| /* Inlining decision heuristics. |
| Copyright (C) 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc. |
| Contributed by Jan Hubicka |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* Inlining decision heuristics |
| |
| We separate inlining decisions from the inliner itself and store it |
| inside callgraph as so called inline plan. Refer to cgraph.c |
| documentation about particular representation of inline plans in the |
| callgraph. |
| |
| There are three major parts of this file: |
| |
| cgraph_mark_inline implementation |
| |
| This function allows to mark given call inline and performs necessary |
| modifications of cgraph (production of the clones and updating overall |
| statistics) |
| |
| inlining heuristics limits |
| |
| These functions allow to check that particular inlining is allowed |
| by the limits specified by user (allowed function growth, overall unit |
| growth and so on). |
| |
| inlining heuristics |
| |
| This is implementation of IPA pass aiming to get as much of benefit |
| from inlining obeying the limits checked above. |
| |
| The implementation of particular heuristics is separated from |
| the rest of code to make it easier to replace it with more complicated |
| implementation in the future. The rest of inlining code acts as a |
| library aimed to modify the callgraph and verify that the parameters |
| on code size growth fits. |
| |
| To mark given call inline, use cgraph_mark_inline function, the |
| verification is performed by cgraph_default_inline_p and |
| cgraph_check_inline_limits. |
| |
| The heuristics implements simple knapsack style algorithm ordering |
| all functions by their "profitability" (estimated by code size growth) |
| and inlining them in priority order. |
| |
| cgraph_decide_inlining implements heuristics taking whole callgraph |
| into account, while cgraph_decide_inlining_incrementally considers |
| only one function at a time and is used by early inliner. |
| |
| The inliner itself is split into several passes: |
| |
| pass_inline_parameters |
| |
| This pass computes local properties of functions that are used by inliner: |
| estimated function body size, whether function is inlinable at all and |
| stack frame consumption. |
| |
| Before executing any of inliner passes, this local pass has to be applied |
| to each function in the callgraph (ie run as subpass of some earlier |
| IPA pass). The results are made out of date by any optimization applied |
| on the function body. |
| |
| pass_early_inlining |
| |
| Simple local inlining pass inlining callees into current function. This |
| pass makes no global whole compilation unit analysis and this when allowed |
| to do inlining expanding code size it might result in unbounded growth of |
| whole unit. |
| |
| The pass is run during conversion into SSA form. Only functions already |
| converted into SSA form are inlined, so the conversion must happen in |
| topological order on the callgraph (that is maintained by pass manager). |
| The functions after inlining are early optimized so the early inliner sees |
| unoptimized function itself, but all considered callees are already |
| optimized allowing it to unfold abstraction penalty on C++ effectively and |
| cheaply. |
| |
| pass_ipa_early_inlining |
| |
| With profiling, the early inlining is also necessary to reduce |
| instrumentation costs on program with high abstraction penalty (doing |
| many redundant calls). This can't happen in parallel with early |
| optimization and profile instrumentation, because we would end up |
| re-instrumenting already instrumented function bodies we brought in via |
| inlining. |
| |
| To avoid this, this pass is executed as IPA pass before profiling. It is |
| simple wrapper to pass_early_inlining and ensures first inlining. |
| |
| pass_ipa_inline |
| |
| This is the main pass implementing simple greedy algorithm to do inlining |
| of small functions that results in overall growth of compilation unit and |
| inlining of functions called once. The pass compute just so called inline |
| plan (representation of inlining to be done in callgraph) and unlike early |
| inlining it is not performing the inlining itself. |
| |
| pass_apply_inline |
| |
| This pass performs actual inlining according to pass_ipa_inline on given |
| function. Possible the function body before inlining is saved when it is |
| needed for further inlining later. |
| */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "tree.h" |
| #include "tree-inline.h" |
| #include "langhooks.h" |
| #include "flags.h" |
| #include "cgraph.h" |
| #include "diagnostic.h" |
| #include "timevar.h" |
| #include "params.h" |
| #include "fibheap.h" |
| #include "intl.h" |
| #include "tree-pass.h" |
| #include "hashtab.h" |
| #include "coverage.h" |
| #include "ggc.h" |
| #include "tree-flow.h" |
| #include "rtl.h" |
| #include "ipa-prop.h" |
| |
| /* Mode incremental inliner operate on: |
| |
| In ALWAYS_INLINE only functions marked |
| always_inline are inlined. This mode is used after detecting cycle during |
| flattening. |
| |
| In SIZE mode, only functions that reduce function body size after inlining |
| are inlined, this is used during early inlining. |
| |
| in ALL mode, everything is inlined. This is used during flattening. */ |
| enum inlining_mode { |
| INLINE_NONE = 0, |
| INLINE_ALWAYS_INLINE, |
| INLINE_SIZE, |
| INLINE_ALL |
| }; |
| static bool |
| cgraph_decide_inlining_incrementally (struct cgraph_node *, enum inlining_mode, |
| int); |
| |
| |
| /* Statistics we collect about inlining algorithm. */ |
| static int ncalls_inlined; |
| static int nfunctions_inlined; |
| static int overall_insns; |
| static gcov_type max_count; |
| |
| /* Holders of ipa cgraph hooks: */ |
| static struct cgraph_node_hook_list *function_insertion_hook_holder; |
| |
| static inline struct inline_summary * |
| inline_summary (struct cgraph_node *node) |
| { |
| return &node->local.inline_summary; |
| } |
| |
| /* Estimate size of the function after inlining WHAT into TO. */ |
| |
| static int |
| cgraph_estimate_size_after_inlining (int times, struct cgraph_node *to, |
| struct cgraph_node *what) |
| { |
| int size; |
| tree fndecl = what->decl, arg; |
| int call_insns = PARAM_VALUE (PARAM_INLINE_CALL_COST); |
| |
| for (arg = DECL_ARGUMENTS (fndecl); arg; arg = TREE_CHAIN (arg)) |
| call_insns += estimate_move_cost (TREE_TYPE (arg)); |
| size = (what->global.insns - call_insns) * times + to->global.insns; |
| gcc_assert (size >= 0); |
| return size; |
| } |
| |
| /* E is expected to be an edge being inlined. Clone destination node of |
| the edge and redirect it to the new clone. |
| DUPLICATE is used for bookkeeping on whether we are actually creating new |
| clones or re-using node originally representing out-of-line function call. |
| */ |
| void |
| cgraph_clone_inlined_nodes (struct cgraph_edge *e, bool duplicate, |
| bool update_original) |
| { |
| HOST_WIDE_INT peak; |
| |
