blob: a2700655ea44e52445e9723fb879cad386503c8e [file] [log] [blame]
/* Gimple Represented as Polyhedra.
Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@inria.fr>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_GRAPHITE_H
#define GCC_GRAPHITE_H
#include "tree-data-ref.h"
int ref_nb_loops (data_reference_p);
typedef struct graphite_bb *graphite_bb_p;
DEF_VEC_P(graphite_bb_p);
DEF_VEC_ALLOC_P (graphite_bb_p, heap);
DEF_VEC_P(scop_p);
DEF_VEC_ALLOC_P (scop_p, heap);
static inline int scop_nb_loops (scop_p scop);
static inline unsigned scop_nb_params (scop_p scop);
static inline bool scop_contains_loop (scop_p scop, struct loop *loop);
typedef struct graphite_bb
{
basic_block bb;
scop_p scop;
/* The static schedule contains the textual order for every loop layer.
Example:
S0
for (i ...)
{
S1
for (j ...)
{
S2
S3
}
S4
}
S5
for (k ...)
{
S6
S7
for (l ...)
{
S8
}
S9
}
S10
Schedules:
| Depth
BB | 0 1 2
------------
S0 | 0
S1 | 1, 0
S2 | 1, 1, 0
S3 | 1, 1, 1
S4 | 1, 2
S5 | 2
S6 | 3, 0
S7 | 3, 1
S8 | 3, 2, 0
S9 | 3, 3
S10| 4
Normalization rules:
- One SCoP can never contain two bbs with the same schedule timestamp.
- All bbs at the same loop depth have a consecutive ordering (no gaps). */
lambda_vector static_schedule;
/* The iteration domain of this bb. It contains this columns:
- In/Eq: If this line is a equation or inequation.
- For every loop iterator one column.
- One column for every parameter in this SCoP.
- The constant column to add integers to the (in)equations.
Example:
for (i = a - 7*b + 8; i <= 3*a + 13*b + 20; i++)
for (j = 2; j <= 2*i + 5; j++)
for (k = 0; k <= 5; k++)
S (i,j,k)
Loop iterators: i, j, k
Parameters: a, b
(I)eq i j k a b 1
1 1 0 0 -1 7 -8 # i >= a - 7b + 8
1 -1 0 0 3 13 20 # i <= 3a + 13b + 20
1 0 1 0 0 0 -2 # j >= 2
1 2 -1 0 0 0 5 # j <= 2i + 5
1 0 0 1 0 0 0 # k >= 0
1 0 0 -1 0 0 5 # k <= 5
The number of loop iterators may change and is not connected to the
number of loops, that surrounded this bb in the gimple code. */
CloogMatrix *domain;
/* Lists containing the restrictions of the conditional statements
dominating this bb. This bb can only be executed, if all conditions
are true.
Example:
for (i = 0; i <= 20; i++)
{
A
if (2i <= 8)
B
}
So for B there is an additional condition (2i <= 8).
TODO: Add these restrictions to the domain matrix.
List of COND_EXPR and SWITCH_EXPR. A COND_EXPR is true only if the
corresponding element in CONDITION_CASES is not NULL_TREE. For a
SWITCH_EXPR the corresponding element in CONDITION_CASES is a
CASE_LABEL_EXPR. */
VEC (gimple, heap) *conditions;
VEC (gimple, heap) *condition_cases;
/* LOOPS contains for every column in the graphite domain the corresponding
gimple loop. If there exists no corresponding gimple loop LOOPS contains
NULL.
