| bitmap op1 = df_byte_lr_get_bb_info (e->src->index)->out; |
| bitmap op2 = df_byte_lr_get_bb_info (e->dest->index)->in; |
| |
| /* Call-clobbered registers die across exception and call edges. */ |
| /* ??? Abnormal call edges ignored for the moment, as this gets |
| confused by sibling call edges, which crashes reg-stack. */ |
| if (e->flags & EDGE_EH) |
| bitmap_ior_and_compl_into (op1, op2, problem_data->invalidated_by_call); |
| else |
| bitmap_ior_into (op1, op2); |
| |
| bitmap_ior_into (op1, problem_data->hardware_regs_used); |
| } |
| |
| |
| /* Transfer function. */ |
| |
| static bool |
| df_byte_lr_transfer_function (int bb_index) |
| { |
| struct df_byte_lr_bb_info *bb_info = df_byte_lr_get_bb_info (bb_index); |
| bitmap in = bb_info->in; |
| bitmap out = bb_info->out; |
| bitmap use = bb_info->use; |
| bitmap def = bb_info->def; |
| |
| return bitmap_ior_and_compl (in, use, out, def); |
| } |
| |
| |
| /* Free all storage associated with the problem. */ |
| |
| static void |
| df_byte_lr_free (void) |
| { |
| struct df_byte_lr_problem_data *problem_data |
| = (struct df_byte_lr_problem_data *)df_byte_lr->problem_data; |
| |
| |
| if (df_byte_lr->block_info) |
| { |
| free_alloc_pool (df_byte_lr->block_pool); |
| df_byte_lr->block_info_size = 0; |
| free (df_byte_lr->block_info); |
| } |
| |
| BITMAP_FREE (df_byte_lr->out_of_date_transfer_functions); |
| bitmap_obstack_release (&problem_data->byte_lr_bitmaps); |
| free (problem_data->regno_start); |
| free (problem_data->regno_len); |
| free (problem_data); |
| free (df_byte_lr); |
| } |
| |
| |
| /* Debugging info at top of bb. */ |
| |
| static void |
| df_byte_lr_top_dump (basic_block bb, FILE *file) |
| { |
| struct df_byte_lr_bb_info *bb_info = df_byte_lr_get_bb_info (bb->index); |
| if (!bb_info || !bb_info->in) |
| return; |
| |
| fprintf (file, ";; blr in \t"); |
| df_print_byte_regset (file, bb_info->in); |
| fprintf (file, ";; blr use \t"); |
| df_print_byte_regset (file, bb_info->use); |
| fprintf (file, ";; blr def \t"); |
| df_print_byte_regset (file, bb_info->def); |
| } |
| |
| |
| /* Debugging info at bottom of bb. */ |
| |
| static void |
| df_byte_lr_bottom_dump (basic_block bb, FILE *file) |
| { |
| struct df_byte_lr_bb_info *bb_info = df_byte_lr_get_bb_info (bb->index); |
| if (!bb_info || !bb_info->out) |
| return; |
| |
| fprintf (file, ";; blr out \t"); |
| df_print_byte_regset (file, bb_info->out); |
| } |
| |
| |
| /* All of the information associated with every instance of the problem. */ |
| |
| static struct df_problem problem_BYTE_LR = |
| { |
| DF_BYTE_LR, /* Problem id. */ |
| DF_BACKWARD, /* Direction. */ |
| df_byte_lr_alloc, /* Allocate the problem specific data. */ |
| df_byte_lr_reset, /* Reset global information. */ |
| df_byte_lr_free_bb_info, /* Free basic block info. */ |
| df_byte_lr_local_compute, /* Local compute function. */ |
| df_byte_lr_init, /* Init the solution specific data. */ |
| df_worklist_dataflow, /* Worklist solver. */ |
| df_byte_lr_confluence_0, /* Confluence operator 0. */ |
| df_byte_lr_confluence_n, /* Confluence operator n. */ |
| df_byte_lr_transfer_function, /* Transfer function. */ |
| NULL, /* Finalize function. */ |
| df_byte_lr_free, /* Free all of the problem information. */ |
| df_byte_lr_free, /* Remove this problem from the stack of dataflow problems. */ |
| NULL, /* Debugging. */ |
| df_byte_lr_top_dump, /* Debugging start block. */ |
| df_byte_lr_bottom_dump, /* Debugging end block. */ |
| NULL, /* Incremental solution verify start. */ |
| NULL, /* Incremental solution verify end. */ |
| NULL, /* Dependent problem. */ |
| TV_DF_BYTE_LR, /* Timing variable. */ |
| false /* Reset blocks on dropping out of blocks_to_analyze. */ |
| }; |
| |
| |
| /* Create a new DATAFLOW instance and add it to an existing instance |