| if (duplicate) |
| { |
| /* We may eliminate the need for out-of-line copy to be output. |
| In that case just go ahead and re-use it. */ |
| if (!e->callee->callers->next_caller |
| && !e->callee->needed |
| && !cgraph_new_nodes) |
| { |
| gcc_assert (!e->callee->global.inlined_to); |
| if (e->callee->analyzed) |
| overall_insns -= e->callee->global.insns, nfunctions_inlined++; |
| duplicate = false; |
| } |
| else |
| { |
| struct cgraph_node *n; |
| n = cgraph_clone_node (e->callee, e->count, e->frequency, e->loop_nest, |
| update_original); |
| cgraph_redirect_edge_callee (e, n); |
| } |
| } |
| |
| if (e->caller->global.inlined_to) |
| e->callee->global.inlined_to = e->caller->global.inlined_to; |
| else |
| e->callee->global.inlined_to = e->caller; |
| e->callee->global.stack_frame_offset |
| = e->caller->global.stack_frame_offset |
| + inline_summary (e->caller)->estimated_self_stack_size; |
| peak = e->callee->global.stack_frame_offset |
| + inline_summary (e->callee)->estimated_self_stack_size; |
| if (e->callee->global.inlined_to->global.estimated_stack_size < peak) |
| e->callee->global.inlined_to->global.estimated_stack_size = peak; |
| |
| /* Recursively clone all bodies. */ |
| for (e = e->callee->callees; e; e = e->next_callee) |
| if (!e->inline_failed) |
| cgraph_clone_inlined_nodes (e, duplicate, update_original); |
| } |
| |
| /* Mark edge E as inlined and update callgraph accordingly. UPDATE_ORIGINAL |
| specify whether profile of original function should be updated. If any new |
| indirect edges are discovered in the process, add them to NEW_EDGES, unless |
| it is NULL. Return true iff any new callgraph edges were discovered as a |
| result of inlining. */ |
| |
| static bool |
| cgraph_mark_inline_edge (struct cgraph_edge *e, bool update_original, |
| VEC (cgraph_edge_p, heap) **new_edges) |
| { |
| int old_insns = 0, new_insns = 0; |
| struct cgraph_node *to = NULL, *what; |
| struct cgraph_edge *curr = e; |
| |
| if (e->callee->inline_decl) |
| cgraph_redirect_edge_callee (e, cgraph_node (e->callee->inline_decl)); |
| |
| gcc_assert (e->inline_failed); |
| e->inline_failed = NULL; |
| |
| if (!e->callee->global.inlined) |
| DECL_POSSIBLY_INLINED (e->callee->decl) = true; |
| e->callee->global.inlined = true; |
| |
| cgraph_clone_inlined_nodes (e, true, update_original); |
| |
| what = e->callee; |
| |
| /* Now update size of caller and all functions caller is inlined into. */ |
| for (;e && !e->inline_failed; e = e->caller->callers) |
| { |
| old_insns = e->caller->global.insns; |
| new_insns = cgraph_estimate_size_after_inlining (1, e->caller, |
| what); |
| gcc_assert (new_insns >= 0); |
| to = e->caller; |
| to->global.insns = new_insns; |
| } |
| gcc_assert (what->global.inlined_to == to); |
| if (new_insns > old_insns) |
| overall_insns += new_insns - old_insns; |
| ncalls_inlined++; |
| |
| if (flag_indirect_inlining) |
| return ipa_propagate_indirect_call_infos (curr, new_edges); |
| else |
| return false; |
| } |
| |
| /* Mark all calls of EDGE->CALLEE inlined into EDGE->CALLER. |
| Return following unredirected edge in the list of callers |
| of EDGE->CALLEE */ |
| |
| static struct cgraph_edge * |
| cgraph_mark_inline (struct cgraph_edge *edge) |
| { |
| struct cgraph_node *to = edge->caller; |
| struct cgraph_node *what = edge->callee; |
| struct cgraph_edge *e, *next; |
| |
| gcc_assert (!gimple_call_cannot_inline_p (edge->call_stmt)); |
| /* Look for all calls, mark them inline and clone recursively |
| all inlined functions. */ |
| for (e = what->callers; e; e = next) |
| { |
| next = e->next_caller; |
| if (e->caller == to && e->inline_failed) |
| { |
| cgraph_mark_inline_edge (e, true, NULL); |
| if (e == edge) |
| edge = next; |
| } |
| } |
| |
| return edge; |
| } |
| |
| /* Estimate the growth caused by inlining NODE into all callees. */ |
| |
| static int |
| cgraph_estimate_growth (struct cgraph_node *node) |
| { |
| int growth = 0; |
| struct cgraph_edge *e; |
| bool self_recursive = false; |
| |
| if (node->global.estimated_growth != INT_MIN) |
| return node->global.estimated_growth; |
| |
| for (e = node->callers; e; e = e->next_caller) |
| { |
| if (e->caller == node) |
| self_recursive = true; |
| if (e->inline_failed) |
| growth += (cgraph_estimate_size_after_inlining (1, e->caller, node) |
| - e->caller->global.insns); |
| } |
| |
| /* ??? Wrong for non-trivially self recursive functions or cases where |
| we decide to not inline for different reasons, but it is not big deal |
| as in that case we will keep the body around, but we will also avoid |
| some inlining. */ |
| if (!node->needed && !DECL_EXTERNAL (node->decl) && !self_recursive) |
| growth -= node->global.insns; |
| |
| node->global.estimated_growth = growth; |
| return growth; |
| } |
| |
| /* Return false when inlining WHAT into TO is not good idea |
| as it would cause too large growth of function bodies. |
| When ONE_ONLY is true, assume that only one call site is going |
| to be inlined, otherwise figure out how many call sites in |
| TO calls WHAT and verify that all can be inlined. |
| */ |
| |
| static bool |
| cgraph_check_inline_limits (struct cgraph_node *to, struct cgraph_node *what, |
| const char **reason, bool one_only) |
| { |
| int times = 0; |
| struct cgraph_edge *e; |
| int newsize; |
| int limit; |
| HOST_WIDE_INT stack_size_limit, inlined_stack; |
| |
| if (one_only) |
| times = 1; |
| else |
| for (e = to->callees; e; e = e->next_callee) |
| if (e->callee == what) |
| times++; |
| |
| if (to->global.inlined_to) |
| to = to->global.inlined_to; |
| |
| /* When inlining large function body called once into small function, |
| take the inlined function as base for limiting the growth. */ |
| if (inline_summary (to)->self_insns > inline_summary(what)->self_insns) |
| limit = inline_summary (to)->self_insns; |
| else |
| limit = inline_summary (what)->self_insns; |
| |
| limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100; |
| |
| /* Check the size after inlining against the function limits. But allow |
| the function to shrink if it went over the limits by forced inlining. */ |
| newsize = cgraph_estimate_size_after_inlining (times, to, what); |
| if (newsize >= to->global.insns |
| && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS) |
| && newsize > limit) |
| { |
| if (reason) |
| *reason = N_("--param large-function-growth limit reached"); |
| return false; |
| } |
| |
| stack_size_limit = inline_summary (to)->estimated_self_stack_size; |
| |
| stack_size_limit += stack_size_limit * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100; |
| |
| inlined_stack = (to->global.stack_frame_offset |
| + inline_summary (to)->estimated_self_stack_size |
| + what->global.estimated_stack_size); |
| if (inlined_stack > stack_size_limit |
| && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME)) |
| { |
| if (reason) |
| *reason = N_("--param large-stack-frame-growth limit reached"); |
| return false; |
