| /* Generic partial redundancy elimination with lazy code motion support. |
| Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008 |
| Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* These routines are meant to be used by various optimization |
| passes which can be modeled as lazy code motion problems. |
| Including, but not limited to: |
| |
| * Traditional partial redundancy elimination. |
| |
| * Placement of caller/caller register save/restores. |
| |
| * Load/store motion. |
| |
| * Copy motion. |
| |
| * Conversion of flat register files to a stacked register |
| model. |
| |
| * Dead load/store elimination. |
| |
| These routines accept as input: |
| |
| * Basic block information (number of blocks, lists of |
| predecessors and successors). Note the granularity |
| does not need to be basic block, they could be statements |
| or functions. |
| |
| * Bitmaps of local properties (computed, transparent and |
| anticipatable expressions). |
| |
| The output of these routines is bitmap of redundant computations |
| and a bitmap of optimal placement points. */ |
| |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "rtl.h" |
| #include "regs.h" |
| #include "hard-reg-set.h" |
| #include "flags.h" |
| #include "real.h" |
| #include "insn-config.h" |
| #include "recog.h" |
| #include "basic-block.h" |
| #include "output.h" |
| #include "tm_p.h" |
| #include "function.h" |
| |
| /* We want target macros for the mode switching code to be able to refer |
| to instruction attribute values. */ |
| #include "insn-attr.h" |
| |
| /* Edge based LCM routines. */ |
| static void compute_antinout_edge (sbitmap *, sbitmap *, sbitmap *, sbitmap *); |
| static void compute_earliest (struct edge_list *, int, sbitmap *, sbitmap *, |
| sbitmap *, sbitmap *, sbitmap *); |
| static void compute_laterin (struct edge_list *, sbitmap *, sbitmap *, |
| sbitmap *, sbitmap *); |
| static void compute_insert_delete (struct edge_list *edge_list, sbitmap *, |
| sbitmap *, sbitmap *, sbitmap *, sbitmap *); |
| |
| /* Edge based LCM routines on a reverse flowgraph. */ |
| static void compute_farthest (struct edge_list *, int, sbitmap *, sbitmap *, |
| sbitmap*, sbitmap *, sbitmap *); |
| static void compute_nearerout (struct edge_list *, sbitmap *, sbitmap *, |
| sbitmap *, sbitmap *); |
| static void compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *, |
| sbitmap *, sbitmap *, sbitmap *, |
| sbitmap *); |
| |
| /* Edge based lcm routines. */ |
| |
| /* Compute expression anticipatability at entrance and exit of each block. |
| This is done based on the flow graph, and not on the pred-succ lists. |
| Other than that, its pretty much identical to compute_antinout. */ |
| |
| static void |
| compute_antinout_edge (sbitmap *antloc, sbitmap *transp, sbitmap *antin, |
| sbitmap *antout) |
| { |
| basic_block bb; |
| edge e; |
| basic_block *worklist, *qin, *qout, *qend; |
| unsigned int qlen; |
| edge_iterator ei; |
| |
| /* Allocate a worklist array/queue. Entries are only added to the |
| list if they were not already on the list. So the size is |
| bounded by the number of basic blocks. */ |
| qin = qout = worklist = XNEWVEC (basic_block, n_basic_blocks); |
| |
| /* We want a maximal solution, so make an optimistic initialization of |
| ANTIN. */ |
| sbitmap_vector_ones (antin, last_basic_block); |
| |
| /* Put every block on the worklist; this is necessary because of the |
| optimistic initialization of ANTIN above. */ |
| FOR_EACH_BB_REVERSE (bb) |
| { |
| *qin++ = bb; |
| bb->aux = bb; |
| } |
| |
| qin = worklist; |
| qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS]; |
| qlen = n_basic_blocks - NUM_FIXED_BLOCKS; |
| |
| /* Mark blocks which are predecessors of the exit block so that we |
| can easily identify them below. */ |
| FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) |
| e->src->aux = EXIT_BLOCK_PTR; |
| |
| /* Iterate until the worklist is empty. */ |
| while (qlen) |
| { |
| /* Take the first entry off the worklist. */ |
| bb = *qout++; |
| qlen--; |
| |
| if (qout >= qend) |
| qout = worklist; |
| |
| if (bb->aux == EXIT_BLOCK_PTR) |
| /* Do not clear the aux field for blocks which are predecessors of |
| the EXIT block. That way we never add then to the worklist |
| again. */ |
| sbitmap_zero (antout[bb->index]); |
| else |
| { |
| /* Clear the aux field of this block so that it can be added to |
| the worklist again if necessary. */ |
| bb->aux = NULL; |
| sbitmap_intersection_of_succs (antout[bb->index], antin, bb->index); |
| } |
| |
| if (sbitmap_a_or_b_and_c_cg (antin[bb->index], antloc[bb->index], |
| transp[bb->index], antout[bb->index])) |