Example:
Original code:
for (i = 0; i <= 20; i++)
for (j = 5; j <= 10; j++)
A
Original domain:
(I)eq i j 1
1 1 0 0 # i >= 0
1 -1 0 20 # i <= 20
1 0 1 0 # j >= 0
1 0 -1 10 # j <= 10
Original loops vector:
0 1
Loop i Loop j
After some changes (Exchange i and j, strip-mine i):
Domain:
(I)eq j ii i k 1
1 0 0 1 0 0 # i >= 0
1 0 0 -1 0 20 # i <= 20
1 1 0 0 0 0 # j >= 0
1 -1 0 0 0 10 # j <= 10
1 0 -1 1 0 0 # ii <= i
1 0 1 -1 0 1 # ii + 1 >= i
1 0 -1 0 2 0 # ii <= 2k
1 0 1 0 -2 0 # ii >= 2k
Iterator vector:
0 1 2 3
Loop j NULL Loop i NULL
Means the original loop i is now at column two of the domain and
loop j in the original loop nest is now at column 0. Column 1 and
3 are emtpy. */
VEC (loop_p, heap) *loops;
lambda_vector compressed_alpha_matrix;
CloogMatrix *dynamic_schedule;
VEC (data_reference_p, heap) *data_refs;
htab_t cloog_iv_types;
} *gbb_p;
#define GBB_BB(GBB) GBB->bb
#define GBB_SCOP(GBB) GBB->scop
#define GBB_STATIC_SCHEDULE(GBB) GBB->static_schedule
#define GBB_DATA_REFS(GBB) GBB->data_refs
#define GBB_ALPHA(GBB) GBB->compressed_alpha_matrix
#define GBB_DYNAMIC_SCHEDULE(GBB) GBB->dynamic_schedule
#define GBB_DOMAIN(GBB) GBB->domain
#define GBB_CONDITIONS(GBB) GBB->conditions
#define GBB_CONDITION_CASES(GBB) GBB->condition_cases
#define GBB_LOOPS(GBB) GBB->loops
#define GBB_CLOOG_IV_TYPES(GBB) GBB->cloog_iv_types
/* Return the loop that contains the basic block GBB. */
static inline struct loop *
gbb_loop (struct graphite_bb *gbb)
{
return GBB_BB (gbb)->loop_father;
}
int nb_loops_around_gb (graphite_bb_p);
/* Calculate the number of loops around GB in the current SCOP. Only
works if GBB_DOMAIN is built. */
static inline int
gbb_nb_loops (const struct graphite_bb *gb)
{
scop_p scop = GBB_SCOP (gb);
if (GBB_DOMAIN (gb) == NULL)
return 0;
return GBB_DOMAIN (gb)->NbColumns - scop_nb_params (scop) - 2;
}
/* Returns the gimple loop, that corresponds to the loop_iterator_INDEX.
If there is no corresponding gimple loop, we return NULL. */
static inline loop_p
gbb_loop_at_index (graphite_bb_p gb, int index)
{
return VEC_index (loop_p, GBB_LOOPS (gb), index);
}
/* Returns the index of LOOP in the loop nest around GB. */
static inline int
gbb_loop_index (graphite_bb_p gb, loop_p loop)
{
int i;
loop_p l;
for (i = 0; VEC_iterate (loop_p, GBB_LOOPS (gb), i, l); i++)
if (loop == l)
return i;
gcc_unreachable();
}
struct loop_to_cloog_loop_str
{
unsigned int loop_num;
unsigned int loop_position; /* The column that represents this loop. */
CloogLoop *cloog_loop;
};
typedef struct name_tree
{
tree t;
const char *name;
struct loop *loop;
} *name_tree;
DEF_VEC_P(name_tree);
DEF_VEC_ALLOC_P (name_tree, heap);
/* A Single Entry, Single Exit region is a part of the CFG delimited
by two edges. */
typedef struct sese
{
/* Single ENTRY and single EXIT from the SESE region. */
edge entry, exit;
/* REGION_BASIC_BLOCKS contains the set of all the basic blocks
belonging to the SESE region. */
struct pointer_set_t *region_basic_blocks;
/* An SSA_NAME version is flagged in the LIVEOUT bitmap if the
SSA_NAME is defined inside and used outside the SESE region. */
bitmap liveout;
/* The overall number of SSA_NAME versions used to index LIVEIN. */
int num_ver;
/* For each SSA_NAME version VER in LIVEOUT, LIVEIN[VER] contains
the set of basic blocks indices that contain a use of VER. */
bitmap *livein;
} *sese;
#define SESE_ENTRY(S) (S->entry)
#define SESE_EXIT(S) (S->exit)
#define SESE_REGION_BBS(S) (S->region_basic_blocks)
#define SESE_LIVEOUT(S) (S->liveout)