| } |
| return true; |
| } |
| |
| /* Return true when function N is small enough to be inlined. */ |
| |
| bool |
| cgraph_default_inline_p (struct cgraph_node *n, const char **reason) |
| { |
| tree decl = n->decl; |
| |
| if (n->inline_decl) |
| decl = n->inline_decl; |
| if (!flag_inline_small_functions && !DECL_DECLARED_INLINE_P (decl)) |
| { |
| if (reason) |
| *reason = N_("function not inline candidate"); |
| return false; |
| } |
| |
| if (!DECL_STRUCT_FUNCTION (decl)->cfg) |
| { |
| if (reason) |
| *reason = N_("function body not available"); |
| return false; |
| } |
| |
| if (DECL_DECLARED_INLINE_P (decl)) |
| { |
| if (n->global.insns >= MAX_INLINE_INSNS_SINGLE) |
| { |
| if (reason) |
| *reason = N_("--param max-inline-insns-single limit reached"); |
| return false; |
| } |
| } |
| else |
| { |
| if (n->global.insns >= MAX_INLINE_INSNS_AUTO) |
| { |
| if (reason) |
| *reason = N_("--param max-inline-insns-auto limit reached"); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Return true when inlining WHAT would create recursive inlining. |
| We call recursive inlining all cases where same function appears more than |
| once in the single recursion nest path in the inline graph. */ |
| |
| static bool |
| cgraph_recursive_inlining_p (struct cgraph_node *to, |
| struct cgraph_node *what, |
| const char **reason) |
| { |
| bool recursive; |
| if (to->global.inlined_to) |
| recursive = what->decl == to->global.inlined_to->decl; |
| else |
| recursive = what->decl == to->decl; |
| /* Marking recursive function inline has sane semantic and thus we should |
| not warn on it. */ |
| if (recursive && reason) |
| *reason = (what->local.disregard_inline_limits |
| ? N_("recursive inlining") : ""); |
| return recursive; |
| } |
| |
| /* A cost model driving the inlining heuristics in a way so the edges with |
| smallest badness are inlined first. After each inlining is performed |
| the costs of all caller edges of nodes affected are recomputed so the |
| metrics may accurately depend on values such as number of inlinable callers |
| of the function or function body size. */ |
| |
| static int |
| cgraph_edge_badness (struct cgraph_edge *edge) |
| { |
| int badness; |
| int growth = |
| cgraph_estimate_size_after_inlining (1, edge->caller, edge->callee); |
| |
| growth -= edge->caller->global.insns; |
| |
| /* Always prefer inlining saving code size. */ |
| if (growth <= 0) |
| badness = INT_MIN - growth; |
| |
| /* When profiling is available, base priorities -(#calls / growth). |
| So we optimize for overall number of "executed" inlined calls. */ |
| else if (max_count) |
| badness = ((int)((double)edge->count * INT_MIN / max_count)) / growth; |
| |
| /* When function local profile is available, base priorities on |
| growth / frequency, so we optimize for overall frequency of inlined |
| calls. This is not too accurate since while the call might be frequent |
| within function, the function itself is infrequent. |
| |
| Other objective to optimize for is number of different calls inlined. |
| We add the estimated growth after inlining all functions to bias the |
| priorities slightly in this direction (so fewer times called functions |
| of the same size gets priority). */ |
| else if (flag_guess_branch_prob) |
| { |
| int div = edge->frequency * 100 / CGRAPH_FREQ_BASE; |
| int growth = |
| cgraph_estimate_size_after_inlining (1, edge->caller, edge->callee); |
| growth -= edge->caller->global.insns; |
| badness = growth * 256; |
| |
| /* Decrease badness if call is nested. */ |
| /* Compress the range so we don't overflow. */ |
| if (div > 256) |
| div = 256 + ceil_log2 (div) - 8; |
| if (div < 1) |
| div = 1; |
| if (badness > 0) |
| badness /= div; |
| badness += cgraph_estimate_growth (edge->callee); |
| } |
| /* When function local profile is not available or it does not give |
| useful information (ie frequency is zero), base the cost on |
| loop nest and overall size growth, so we optimize for overall number |
| of functions fully inlined in program. */ |
| else |
| { |
| int nest = MIN (edge->loop_nest, 8); |
| badness = cgraph_estimate_growth (edge->callee) * 256; |
| |
| /* Decrease badness if call is nested. */ |
| if (badness > 0) |
| badness >>= nest; |
| else |
| { |
| badness <<= nest; |
| } |
| } |
| /* Make recursive inlining happen always after other inlining is done. */ |
| if (cgraph_recursive_inlining_p (edge->caller, edge->callee, NULL)) |
| return badness + 1; |
| else |
| return badness; |
| } |
| |
| /* Recompute heap nodes for each of caller edge. */ |
| |
| static void |
| update_caller_keys (fibheap_t heap, struct cgraph_node *node, |
| bitmap updated_nodes) |
| { |
| struct cgraph_edge *edge; |
| const char *failed_reason; |
| |
| if (!node->local.inlinable || node->local.disregard_inline_limits |
| || node->global.inlined_to) |
| return; |
| if (bitmap_bit_p (updated_nodes, node->uid)) |
| return; |
| bitmap_set_bit (updated_nodes, node->uid); |
| node->global.estimated_growth = INT_MIN; |
| |
| if (!node->local.inlinable) |
| return; |
| /* Prune out edges we won't inline into anymore. */ |
| if (!cgraph_default_inline_p (node, &failed_reason)) |
| { |
| for (edge = node->callers; edge; edge = edge->next_caller) |
| if (edge->aux) |
| { |
| fibheap_delete_node (heap, (fibnode_t) edge->aux); |
| edge->aux = NULL; |
| if (edge->inline_failed) |
| edge->inline_failed = failed_reason; |
| } |
| return; |
| } |
| |
| for (edge = node->callers; edge; edge = edge->next_caller) |
| if (edge->inline_failed) |
| { |
| int badness = cgraph_edge_badness (edge); |
| if (edge->aux) |
| { |
| fibnode_t n = (fibnode_t) edge->aux; |
| gcc_assert (n->data == edge); |
| if (n->key == badness) |
| continue; |
| |
| /* fibheap_replace_key only increase the keys. */ |
| if (fibheap_replace_key (heap, n, badness)) |
| continue; |
| fibheap_delete_node (heap, (fibnode_t) edge->aux); |
| } |
| edge->aux = fibheap_insert (heap, badness, edge); |
| } |
| } |
| |
| /* Recompute heap nodes for each of caller edges of each of callees. */ |
| |
| static void |
| update_callee_keys (fibheap_t heap, struct cgraph_node *node, |
| bitmap updated_nodes) |
| { |
| struct cgraph_edge *e; |
| node->global.estimated_growth = INT_MIN; |
| |
| for (e = node->callees; e; e = e->next_callee) |
| if (e->inline_failed) |
| update_caller_keys (heap, e->callee, updated_nodes); |
| else if (!e->inline_failed) |
| update_callee_keys (heap, e->callee, updated_nodes); |
| } |
| |
| /* Enqueue all recursive calls from NODE into priority queue depending on |
| how likely we want to recursively inline the call. */ |
| |
| static void |
| lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where, |
| fibheap_t heap) |
| { |
| static int priority; |
| struct cgraph_edge *e; |
| for (e = where->callees; e; e = e->next_callee) |
| if (e->callee == node) |
| { |
| /* When profile feedback is available, prioritize by expected number |