| of DF. The returned structure is what is used to get at the |
| solution. */ |
| |
| void |
| df_byte_lr_add_problem (void) |
| { |
| df_add_problem (&problem_BYTE_LR); |
| /* These will be initialized when df_scan_blocks processes each |
| block. */ |
| df_byte_lr->out_of_date_transfer_functions = BITMAP_ALLOC (NULL); |
| } |
| |
| |
| /* Simulate the effects of the defs of INSN on LIVE. */ |
| |
| void |
| df_byte_lr_simulate_defs (rtx insn, bitmap live) |
| { |
| struct df_byte_lr_problem_data *problem_data |
| = (struct df_byte_lr_problem_data *)df_byte_lr->problem_data; |
| df_ref *def_rec; |
| unsigned int uid = INSN_UID (insn); |
| |
| for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) |
| { |
| df_ref def = *def_rec; |
| |
| /* If the def is to only part of the reg, it does |
| not kill the other defs that reach here. */ |
| if (!(DF_REF_FLAGS (def) & DF_REF_CONDITIONAL)) |
| { |
| unsigned int dregno = DF_REF_REGNO (def); |
| unsigned int start = problem_data->regno_start[dregno]; |
| unsigned int len = problem_data->regno_len[dregno]; |
| unsigned int sb; |
| unsigned int lb; |
| if (!df_compute_accessed_bytes (def, DF_MM_MUST, &sb, &lb)) |
| { |
| start += sb; |
| len = lb - sb; |
| } |
| |
| if (len) |
| bitmap_clear_range (live, start, len); |
| } |
| } |
| } |
| |
| |
| /* Simulate the effects of the uses of INSN on LIVE. */ |
| |
| void |
| df_byte_lr_simulate_uses (rtx insn, bitmap live) |
| { |
| struct df_byte_lr_problem_data *problem_data |
| = (struct df_byte_lr_problem_data *)df_byte_lr->problem_data; |
| df_ref *use_rec; |
| unsigned int uid = INSN_UID (insn); |
| |
| for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++) |
| { |
| df_ref use = *use_rec; |
| unsigned int uregno = DF_REF_REGNO (use); |
| unsigned int start = problem_data->regno_start[uregno]; |
| unsigned int len = problem_data->regno_len[uregno]; |
| unsigned int sb; |
| unsigned int lb; |
| |
| if (!df_compute_accessed_bytes (use, DF_MM_MAY, &sb, &lb)) |
| { |
| start += sb; |
| len = lb - sb; |
| } |
| |
| /* Add use to set of uses in this BB. */ |
| if (len) |
| bitmap_set_range (live, start, len); |
| } |
| } |
| |
| |
| /* Apply the artificial uses and defs at the top of BB in a forwards |
| direction. */ |
| |
| void |
| df_byte_lr_simulate_artificial_refs_at_top (basic_block bb, bitmap live) |
| { |
| struct df_byte_lr_problem_data *problem_data |
| = (struct df_byte_lr_problem_data *)df_byte_lr->problem_data; |
| df_ref *def_rec; |
| #ifdef EH_USES |
| df_ref *use_rec; |
| #endif |
| int bb_index = bb->index; |
| |
| #ifdef EH_USES |
| for (use_rec = df_get_artificial_uses (bb_index); *use_rec; use_rec++) |
| { |
| df_ref use = *use_rec; |
| if (DF_REF_FLAGS (use) & DF_REF_AT_TOP) |
| { |
| unsigned int uregno = DF_REF_REGNO (use); |
| unsigned int start = problem_data->regno_start[uregno]; |
| unsigned int len = problem_data->regno_len[uregno]; |
| bitmap_set_range (live, start, len); |
| } |
| } |
| #endif |
| |
| for (def_rec = df_get_artificial_defs (bb_index); *def_rec; def_rec++) |
| { |
| df_ref def = *def_rec; |
| if (DF_REF_FLAGS (def) & DF_REF_AT_TOP) |
| { |
| unsigned int dregno = DF_REF_REGNO (def); |
| unsigned int start = problem_data->regno_start[dregno]; |
| unsigned int len = problem_data->regno_len[dregno]; |
| bitmap_clear_range (live, start, len); |
| } |
| } |
| } |
| |
| |
| /* Apply the artificial uses and defs at the end of BB in a backwards |
| direction. */ |
| |
| void |
| df_byte_lr_simulate_artificial_refs_at_end (basic_block bb, bitmap live) |
| { |
| struct df_byte_lr_problem_data *problem_data |
| = (struct df_byte_lr_problem_data *)df_byte_lr->problem_data; |
| df_ref *def_rec; |
| df_ref *use_rec; |
| int bb_index = bb->index; |
| |