| /* If the in state of this block changed, then we need |
| to add the predecessors of this block to the worklist |
| if they are not already on the worklist. */ |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| if (!e->src->aux && e->src != ENTRY_BLOCK_PTR) |
| { |
| *qin++ = e->src; |
| e->src->aux = e; |
| qlen++; |
| if (qin >= qend) |
| qin = worklist; |
| } |
| } |
| |
| clear_aux_for_edges (); |
| clear_aux_for_blocks (); |
| free (worklist); |
| } |
| |
| /* Compute the earliest vector for edge based lcm. */ |
| |
| static void |
| compute_earliest (struct edge_list *edge_list, int n_exprs, sbitmap *antin, |
| sbitmap *antout, sbitmap *avout, sbitmap *kill, |
| sbitmap *earliest) |
| { |
| sbitmap difference, temp_bitmap; |
| int x, num_edges; |
| basic_block pred, succ; |
| |
| num_edges = NUM_EDGES (edge_list); |
| |
| difference = sbitmap_alloc (n_exprs); |
| temp_bitmap = sbitmap_alloc (n_exprs); |
| |
| for (x = 0; x < num_edges; x++) |
| { |
| pred = INDEX_EDGE_PRED_BB (edge_list, x); |
| succ = INDEX_EDGE_SUCC_BB (edge_list, x); |
| if (pred == ENTRY_BLOCK_PTR) |
| sbitmap_copy (earliest[x], antin[succ->index]); |
| else |
| { |
| if (succ == EXIT_BLOCK_PTR) |
| sbitmap_zero (earliest[x]); |
| else |
| { |
| sbitmap_difference (difference, antin[succ->index], |
| avout[pred->index]); |
| sbitmap_not (temp_bitmap, antout[pred->index]); |
| sbitmap_a_and_b_or_c (earliest[x], difference, |
| kill[pred->index], temp_bitmap); |
| } |
| } |
| } |
| |
| sbitmap_free (temp_bitmap); |
| sbitmap_free (difference); |
| } |
| |
| /* later(p,s) is dependent on the calculation of laterin(p). |
| laterin(p) is dependent on the calculation of later(p2,p). |
| |
| laterin(ENTRY) is defined as all 0's |
| later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY) |
| laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)). |
| |
| If we progress in this manner, starting with all basic blocks |
| in the work list, anytime we change later(bb), we need to add |
| succs(bb) to the worklist if they are not already on the worklist. |
| |
| Boundary conditions: |
| |
| We prime the worklist all the normal basic blocks. The ENTRY block can |
| never be added to the worklist since it is never the successor of any |
| block. We explicitly prevent the EXIT block from being added to the |
| worklist. |
| |
| We optimistically initialize LATER. That is the only time this routine |
| will compute LATER for an edge out of the entry block since the entry |
| block is never on the worklist. Thus, LATERIN is neither used nor |
| computed for the ENTRY block. |
| |
| Since the EXIT block is never added to the worklist, we will neither |
| use nor compute LATERIN for the exit block. Edges which reach the |
| EXIT block are handled in the normal fashion inside the loop. However, |
| the insertion/deletion computation needs LATERIN(EXIT), so we have |
| to compute it. */ |
| |
| static void |
| compute_laterin (struct edge_list *edge_list, sbitmap *earliest, |
| sbitmap *antloc, sbitmap *later, sbitmap *laterin) |
| { |
| int num_edges, i; |
| edge e; |
| basic_block *worklist, *qin, *qout, *qend, bb; |
| unsigned int qlen; |
| edge_iterator ei; |
| |
| num_edges = NUM_EDGES (edge_list); |
| |
| /* Allocate a worklist array/queue. Entries are only added to the |
| list if they were not already on the list. So the size is |
| bounded by the number of basic blocks. */ |
| qin = qout = worklist |
| = XNEWVEC (basic_block, n_basic_blocks); |
| |
| /* Initialize a mapping from each edge to its index. */ |
| for (i = 0; i < num_edges; i++) |
| INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i; |
| |
| /* We want a maximal solution, so initially consider LATER true for |
| all edges. This allows propagation through a loop since the incoming |
| loop edge will have LATER set, so if all the other incoming edges |
| to the loop are set, then LATERIN will be set for the head of the |
| loop. |
| |
| If the optimistic setting of LATER on that edge was incorrect (for |
| example the expression is ANTLOC in a block within the loop) then |
| this algorithm will detect it when we process the block at the head |
| of the optimistic edge. That will requeue the affected blocks. */ |
| sbitmap_vector_ones (later, num_edges); |
| |
| /* Note that even though we want an optimistic setting of LATER, we |
| do not want to be overly optimistic. Consider an outgoing edge from |
| the entry block. That edge should always have a LATER value the |
| same as EARLIEST for that edge. */ |
| FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs) |
| sbitmap_copy (later[(size_t) e->aux], earliest[(size_t) e->aux]); |
| |