| of calls. Without profile feedback we maintain simple queue |
| to order candidates via recursive depths. */ |
| fibheap_insert (heap, |
| !max_count ? priority++ |
| : -(e->count / ((max_count + (1<<24) - 1) / (1<<24))), |
| e); |
| } |
| for (e = where->callees; e; e = e->next_callee) |
| if (!e->inline_failed) |
| lookup_recursive_calls (node, e->callee, heap); |
| } |
| |
| /* Decide on recursive inlining: in the case function has recursive calls, |
| inline until body size reaches given argument. If any new indirect edges |
| are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES |
| is NULL. */ |
| |
| static bool |
| cgraph_decide_recursive_inlining (struct cgraph_node *node, |
| VEC (cgraph_edge_p, heap) **new_edges) |
| { |
| int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO); |
| int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO); |
| int probability = PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY); |
| fibheap_t heap; |
| struct cgraph_edge *e; |
| struct cgraph_node *master_clone, *next; |
| int depth = 0; |
| int n = 0; |
| |
| if (optimize_function_for_size_p (DECL_STRUCT_FUNCTION (node->decl)) |
| || (!flag_inline_functions && !DECL_DECLARED_INLINE_P (node->decl))) |
| return false; |
| |
| if (DECL_DECLARED_INLINE_P (node->decl)) |
| { |
| limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE); |
| max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH); |
| } |
| |
| /* Make sure that function is small enough to be considered for inlining. */ |
| if (!max_depth |
| || cgraph_estimate_size_after_inlining (1, node, node) >= limit) |
| return false; |
| heap = fibheap_new (); |
| lookup_recursive_calls (node, node, heap); |
| if (fibheap_empty (heap)) |
| { |
| fibheap_delete (heap); |
| return false; |
| } |
| |
| if (dump_file) |
| fprintf (dump_file, |
| " Performing recursive inlining on %s\n", |
| cgraph_node_name (node)); |
| |
| /* We need original clone to copy around. */ |
| master_clone = cgraph_clone_node (node, node->count, CGRAPH_FREQ_BASE, 1, false); |
| master_clone->needed = true; |
| for (e = master_clone->callees; e; e = e->next_callee) |
| if (!e->inline_failed) |
| cgraph_clone_inlined_nodes (e, true, false); |
| |
| /* Do the inlining and update list of recursive call during process. */ |
| while (!fibheap_empty (heap) |
| && (cgraph_estimate_size_after_inlining (1, node, master_clone) |
| <= limit)) |
| { |
| struct cgraph_edge *curr |
| = (struct cgraph_edge *) fibheap_extract_min (heap); |
| struct cgraph_node *cnode; |
| |
| depth = 1; |
| for (cnode = curr->caller; |
| cnode->global.inlined_to; cnode = cnode->callers->caller) |
| if (node->decl == curr->callee->decl) |
| depth++; |
| if (depth > max_depth) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| " maximal depth reached\n"); |
| continue; |
| } |
| |
| if (max_count) |
| { |
| if (!cgraph_maybe_hot_edge_p (curr)) |
| { |
| if (dump_file) |
| fprintf (dump_file, " Not inlining cold call\n"); |
| continue; |
| } |
| if (curr->count * 100 / node->count < probability) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| " Probability of edge is too small\n"); |
| continue; |
| } |
| } |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, |
| " Inlining call of depth %i", depth); |
| if (node->count) |
| { |
| fprintf (dump_file, " called approx. %.2f times per call", |
| (double)curr->count / node->count); |
| } |
| fprintf (dump_file, "\n"); |
| } |
| cgraph_redirect_edge_callee (curr, master_clone); |
| cgraph_mark_inline_edge (curr, false, new_edges); |
| lookup_recursive_calls (node, curr->callee, heap); |
| n++; |
| } |
| if (!fibheap_empty (heap) && dump_file) |
| fprintf (dump_file, " Recursive inlining growth limit met.\n"); |
| |
| fibheap_delete (heap); |
| if (dump_file) |
| fprintf (dump_file, |
| "\n Inlined %i times, body grown from %i to %i insns\n", n, |
| master_clone->global.insns, node->global.insns); |
| |
| /* Remove master clone we used for inlining. We rely that clones inlined |
| into master clone gets queued just before master clone so we don't |
| need recursion. */ |
| for (node = cgraph_nodes; node != master_clone; |
| node = next) |
| { |
| next = node->next; |
| if (node->global.inlined_to == master_clone) |
| cgraph_remove_node (node); |
| } |
| cgraph_remove_node (master_clone); |
| /* FIXME: Recursive inlining actually reduces number of calls of the |
| function. At this place we should probably walk the function and |
| inline clones and compensate the counts accordingly. This probably |
| doesn't matter much in practice. */ |
| return n > 0; |
| } |
| |
| /* Set inline_failed for all callers of given function to REASON. */ |
| |
| static void |
| cgraph_set_inline_failed (struct cgraph_node *node, const char *reason) |
| { |
| struct cgraph_edge *e; |
| |
| if (dump_file) |
| fprintf (dump_file, "Inlining failed: %s\n", reason); |
| for (e = node->callers; e; e = e->next_caller) |
| if (e->inline_failed) |
| e->inline_failed = reason; |
| } |
| |
| /* Given whole compilation unit estimate of INSNS, compute how large we can |
| allow the unit to grow. */ |
| static int |
| compute_max_insns (int insns) |
| { |
| int max_insns = insns; |
| if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS)) |
| max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS); |
| |
| return ((HOST_WIDEST_INT) max_insns |
| * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100); |
| } |
| |
| /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */ |
| static void |
| add_new_edges_to_heap (fibheap_t heap, VEC (cgraph_edge_p, heap) *new_edges) |
| { |
| while (VEC_length (cgraph_edge_p, new_edges) > 0) |
| { |
| struct cgraph_edge *edge = VEC_pop (cgraph_edge_p, new_edges); |
| |
| gcc_assert (!edge->aux); |
| edge->aux = fibheap_insert (heap, cgraph_edge_badness (edge), edge); |
| } |
| } |
| |
| |
| /* We use greedy algorithm for inlining of small functions: |
| All inline candidates are put into prioritized heap based on estimated |
| growth of the overall number of instructions and then update the estimates. |
| |
| INLINED and INLINED_CALEES are just pointers to arrays large enough |
| to be passed to cgraph_inlined_into and cgraph_inlined_callees. */ |
| |
| static void |
| cgraph_decide_inlining_of_small_functions (void) |
| { |
| struct cgraph_node *node; |
| struct cgraph_edge *edge; |
| const char *failed_reason; |
| fibheap_t heap = fibheap_new (); |
| bitmap updated_nodes = BITMAP_ALLOC (NULL); |
| int min_insns, max_insns; |
| VEC (cgraph_edge_p, heap) *new_indirect_edges = NULL; |
| |
| if (flag_indirect_inlining) |
| new_indirect_edges = VEC_alloc (cgraph_edge_p, heap, 8); |
| |
| if (dump_file) |
| fprintf (dump_file, "\nDeciding on smaller functions:\n"); |
| |
| /* Put all inline candidates into the heap. */ |
| |
| for (node = cgraph_nodes; node; node = node->next) |
| { |
| if (!node->local.inlinable || !node->callers |
| || node->local.disregard_inline_limits) |
| continue; |