#define SESE_LIVEIN(S) (S->livein)
#define SESE_LIVEIN_VER(S, I) (S->livein[I])
#define SESE_NUM_VER(S) (S->num_ver)
extern sese new_sese (edge, edge);
extern void free_sese (sese);
extern void sese_build_livein_liveouts (sese);
/* A SCOP is a Static Control Part of the program, simple enough to be
represented in polyhedral form. */
struct scop
{
/* A SCOP is defined as a SESE region. */
sese region;
/* All the basic blocks in this scop that contain memory references
and that will be represented as statements in the polyhedral
representation. */
VEC (graphite_bb_p, heap) *bbs;
lambda_vector static_schedule;
/* Parameters used within the SCOP. */
VEC (name_tree, heap) *params;
/* A collection of old induction variables*/
VEC (name_tree, heap) *old_ivs;
/* Loops completely contained in the SCOP. */
bitmap loops;
VEC (loop_p, heap) *loop_nest;
/* ??? It looks like a global mapping loop_id -> cloog_loop would work. */
htab_t loop2cloog_loop;
/* Cloog representation of this scop. */
CloogProgram *program;
/* Are we allowed to add more params? This is for debugging purpose. We
can only add new params before generating the bb domains, otherwise they
become invalid. */
bool add_params;
/* LIVEOUT_RENAMES registers the rename mapping that has to be
applied after code generation. */
htab_t liveout_renames;
};
#define SCOP_BBS(S) S->bbs
#define SCOP_REGION(S) S->region
/* SCOP_ENTRY bb dominates all the bbs of the scop. SCOP_EXIT bb
post-dominates all the bbs of the scop. SCOP_EXIT potentially
contains non affine data accesses, side effect statements or
difficult constructs, and thus is not considered part of the scop,
but just a boundary. SCOP_ENTRY is considered part of the scop. */
#define SCOP_ENTRY(S) (SESE_ENTRY (SCOP_REGION (S))->dest)
#define SCOP_EXIT(S) (SESE_EXIT (SCOP_REGION (S))->dest)
#define SCOP_REGION_BBS(S) (SESE_REGION_BBS (SCOP_REGION (S)))
#define SCOP_STATIC_SCHEDULE(S) S->static_schedule
#define SCOP_LOOPS(S) S->loops
#define SCOP_LOOP_NEST(S) S->loop_nest
#define SCOP_ADD_PARAMS(S) S->add_params
#define SCOP_PARAMS(S) S->params
#define SCOP_OLDIVS(S) S->old_ivs
#define SCOP_PROG(S) S->program
#define SCOP_LOOP2CLOOG_LOOP(S) S->loop2cloog_loop
#define SCOP_LOOPS_MAPPING(S) S->loops_mapping
#define SCOP_LIVEOUT_RENAMES(S) S->liveout_renames
extern void debug_scop (scop_p, int);
extern void debug_scops (int);
extern void print_graphite_bb (FILE *, graphite_bb_p, int, int);
extern void debug_gbb (graphite_bb_p, int);
extern void dot_scop (scop_p);
extern void dot_all_scops (void);
extern void debug_clast_stmt (struct clast_stmt *);
extern void debug_rename_map (htab_t);
extern void debug_ivtype_map (htab_t);
extern void debug_loop_vec (graphite_bb_p);
extern void debug_oldivs (scop_p);
/* Describes the type of an iv stack entry. */
typedef enum {
iv_stack_entry_unknown = 0,
iv_stack_entry_iv,
iv_stack_entry_const
} iv_stack_entry_kind;
/* Data contained in an iv stack entry. */
typedef union iv_stack_entry_data_union
{
name_tree iv;
tree constant;
} iv_stack_entry_data;
/* Datatype for loop iv stack entry. */
typedef struct iv_stack_entry_struct
{
iv_stack_entry_kind kind;
iv_stack_entry_data data;
} iv_stack_entry;
typedef iv_stack_entry *iv_stack_entry_p;
DEF_VEC_P(iv_stack_entry_p);
DEF_VEC_ALLOC_P(iv_stack_entry_p,heap);
typedef VEC(iv_stack_entry_p, heap) **loop_iv_stack;
extern void debug_loop_iv_stack (loop_iv_stack);
/* Return the old induction variable of the LOOP that is in normal
form in SCOP. */
static inline tree
oldiv_for_loop (scop_p scop, loop_p loop)