| for (def_rec = df_get_artificial_defs (bb_index); *def_rec; def_rec++) |
| { |
| df_ref def = *def_rec; |
| if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) == 0) |
| { |
| unsigned int dregno = DF_REF_REGNO (def); |
| unsigned int start = problem_data->regno_start[dregno]; |
| unsigned int len = problem_data->regno_len[dregno]; |
| bitmap_clear_range (live, start, len); |
| } |
| } |
| |
| for (use_rec = df_get_artificial_uses (bb_index); *use_rec; use_rec++) |
| { |
| df_ref use = *use_rec; |
| if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == 0) |
| { |
| unsigned int uregno = DF_REF_REGNO (use); |
| unsigned int start = problem_data->regno_start[uregno]; |
| unsigned int len = problem_data->regno_len[uregno]; |
| bitmap_set_range (live, start, len); |
| } |
| } |
| } |
| |
| |
| |
| /*---------------------------------------------------------------------------- |
| This problem computes REG_DEAD and REG_UNUSED notes. |
| ----------------------------------------------------------------------------*/ |
| |
| static void |
| df_note_alloc (bitmap all_blocks ATTRIBUTE_UNUSED) |
| { |
| df_note->optional_p = true; |
| } |
| |
| #ifdef REG_DEAD_DEBUGGING |
| static void |
| df_print_note (const char *prefix, rtx insn, rtx note) |
| { |
| if (dump_file) |
| { |
| fprintf (dump_file, "%s %d ", prefix, INSN_UID (insn)); |
| print_rtl (dump_file, note); |
| fprintf (dump_file, "\n"); |
| } |
| } |
| #endif |
| |
| |
| /* After reg-stack, the x86 floating point stack regs are difficult to |
| analyze because of all of the pushes, pops and rotations. Thus, we |
| just leave the notes alone. */ |
| |
| #ifdef STACK_REGS |
| static inline bool |
| df_ignore_stack_reg (int regno) |
| { |
| return regstack_completed |
| && IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG); |
| } |
| #else |
| static inline bool |
| df_ignore_stack_reg (int regno ATTRIBUTE_UNUSED) |
| { |
| return false; |
| } |
| #endif |
| |
| |
| /* Remove all of the REG_DEAD or REG_UNUSED notes from INSN and add |
| them to OLD_DEAD_NOTES and OLD_UNUSED_NOTES. */ |
| |
| static void |
| df_kill_notes (rtx insn, rtx *old_dead_notes, rtx *old_unused_notes) |
| { |
| rtx *pprev = ®_NOTES (insn); |
| rtx link = *pprev; |
| rtx dead = NULL; |
| rtx unused = NULL; |
| |
| while (link) |
| { |
| switch (REG_NOTE_KIND (link)) |
| { |
| case REG_DEAD: |
| /* After reg-stack, we need to ignore any unused notes |
| for the stack registers. */ |
| if (df_ignore_stack_reg (REGNO (XEXP (link, 0)))) |
| { |
| pprev = &XEXP (link, 1); |
| link = *pprev; |
| } |
| else |
| { |
| rtx next = XEXP (link, 1); |
| #ifdef REG_DEAD_DEBUGGING |
| df_print_note ("deleting: ", insn, link); |
| #endif |
| XEXP (link, 1) = dead; |
| dead = link; |
| *pprev = link = next; |
| } |
| break; |
| |
| case REG_UNUSED: |
| /* After reg-stack, we need to ignore any unused notes |
| for the stack registers. */ |
| if (df_ignore_stack_reg (REGNO (XEXP (link, 0)))) |
| { |
| pprev = &XEXP (link, 1); |
| link = *pprev; |
| } |
| else |
| { |
| rtx next = XEXP (link, 1); |
| #ifdef REG_DEAD_DEBUGGING |
| df_print_note ("deleting: ", insn, link); |
| #endif |
| XEXP (link, 1) = unused; |
| unused = link; |
| *pprev = link = next; |
| } |
| break; |
| |
| default: |
| pprev = &XEXP (link, 1); |
| link = *pprev; |
| break; |
| } |
| } |
| |
| *old_dead_notes = dead; |
| *old_unused_notes = unused; |
| } |
| |
| |
| /* Set a NOTE_TYPE note for REG in INSN. Try to pull it from the OLD |
| list, otherwise create a new one. */ |
| |
| static inline rtx |
| df_set_note (enum reg_note note_type, rtx insn, rtx old, rtx reg) |
| { |
| rtx curr = old; |
| rtx prev = NULL; |
| |
| while (curr) |
| if (XEXP (curr, 0) == reg) |
| { |
| if (prev) |
| XEXP (prev, 1) = XEXP (curr, 1); |
| else |
| old = XEXP (curr, 1); |