| if (dump_file) |
| fprintf (dump_file, "Considering inline candidate %s.\n", cgraph_node_name (node)); |
| |
| node->global.estimated_growth = INT_MIN; |
| if (!cgraph_default_inline_p (node, &failed_reason)) |
| { |
| cgraph_set_inline_failed (node, failed_reason); |
| continue; |
| } |
| |
| for (edge = node->callers; edge; edge = edge->next_caller) |
| if (edge->inline_failed) |
| { |
| gcc_assert (!edge->aux); |
| edge->aux = fibheap_insert (heap, cgraph_edge_badness (edge), edge); |
| } |
| } |
| |
| max_insns = compute_max_insns (overall_insns); |
| min_insns = overall_insns; |
| |
| while (overall_insns <= max_insns |
| && (edge = (struct cgraph_edge *) fibheap_extract_min (heap))) |
| { |
| int old_insns = overall_insns; |
| struct cgraph_node *where; |
| int growth = |
| cgraph_estimate_size_after_inlining (1, edge->caller, edge->callee); |
| const char *not_good = NULL; |
| |
| growth -= edge->caller->global.insns; |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, |
| "\nConsidering %s with %i insns\n", |
| cgraph_node_name (edge->callee), |
| edge->callee->global.insns); |
| fprintf (dump_file, |
| " to be inlined into %s\n" |
| " Estimated growth after inlined into all callees is %+i insns.\n" |
| " Estimated badness is %i, frequency %.2f.\n", |
| cgraph_node_name (edge->caller), |
| cgraph_estimate_growth (edge->callee), |
| cgraph_edge_badness (edge), |
| edge->frequency / (double)CGRAPH_FREQ_BASE); |
| if (edge->count) |
| fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n", edge->count); |
| } |
| gcc_assert (edge->aux); |
| edge->aux = NULL; |
| if (!edge->inline_failed) |
| continue; |
| |
| /* When not having profile info ready we don't weight by any way the |
| position of call in procedure itself. This means if call of |
| function A from function B seems profitable to inline, the recursive |
| call of function A in inline copy of A in B will look profitable too |
| and we end up inlining until reaching maximal function growth. This |
| is not good idea so prohibit the recursive inlining. |
| |
| ??? When the frequencies are taken into account we might not need this |
| restriction. |
| |
| We need to be cureful here, in some testcases, e.g. directivec.c in |
| libcpp, we can estimate self recursive function to have negative growth |
| for inlining completely. |
| */ |
| if (!edge->count) |
| { |
| where = edge->caller; |
| while (where->global.inlined_to) |
| { |
| if (where->decl == edge->callee->decl) |
| break; |
| where = where->callers->caller; |
| } |
| if (where->global.inlined_to) |
| { |
| edge->inline_failed |
| = (edge->callee->local.disregard_inline_limits ? N_("recursive inlining") : ""); |
| if (dump_file) |
| fprintf (dump_file, " inline_failed:Recursive inlining performed only for function itself.\n"); |
| continue; |
| } |
| } |
| |
| if (!cgraph_maybe_hot_edge_p (edge)) |
| not_good = N_("call is unlikely and code size would grow"); |
| if (!flag_inline_functions |
| && !DECL_DECLARED_INLINE_P (edge->callee->decl)) |
| not_good = N_("function not declared inline and code size would grow"); |
| if (optimize_function_for_size_p (DECL_STRUCT_FUNCTION(edge->caller->decl))) |
| not_good = N_("optimizing for size and code size would grow"); |
| if (not_good && growth > 0 && cgraph_estimate_growth (edge->callee) > 0) |
| { |
| if (!cgraph_recursive_inlining_p (edge->caller, edge->callee, |
| &edge->inline_failed)) |
| { |
| edge->inline_failed = not_good; |
| if (dump_file) |
| fprintf (dump_file, " inline_failed:%s.\n", edge->inline_failed); |
| } |
| continue; |
| } |
| if (!cgraph_default_inline_p (edge->callee, &edge->inline_failed)) |
| { |
| if (!cgraph_recursive_inlining_p (edge->caller, edge->callee, |
| &edge->inline_failed)) |
| { |
| if (dump_file) |
| fprintf (dump_file, " inline_failed:%s.\n", edge->inline_failed); |
| } |
| continue; |
| } |
| if (!tree_can_inline_p (edge->caller->decl, edge->callee->decl)) |
| { |
| gimple_call_set_cannot_inline (edge->call_stmt, true); |
| edge->inline_failed = N_("target specific option mismatch"); |
| if (dump_file) |
| fprintf (dump_file, " inline_failed:%s.\n", edge->inline_failed); |
| continue; |
| } |
| if (cgraph_recursive_inlining_p (edge->caller, edge->callee, |
| &edge->inline_failed)) |
| { |
| where = edge->caller; |
| if (where->global.inlined_to) |
| where = where->global.inlined_to; |
| if (!cgraph_decide_recursive_inlining (where, |
| flag_indirect_inlining |
| ? &new_indirect_edges : NULL)) |
| continue; |
| if (flag_indirect_inlining) |
| add_new_edges_to_heap (heap, new_indirect_edges); |
| update_callee_keys (heap, where, updated_nodes); |
| } |
| else |
| { |
| struct cgraph_node *callee; |
| if (gimple_call_cannot_inline_p (edge->call_stmt) |
| || !cgraph_check_inline_limits (edge->caller, edge->callee, |
| &edge->inline_failed, true)) |
| { |
| if (dump_file) |
| fprintf (dump_file, " Not inlining into %s:%s.\n", |
| cgraph_node_name (edge->caller), edge->inline_failed); |
| continue; |
| } |
| callee = edge->callee; |
| cgraph_mark_inline_edge (edge, true, &new_indirect_edges); |
| if (flag_indirect_inlining) |
| add_new_edges_to_heap (heap, new_indirect_edges); |
| |
| update_callee_keys (heap, callee, updated_nodes); |
| } |
| where = edge->caller; |
| if (where->global.inlined_to) |
| where = where->global.inlined_to; |
| |
| /* Our profitability metric can depend on local properties |
| such as number of inlinable calls and size of the function body. |
| After inlining these properties might change for the function we |
| inlined into (since it's body size changed) and for the functions |
| called by function we inlined (since number of it inlinable callers |
| might change). */ |
| update_caller_keys (heap, where, updated_nodes); |
| bitmap_clear (updated_nodes); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, |
| " Inlined into %s which now has %i insns," |
| "net change of %+i insns.\n", |
| cgraph_node_name (edge->caller), |
| edge->caller->global.insns, |
| overall_insns - old_insns); |
| } |
| if (min_insns > overall_insns) |
| { |
| min_insns = overall_insns; |
| max_insns = compute_max_insns (min_insns); |
| |
| if (dump_file) |
| fprintf (dump_file, "New minimal insns reached: %i\n", min_insns); |
| } |
| } |
| while ((edge = (struct cgraph_edge *) fibheap_extract_min (heap)) != NULL) |
| { |
| gcc_assert (edge->aux); |
| edge->aux = NULL; |
| if (!edge->callee->local.disregard_inline_limits && edge->inline_failed |
| && !cgraph_recursive_inlining_p (edge->caller, edge->callee, |
| &edge->inline_failed)) |
| edge->inline_failed = N_("--param inline-unit-growth limit reached"); |
| } |
| |
| if (new_indirect_edges) |
| VEC_free (cgraph_edge_p, heap, new_indirect_edges); |
| fibheap_delete (heap); |
| BITMAP_FREE (updated_nodes); |
| } |
| |
| /* Decide on the inlining. We do so in the topological order to avoid |
| expenses on updating data structures. */ |
| |
| static unsigned int |
| cgraph_decide_inlining (void) |