{
int i;
name_tree iv;
if (!loop)
return NULL_TREE;
for (i = 0; VEC_iterate (name_tree, SCOP_OLDIVS (scop), i, iv); i++)
if (iv->loop == loop)
return iv->t;
return NULL_TREE;
}
/* Return the number of gimple loops contained in SCOP. */
static inline int
scop_nb_loops (scop_p scop)
{
return VEC_length (loop_p, SCOP_LOOP_NEST (scop));
}
/* Returns the number of parameters for SCOP. */
static inline unsigned
scop_nb_params (scop_p scop)
{
return VEC_length (name_tree, SCOP_PARAMS (scop));
}
/* Return the dimension of the domains for SCOP. */
static inline int
scop_dim_domain (scop_p scop)
{
return scop_nb_loops (scop) + scop_nb_params (scop) + 1;
}
/* Return the dimension of the domains for GB. */
static inline int
gbb_dim_domain (graphite_bb_p gb)
{
return scop_dim_domain (GBB_SCOP (gb));
}
/* Returns the dimensionality of a loop iteration domain for a given
loop, identified by LOOP_NUM, with respect to SCOP. */
static inline int
loop_domain_dim (unsigned int loop_num, scop_p scop)
{
struct loop_to_cloog_loop_str tmp, *slot;
htab_t tab = SCOP_LOOP2CLOOG_LOOP (scop);
tmp.loop_num = loop_num;
slot = (struct loop_to_cloog_loop_str *) htab_find (tab, &tmp);
/* The loop containing the entry of the scop is not always part of
the SCoP, and it is not registered in SCOP_LOOP2CLOOG_LOOP. */
if (!slot)
return scop_nb_params (scop) + 2;
return cloog_domain_dim (cloog_loop_domain (slot->cloog_loop)) + 2;
}
/* Returns the dimensionality of a loop iteration vector in a loop
iteration domain for a given loop (identified by LOOP_NUM) with
respect to SCOP. */
static inline int
loop_iteration_vector_dim (unsigned int loop_num, scop_p scop)
{
return loop_domain_dim (loop_num, scop) - 2 - scop_nb_params (scop);
}
/* Checks, if SCOP contains LOOP. */
static inline bool
scop_contains_loop (scop_p scop, struct loop *loop)
{
return bitmap_bit_p (SCOP_LOOPS (scop), loop->num);
}
/* Returns the index of LOOP in the domain matrix for the SCOP. */
static inline int
scop_loop_index (scop_p scop, struct loop *loop)
{
unsigned i;
struct loop *l;
gcc_assert (scop_contains_loop (scop, loop));
for (i = 0; VEC_iterate (loop_p, SCOP_LOOP_NEST (scop), i, l); i++)
if (l == loop)
return i;
gcc_unreachable();
}
/* Return the index of innermost loop that contains the basic block
GBB. */
static inline int
gbb_inner_most_loop_index (scop_p scop, graphite_bb_p gb)
{
return scop_loop_index(scop, gbb_loop (gb));
}
/* Return the outermost loop that contains the loop LOOP. The outer
loops are searched until a sibling for the outer loop is found. */
static struct loop *
outer_most_loop_1 (scop_p scop, struct loop* loop, struct loop* current_outer)
{
return (!scop_contains_loop (scop, loop)) ? current_outer :
(loop->next != NULL) ? loop :
outer_most_loop_1 (scop, loop_outer (loop), loop);
}
/* Return the outermost loop that contains the loop LOOP. */
static struct loop *
outer_most_loop (scop_p scop, struct loop *loop)
{
return outer_most_loop_1 (scop, loop, NULL);
}
/* Return the index of the outermost loop that contains the basic
block BB. */
static inline int
gbb_outer_most_loop_index (scop_p scop, graphite_bb_p gb)
{
return scop_loop_index (scop, outer_most_loop (scop, gbb_loop (gb)));
}
/* Return the loop depth of LOOP in SCOP. */
static inline unsigned int
scop_gimple_loop_depth (scop_p scop, loop_p loop)
{
unsigned int depth = 0;
loop = loop_outer (loop);
while (scop_contains_loop (scop, loop))
{
depth++;
loop = loop_outer (loop);
}
return depth;
}
#endif /* GCC_GRAPHITE_H */