| XEXP (curr, 1) = REG_NOTES (insn); |
| REG_NOTES (insn) = curr; |
| return old; |
| } |
| else |
| { |
| prev = curr; |
| curr = XEXP (curr, 1); |
| } |
| |
| /* Did not find the note. */ |
| add_reg_note (insn, note_type, reg); |
| return old; |
| } |
| |
| /* A subroutine of df_set_unused_notes_for_mw, with a selection of its |
| arguments. Return true if the register value described by MWS's |
| mw_reg is known to be completely unused, and if mw_reg can therefore |
| be used in a REG_UNUSED note. */ |
| |
| static bool |
| df_whole_mw_reg_unused_p (struct df_mw_hardreg *mws, |
| bitmap live, bitmap artificial_uses) |
| { |
| unsigned int r; |
| |
| /* If MWS describes a partial reference, create REG_UNUSED notes for |
| individual hard registers. */ |
| if (mws->flags & DF_REF_PARTIAL) |
| return false; |
| |
| /* Likewise if some part of the register is used. */ |
| for (r = mws->start_regno; r <= mws->end_regno; r++) |
| if (bitmap_bit_p (live, r) |
| || bitmap_bit_p (artificial_uses, r)) |
| return false; |
| |
| gcc_assert (REG_P (mws->mw_reg)); |
| return true; |
| } |
| |
| /* Set the REG_UNUSED notes for the multiword hardreg defs in INSN |
| based on the bits in LIVE. Do not generate notes for registers in |
| artificial uses. DO_NOT_GEN is updated so that REG_DEAD notes are |
| not generated if the reg is both read and written by the |
| instruction. |
| */ |
| |
| static rtx |
| df_set_unused_notes_for_mw (rtx insn, rtx old, struct df_mw_hardreg *mws, |
| bitmap live, bitmap do_not_gen, |
| bitmap artificial_uses) |
| { |
| unsigned int r; |
| |
| #ifdef REG_DEAD_DEBUGGING |
| if (dump_file) |
| fprintf (dump_file, "mw_set_unused looking at mws[%d..%d]\n", |
| mws->start_regno, mws->end_regno); |
| #endif |
| |
| if (df_whole_mw_reg_unused_p (mws, live, artificial_uses)) |
| { |
| unsigned int regno = mws->start_regno; |
| old = df_set_note (REG_UNUSED, insn, old, mws->mw_reg); |
| |
| #ifdef REG_DEAD_DEBUGGING |
| df_print_note ("adding 1: ", insn, REG_NOTES (insn)); |
| #endif |
| bitmap_set_bit (do_not_gen, regno); |
| /* Only do this if the value is totally dead. */ |
| } |
| else |
| for (r = mws->start_regno; r <= mws->end_regno; r++) |
| { |
| if (!bitmap_bit_p (live, r) |
| && !bitmap_bit_p (artificial_uses, r)) |
| { |
| old = df_set_note (REG_UNUSED, insn, old, regno_reg_rtx[r]); |
| #ifdef REG_DEAD_DEBUGGING |
| df_print_note ("adding 2: ", insn, REG_NOTES (insn)); |
| #endif |
| } |
| bitmap_set_bit (do_not_gen, r); |
| } |
| return old; |
| } |
| |
| |
| /* A subroutine of df_set_dead_notes_for_mw, with a selection of its |
| arguments. Return true if the register value described by MWS's |
| mw_reg is known to be completely dead, and if mw_reg can therefore |
| be used in a REG_DEAD note. */ |
| |
| static bool |
| df_whole_mw_reg_dead_p (struct df_mw_hardreg *mws, |
| bitmap live, bitmap artificial_uses, |
| bitmap do_not_gen) |
| { |
| unsigned int r; |
| |
| /* If MWS describes a partial reference, create REG_DEAD notes for |
| individual hard registers. */ |
| if (mws->flags & DF_REF_PARTIAL) |
| return false; |
| |
| /* Likewise if some part of the register is not dead. */ |
| for (r = mws->start_regno; r <= mws->end_regno; r++) |
| if (bitmap_bit_p (live, r) |
| || bitmap_bit_p (artificial_uses, r) |
| || bitmap_bit_p (do_not_gen, r)) |
| return false; |
| |
| gcc_assert (REG_P (mws->mw_reg)); |
| return true; |
| } |
| |
| /* Set the REG_DEAD notes for the multiword hardreg use in INSN based |
| on the bits in LIVE. DO_NOT_GEN is used to keep REG_DEAD notes |
| from being set if the instruction both reads and writes the |
| register. */ |
| |
| static rtx |
| df_set_dead_notes_for_mw (rtx insn, rtx old, struct df_mw_hardreg *mws, |
| bitmap live, bitmap do_not_gen, |
| bitmap artificial_uses) |
| { |
|