| { |
| struct cgraph_node *node; |
| int nnodes; |
| struct cgraph_node **order = |
| XCNEWVEC (struct cgraph_node *, cgraph_n_nodes); |
| int old_insns = 0; |
| int i; |
| int initial_insns = 0; |
| bool redo_always_inline = true; |
| |
| cgraph_remove_function_insertion_hook (function_insertion_hook_holder); |
| |
| max_count = 0; |
| for (node = cgraph_nodes; node; node = node->next) |
| if (node->analyzed && (node->needed || node->reachable)) |
| { |
| struct cgraph_edge *e; |
| |
| initial_insns += inline_summary (node)->self_insns; |
| gcc_assert (inline_summary (node)->self_insns == node->global.insns); |
| for (e = node->callees; e; e = e->next_callee) |
| if (max_count < e->count) |
| max_count = e->count; |
| } |
| overall_insns = initial_insns; |
| gcc_assert (!max_count || (profile_info && flag_branch_probabilities)); |
| |
| nnodes = cgraph_postorder (order); |
| |
| if (dump_file) |
| fprintf (dump_file, |
| "\nDeciding on inlining. Starting with %i insns.\n", |
| initial_insns); |
| |
| for (node = cgraph_nodes; node; node = node->next) |
| node->aux = 0; |
| |
| if (dump_file) |
| fprintf (dump_file, "\nInlining always_inline functions:\n"); |
| |
| /* In the first pass mark all always_inline edges. Do this with a priority |
| so none of our later choices will make this impossible. */ |
| while (redo_always_inline) |
| { |
| redo_always_inline = false; |
| for (i = nnodes - 1; i >= 0; i--) |
| { |
| struct cgraph_edge *e, *next; |
| |
| node = order[i]; |
| |
| /* Handle nodes to be flattened, but don't update overall unit |
| size. */ |
| if (lookup_attribute ("flatten", |
| DECL_ATTRIBUTES (node->decl)) != NULL) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "Flattening %s\n", cgraph_node_name (node)); |
| cgraph_decide_inlining_incrementally (node, INLINE_ALL, 0); |
| } |
| |
| if (!node->local.disregard_inline_limits) |
| continue; |
| if (dump_file) |
| fprintf (dump_file, |
| "\nConsidering %s %i insns (always inline)\n", |
| cgraph_node_name (node), node->global.insns); |
| old_insns = overall_insns; |
| for (e = node->callers; e; e = next) |
| { |
| next = e->next_caller; |
| if (!e->inline_failed |
| || gimple_call_cannot_inline_p (e->call_stmt)) |
| continue; |
| if (cgraph_recursive_inlining_p (e->caller, e->callee, |
| &e->inline_failed)) |
| continue; |
| if (!tree_can_inline_p (e->caller->decl, e->callee->decl)) |
| { |
| gimple_call_set_cannot_inline (e->call_stmt, true); |
| continue; |
| } |
| if (cgraph_mark_inline_edge (e, true, NULL)) |
| redo_always_inline = true; |
| if (dump_file) |
| fprintf (dump_file, |
| " Inlined into %s which now has %i insns.\n", |
| cgraph_node_name (e->caller), |
| e->caller->global.insns); |
| } |
| /* Inlining self recursive function might introduce new calls to |
| themselves we didn't see in the loop above. Fill in the proper |
| reason why inline failed. */ |
| for (e = node->callers; e; e = e->next_caller) |
| if (e->inline_failed) |
| e->inline_failed = N_("recursive inlining"); |
| if (dump_file) |
| fprintf (dump_file, |
| " Inlined for a net change of %+i insns.\n", |
| overall_insns - old_insns); |
| } |
| } |
| |
| cgraph_decide_inlining_of_small_functions (); |
| |
| if (flag_inline_functions_called_once) |
| { |
| if (dump_file) |
| fprintf (dump_file, "\nDeciding on functions called once:\n"); |
| |
| /* And finally decide what functions are called once. */ |
| for (i = nnodes - 1; i >= 0; i--) |
| { |
| node = order[i]; |
| |
| if (node->callers |
| && !node->callers->next_caller |
| && !node->needed |
| && node->local.inlinable |
| && node->callers->inline_failed |
| && !gimple_call_cannot_inline_p (node->callers->call_stmt) |
| && !DECL_EXTERNAL (node->decl) |
| && !DECL_COMDAT (node->decl)) |
| { |
| if (dump_file) |
| { |
| fprintf (dump_file, |
| "\nConsidering %s %i insns.\n", |
| cgraph_node_name (node), node->global.insns); |
| fprintf (dump_file, |
| " Called once from %s %i insns.\n", |
| cgraph_node_name (node->callers->caller), |
| node->callers->caller->global.insns); |
| } |
| |
| old_insns = overall_insns; |
| |
| if (cgraph_check_inline_limits (node->callers->caller, node, |
| NULL, false)) |
| { |
| cgraph_mark_inline (node->callers); |
| if (dump_file) |
| fprintf (dump_file, |
| " Inlined into %s which now has %i insns" |
| " for a net change of %+i insns.\n", |
| cgraph_node_name (node->callers->caller), |
| node->callers->caller->global.insns, |
| overall_insns - old_insns); |
| } |
| else |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| " Inline limit reached, not inlined.\n"); |
| } |
| } |
| } |
| } |
| |
| /* Free ipa-prop structures if they are no longer needed. */ |
| if (flag_indirect_inlining) |
| free_all_ipa_structures_after_iinln (); |
| |
| if (dump_file) |
| fprintf (dump_file, |
| "\nInlined %i calls, eliminated %i functions, " |
| "%i insns turned to %i insns.\n\n", |
| ncalls_inlined, nfunctions_inlined, initial_insns, |
| overall_insns); |
| free (order); |
| return 0; |
| } |
| |
| /* Try to inline edge E from incremental inliner. MODE specifies mode |
| of inliner. |
| |
| We are detecting cycles by storing mode of inliner into cgraph_node last |
| time we visited it in the recursion. In general when mode is set, we have |
| recursive inlining, but as an special case, we want to try harder inline |
| ALWAYS_INLINE functions: consider callgraph a->b->c->b, with a being |
| flatten, b being always inline. Flattening 'a' will collapse |
| a->b->c before hitting cycle. To accommodate always inline, we however |
| need to inline a->b->c->b. |
| |
| So after hitting cycle first time, we switch into ALWAYS_INLINE mode and |
| stop inlining only after hitting ALWAYS_INLINE in ALWAY_INLINE mode. */ |
| static bool |
| try_inline (struct cgraph_edge *e, enum inlining_mode mode, int depth) |
| { |
| struct cgraph_node *callee = e->callee; |
| enum inlining_mode callee_mode = (enum inlining_mode) (size_t) callee->aux; |
| bool always_inline = e->callee->local.disregard_inline_limits; |
| |
| /* We've hit cycle? */ |
| if (callee_mode) |
| { |
| /* It is first time we see it and we are not in ALWAY_INLINE only |
| mode yet. and the function in question is always_inline. */ |
| if (always_inline && mode != INLINE_ALWAYS_INLINE) |
| { |
| if (dump_file) |
| { |
| indent_to (dump_file, depth); |
| fprintf (dump_file, |
| "Hit cycle in %s, switching to always inline only.\n", |
| cgraph_node_name (callee)); |
| } |
| mode = INLINE_ALWAYS_INLINE; |
| } |
| /* Otherwise it is time to give up. */ |
| else |
| { |
| if (dump_file) |
| { |
| indent_to (dump_file, depth); |
| fprintf (dump_file, |
| "Not inlining %s into %s to avoid cycle.\n", |
| cgraph_node_name (callee), |
| cgraph_node_name (e->caller)); |
| } |
| e->inline_failed = (e->callee->local.disregard_inline_limits |
| ? N_("recursive inlining") : ""); |
| return false; |
| } |
| } |
| |
| callee->aux = (void *)(size_t) mode; |
| if (dump_file) |
| { |
| indent_to (dump_file, depth); |
| fprintf (dump_file, " Inlining %s into %s.\n", |
| cgraph_node_name (e->callee), |
| cgraph_node_name (e->caller)); |
| } |
| if (e->inline_failed) |
| { |
| cgraph_mark_inline (e); |
| |
| /* In order to fully inline always_inline functions, we need to |
| recurse here, since the inlined functions might not be processed by |
| incremental inlining at all yet. |
| |
| Also flattening needs to be done recursively. */ |
| |
| if (mode == INLINE_ALL || always_inline) |
| cgraph_decide_inlining_incrementally (e->callee, mode, depth + 1); |
| } |
| callee->aux = (void *)(size_t) callee_mode; |
| return true; |
| } |
| |
| /* Decide on the inlining. We do so in the topological order to avoid |
| expenses on updating data structures. |
| DEPTH is depth of recursion, used only for debug output. */ |
| |
| static bool |
| cgraph_decide_inlining_incrementally (struct cgraph_node *node, |
| enum inlining_mode mode, |
| int depth) |
| { |
| struct cgraph_edge *e; |
| bool inlined = false; |
| const char *failed_reason; |
| enum inlining_mode old_mode; |
| |
| #ifdef ENABLE_CHECKING |
| verify_cgraph_node (node); |
| #endif |
| |
| old_mode = (enum inlining_mode) (size_t)node->aux; |
| |
| if (mode != INLINE_ALWAYS_INLINE |
| && lookup_attribute ("flatten", DECL_ATTRIBUTES (node->decl)) != NULL) |
| { |
| if (dump_file) |
| { |
| indent_to (dump_file, depth); |
| fprintf (dump_file, "Flattening %s\n", cgraph_node_name (node)); |
| } |
| mode = INLINE_ALL; |
| } |
| |
| node->aux = (void *)(size_t) mode; |
| |
| /* First of all look for always inline functions. */ |
| for (e = node->callees; e; e = e->next_callee) |
| { |
| if (!e->callee->local.disregard_inline_limits |
| && (mode != INLINE_ALL || !e->callee->local.inlinable)) |
| continue; |
| if (gimple_call_cannot_inline_p (e->call_stmt)) |
| continue; |
| /* When the edge is already inlined, we just need to recurse into |
| it in order to fully flatten the leaves. */ |
| if (!e->inline_failed && mode == INLINE_ALL) |
| { |
| inlined |= try_inline (e, mode, depth); |
| continue; |
| } |
| if (dump_file) |
| { |
| indent_to (dump_file, depth); |
| fprintf (dump_file, |
| "Considering to always inline inline candidate %s.\n", |
| cgraph_node_name (e->callee)); |
| } |
| if (cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed)) |
| { |
| if (dump_file) |
| { |
| indent_to (dump_file, depth); |
| fprintf (dump_file, "Not inlining: recursive call.\n"); |
| } |
| continue; |
| } |
| if (!tree_can_inline_p (node->decl, e->callee->decl)) |
| { |
| gimple_call_set_cannot_inline (e->call_stmt, true); |
| if (dump_file) |
| { |
| indent_to (dump_file, depth); |
| fprintf (dump_file, |
| "Not inlining: Target specific option mismatch.\n"); |
| } |
| continue; |
| } |
| if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl)) |
| != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->callee->decl))) |
| { |
| if (dump_file) |
| { |
| indent_to (dump_file, depth); |
| fprintf (dump_file, "Not inlining: SSA form does not match.\n"); |
| } |
| continue; |
| } |
| if (!e->callee->analyzed && !e->callee->inline_decl) |
| { |
| if (dump_file) |
| { |
| indent_to (dump_file, depth); |
| fprintf (dump_file, |
| "Not inlining: Function body no longer available.\n"); |
| } |
| continue; |
| } |
| inlined |= try_inline (e, mode, depth); |
| } |
| |
| /* Now do the automatic inlining. */ |
| if (mode != INLINE_ALL && mode != INLINE_ALWAYS_INLINE) |
| for (e = node->callees; e; e = e->next_callee) |
| { |
| if (!e->callee->local.inlinable |
| || !e->inline_failed |
| || e->callee->local.disregard_inline_limits) |
| continue; |
| if (dump_file) |
| fprintf (dump_file, "Considering inline candidate %s.\n", |
| cgraph_node_name (e->callee)); |
| if (cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed)) |
| { |
| if (dump_file) |
| { |
| indent_to (dump_file, depth); |
| fprintf (dump_file, "Not inlining: recursive call.\n"); |
| } |
| continue; |
| } |
| if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl)) |
| != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->callee->decl))) |
| { |
| if (dump_file) |
| { |
| indent_to (dump_file, depth); |
| fprintf (dump_file, "Not inlining: SSA form does not match.\n"); |
| } |
| continue; |
| } |
| /* When the function body would grow and inlining the function won't |
| eliminate the need for offline copy of the function, don't inline. |
| */ |
| if ((mode == INLINE_SIZE |
| || (!flag_inline_functions |
| && !DECL_DECLARED_INLINE_P (e->callee->decl))) |
| && (cgraph_estimate_size_after_inlining (1, e->caller, e->callee) |
| > e->caller->global.insns) |
| && cgraph_estimate_growth (e->callee) > 0) |
| { |
| if (dump_file) |
| { |
| indent_to (dump_file, depth); |
| fprintf (dump_file, |
| "Not inlining: code size would grow by %i insns.\n", |
| cgraph_estimate_size_after_inlining (1, e->caller, |
| e->callee) |
| - e->caller->global.insns); |
| } |
| continue; |
| } |
| if (!cgraph_check_inline_limits (node, e->callee, &e->inline_failed, |
| false) |
| || gimple_call_cannot_inline_p (e->call_stmt)) |
| { |
| if (dump_file) |
| { |
| indent_to (dump_file, depth); |
| fprintf (dump_file, "Not inlining: %s.\n", e->inline_failed); |
| } |
| continue; |
| } |
| if (!e->callee->analyzed && !e->callee->inline_decl) |
| { |
| if (dump_file) |
| { |
| indent_to (dump_file, depth); |
| fprintf (dump_file, |
| "Not inlining: Function body no longer available.\n"); |
| } |
| continue; |
| } |
| if (!tree_can_inline_p (node->decl, e->callee->decl)) |
| { |
| gimple_call_set_cannot_inline (e->call_stmt, true); |
| if (dump_file) |
| { |
| indent_to (dump_file, depth); |
| fprintf (dump_file, |
| "Not inlining: Target specific option mismatch.\n"); |
| } |
| continue; |
| } |
| if (cgraph_default_inline_p (e->callee, &failed_reason)) |
| inlined |= try_inline (e, mode, depth); |
| } |
| node->aux = (void *)(size_t) old_mode; |
| return inlined; |
| } |
| |
| /* Because inlining might remove no-longer reachable nodes, we need to |
| keep the array visible to garbage collector to avoid reading collected |
| out nodes. */ |
| static int nnodes; |
| static GTY ((length ("nnodes"))) struct cgraph_node **order; |
| |
| /* Do inlining of small functions. Doing so early helps profiling and other |
| passes to be somewhat more effective and avoids some code duplication in |
| later real inlining pass for testcases with very many function calls. */ |
| static unsigned int |
| cgraph_early_inlining (void) |
| { |
| struct cgraph_node *node = cgraph_node (current_function_decl); |
| unsigned int todo = 0; |
| |
| if (sorrycount || errorcount) |
| return 0; |
| if (cgraph_decide_inlining_incrementally (node, INLINE_SIZE, 0)) |
| { |
| timevar_push (TV_INTEGRATION); |
| todo = optimize_inline_calls (current_function_decl); |
| timevar_pop (TV_INTEGRATION); |
| } |
| cfun->always_inline_functions_inlined = true; |
| return todo; |
| } |
| |
| /* When inlining shall be performed. */ |
| static bool |
| cgraph_gate_early_inlining (void) |
| { |
| return flag_early_inlining; |
| } |
| |
| struct gimple_opt_pass pass_early_inline = |
| { |
| { |
| GIMPLE_PASS, |
| "einline", /* name */ |
| cgraph_gate_early_inlining, /* gate */ |
| cgraph_early_inlining, /* execute */ |
| NULL, /* sub */ |
| NULL, /* next */ |
| 0, /* static_pass_number */ |
| TV_INLINE_HEURISTICS, /* tv_id */ |
| 0, /* properties_required */ |
| PROP_cfg, /* properties_provided */ |
| 0, /* properties_destroyed */ |
| 0, /* todo_flags_start */ |
| TODO_dump_func /* todo_flags_finish */ |
| } |
| }; |
| |
| /* When inlining shall be performed. */ |
| static bool |
| cgraph_gate_ipa_early_inlining (void) |
| { |
| return (flag_early_inlining |
| && (flag_branch_probabilities || flag_test_coverage |
| || profile_arc_flag)); |
| } |
| |
| /* IPA pass wrapper for early inlining pass. We need to run early inlining |
| before tree profiling so we have stand alone IPA pass for doing so. */ |
| struct simple_ipa_opt_pass pass_ipa_early_inline = |
| { |
| { |
| SIMPLE_IPA_PASS, |
| "einline_ipa", /* name */ |
| cgraph_gate_ipa_early_inlining, /* gate */ |
| NULL, /* execute */ |
| NULL, /* sub */ |
| NULL, /* next */ |
| 0, /* static_pass_number */ |
| TV_INLINE_HEURISTICS, /* tv_id */ |
| 0, /* properties_required */ |
| PROP_cfg, /* properties_provided */ |
| 0, /* properties_destroyed */ |
| 0, /* todo_flags_start */ |
| TODO_dump_cgraph /* todo_flags_finish */ |
| } |
| }; |
| |
| /* Compute parameters of functions used by inliner. */ |
| unsigned int |
| compute_inline_parameters (struct cgraph_node *node) |
| { |
| HOST_WIDE_INT self_stack_size; |
| |
| gcc_assert (!node->global.inlined_to); |
| |
| /* Estimate the stack size for the function. But not at -O0 |
| because estimated_stack_frame_size is a quadratic problem. */ |
| self_stack_size = optimize ? estimated_stack_frame_size () : 0; |
| inline_summary (node)->estimated_self_stack_size = self_stack_size; |
| node->global.estimated_stack_size = self_stack_size; |
| node->global.stack_frame_offset = 0; |
| |
| /* Can this function be inlined at all? */ |
| node->local.inlinable = tree_inlinable_function_p (current_function_decl); |
| |
| /* Estimate the number of instructions for this function. |
| ??? At -O0 we don't use this information except for the dumps, and |
| even then only for always_inline functions. But disabling this |
| causes ICEs in the inline heuristics... */ |
| inline_summary (node)->self_insns |
| = estimate_num_insns_fn (current_function_decl, &eni_inlining_weights); |
| if (node->local.inlinable && !node->local.disregard_inline_limits) |
| node->local.disregard_inline_limits |
| = DECL_DISREGARD_INLINE_LIMITS (current_function_decl); |
| |
| /* Inlining characteristics are maintained by the cgraph_mark_inline. */ |
| node->global.insns = inline_summary (node)->self_insns; |
| return 0; |
| } |
| |
| |
| /* Compute parameters of functions used by inliner using |
| current_function_decl. */ |
| static unsigned int |
| compute_inline_parameters_for_current (void) |
| { |
| compute_inline_parameters (cgraph_node (current_function_decl)); |
| return 0; |
| } |
| |
| struct gimple_opt_pass pass_inline_parameters = |
| { |
| { |
| GIMPLE_PASS, |
| NULL, /* name */ |
| NULL, /* gate */ |
| compute_inline_parameters_for_current,/* execute */ |
| NULL, /* sub */ |
| NULL, /* next */ |
| 0, /* static_pass_number */ |
| TV_INLINE_HEURISTICS, /* tv_id */ |
| 0, /* properties_required */ |
| PROP_cfg, /* properties_provided */ |
| 0, /* properties_destroyed */ |
| 0, /* todo_flags_start */ |
| 0 /* todo_flags_finish */ |
| } |
| }; |
| |
| /* This function performs intraprocedural analyzis in NODE that is required to |
| inline indirect calls. */ |
| static void |
| inline_indirect_intraprocedural_analysis (struct cgraph_node *node) |
| { |
| struct cgraph_edge *cs; |
| |
| if (!flag_ipa_cp) |
| { |
| ipa_initialize_node_params (node); |
| ipa_detect_param_modifications (node); |
| } |
| ipa_analyze_params_uses (node); |
| |
| if (!flag_ipa_cp) |
| for (cs = node->callees; cs; cs = cs->next_callee) |
| { |
| ipa_count_arguments (cs); |
| ipa_compute_jump_functions (cs); |
| } |
| |
| if (dump_file) |
| { |
| ipa_print_node_params (dump_file, node); |
| ipa_print_node_jump_functions (dump_file, node); |
| } |
| } |
| |
| /* Note function body size. */ |
| static void |
| analyze_function (struct cgraph_node *node) |
| { |
| push_cfun (DECL_STRUCT_FUNCTION (node->decl)); |
| current_function_decl = node->decl; |
| |
| compute_inline_parameters (node); |
| if (flag_indirect_inlining) |
| inline_indirect_intraprocedural_analysis (node); |
| |
| current_function_decl = NULL; |
| pop_cfun (); |
| } |
| |
| /* Called when new function is inserted to callgraph late. */ |
| static void |
| add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED) |
| { |
| analyze_function (node); |
| } |
| |
| /* Note function body size. */ |
| static void |
| inline_generate_summary (void) |
| { |
| struct cgraph_node *node; |
| |
| function_insertion_hook_holder = |
| cgraph_add_function_insertion_hook (&add_new_function, NULL); |
| |
| if (flag_indirect_inlining) |
| { |
| ipa_register_cgraph_hooks (); |
| ipa_check_create_node_params (); |
| ipa_check_create_edge_args (); |
| } |
| |
| for (node = cgraph_nodes; node; node = node->next) |
| if (node->analyzed) |
| analyze_function (node); |
| |
| return; |
| } |
| |
| /* Apply inline plan to function. */ |
| static unsigned int |
| inline_transform (struct cgraph_node *node) |
| { |
| unsigned int todo = 0; |
| struct cgraph_edge *e; |
| |
| /* We might need the body of this function so that we can expand |
| it inline somewhere else. */ |
| if (cgraph_preserve_function_body_p (node->decl)) |
| save_inline_function_body (node); |
| |
| for (e = node->callees; e; e = e->next_callee) |
| if (!e->inline_failed || warn_inline) |
| break; |
| |
| if (e) |
| { |
| timevar_push (TV_INTEGRATION); |
| todo = optimize_inline_calls (current_function_decl); |
| timevar_pop (TV_INTEGRATION); |
| } |
| return todo | execute_fixup_cfg (); |
| } |
| |
| struct ipa_opt_pass pass_ipa_inline = |
| { |
| { |
| IPA_PASS, |
| "inline", /* name */ |
| NULL, /* gate */ |
| cgraph_decide_inlining, /* execute */ |
| NULL, /* sub */ |
| NULL, /* next */ |
| 0, /* static_pass_number */ |
| TV_INLINE_HEURISTICS, /* tv_id */ |
| 0, /* properties_required */ |
| PROP_cfg, /* properties_provided */ |
| 0, /* properties_destroyed */ |
| TODO_remove_functions, /* todo_flags_finish */ |
| TODO_dump_cgraph | TODO_dump_func |
| | TODO_remove_functions /* todo_flags_finish */ |
| }, |
| inline_generate_summary, /* generate_summary */ |
| NULL, /* write_summary */ |
| NULL, /* read_summary */ |
| NULL, /* function_read_summary */ |
| 0, /* TODOs */ |
| inline_transform, /* function_transform */ |
| NULL, /* variable_transform */ |
| }; |
| |
| |
| #include "gt-ipa-inline.h" |