| /* Add all the blocks to the worklist. This prevents an early exit from |
| the loop given our optimistic initialization of LATER above. */ |
| FOR_EACH_BB (bb) |
| { |
| *qin++ = bb; |
| bb->aux = bb; |
| } |
| |
| /* Note that we do not use the last allocated element for our queue, |
| as EXIT_BLOCK is never inserted into it. */ |
| qin = worklist; |
| qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS]; |
| qlen = n_basic_blocks - NUM_FIXED_BLOCKS; |
| |
| /* Iterate until the worklist is empty. */ |
| while (qlen) |
| { |
| /* Take the first entry off the worklist. */ |
| bb = *qout++; |
| bb->aux = NULL; |
| qlen--; |
| if (qout >= qend) |
| qout = worklist; |
| |
| /* Compute the intersection of LATERIN for each incoming edge to B. */ |
| sbitmap_ones (laterin[bb->index]); |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| sbitmap_a_and_b (laterin[bb->index], laterin[bb->index], |
| later[(size_t)e->aux]); |
| |
| /* Calculate LATER for all outgoing edges. */ |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (sbitmap_union_of_diff_cg (later[(size_t) e->aux], |
| earliest[(size_t) e->aux], |
| laterin[e->src->index], |
| antloc[e->src->index]) |
| /* If LATER for an outgoing edge was changed, then we need |
| to add the target of the outgoing edge to the worklist. */ |
| && e->dest != EXIT_BLOCK_PTR && e->dest->aux == 0) |
| { |
| *qin++ = e->dest; |
| e->dest->aux = e; |
| qlen++; |
| if (qin >= qend) |
| qin = worklist; |
| } |
| } |
| |
| /* Computation of insertion and deletion points requires computing LATERIN |
| for the EXIT block. We allocated an extra entry in the LATERIN array |
| for just this purpose. */ |
| sbitmap_ones (laterin[last_basic_block]); |
| FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) |
| sbitmap_a_and_b (laterin[last_basic_block], |
| laterin[last_basic_block], |
| later[(size_t) e->aux]); |
| |
| clear_aux_for_edges (); |
| free (worklist); |
| } |
| |
| /* Compute the insertion and deletion points for edge based LCM. */ |
| |
| static void |
| compute_insert_delete (struct edge_list *edge_list, sbitmap *antloc, |
| sbitmap *later, sbitmap *laterin, sbitmap *insert, |
| sbitmap *del) |
| { |
| int x; |
| basic_block bb; |
| |
| FOR_EACH_BB (bb) |
| sbitmap_difference (del[bb->index], antloc[bb->index], |
| laterin[bb->index]); |
| |
| for (x = 0; x < NUM_EDGES (edge_list); x++) |
| { |
| basic_block b = INDEX_EDGE_SUCC_BB (edge_list, x); |
| |
| if (b == EXIT_BLOCK_PTR) |
| sbitmap_difference (insert[x], later[x], laterin[last_basic_block]); |
| else |
| sbitmap_difference (insert[x], later[x], laterin[b->index]); |
| } |
| } |
| |
| /* Given local properties TRANSP, ANTLOC, AVOUT, KILL return the insert and |
| delete vectors for edge based LCM. Returns an edgelist which is used to |
| map the insert vector to what edge an expression should be inserted on. */ |
| |
| struct edge_list * |
| pre_edge_lcm (int n_exprs, sbitmap *transp, |
| sbitmap *avloc, sbitmap *antloc, sbitmap *kill, |
| sbitmap **insert, sbitmap **del) |
| { |
| sbitmap *antin, *antout, *earliest; |
| sbitmap *avin, *avout; |
| sbitmap *later, *laterin; |
| struct edge_list *edge_list; |
| int num_edges; |
| |
| edge_list = create_edge_list (); |
| num_edges = NUM_EDGES (edge_list); |
| |
| #ifdef LCM_DEBUG_INFO |
| if (dump_file) |
| { |
| fprintf (dump_file, "Edge List:\n"); |
| verify_edge_list (dump_file, edge_list); |
| print_edge_list (dump_file, edge_list); |
| dump_sbitmap_vector (dump_file, "transp", "", transp, last_basic_block); |
| dump_sbitmap_vector (dump_file, "antloc", "", antloc, last_basic_block); |
| dump_sbitmap_vector (dump_file, "avloc", "", avloc, last_basic_block); |
| dump_sbitmap_vector (dump_file, "kill", "", kill, last_basic_block); |
| } |
| #endif |
| |
| /* Compute global availability. */ |
| avin = sbitmap_vector_alloc (last_basic_block, n_exprs); |
| avout = sbitmap_vector_alloc (last_basic_block, n_exprs); |
| compute_available (avloc, kill, avout, avin); |
| sbitmap_vector_free (avin); |
| |
| /* Compute global anticipatability. */ |
| antin = sbitmap_vector_alloc (last_basic_block, n_exprs); |
| antout = sbitmap_vector_alloc (last_basic_block, n_exprs); |
| compute_antinout_edge (antloc, transp, antin, antout); |
| |
| #ifdef LCM_DEBUG_INFO |
| if (dump_file) |
| { |
| dump_sbitmap_vector (dump_file, "antin", "", antin, last_basic_block); |
| dump_sbitmap_vector (dump_file, "antout", "", antout, last_basic_block); |
| } |
| #endif |
| |
| /* Compute earliestness. */ |
| earliest = sbitmap_vector_alloc (num_edges, n_exprs); |
| compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest); |
| |
| #ifdef LCM_DEBUG_INFO |
| if (dump_file) |
| dump_sbitmap_vector (dump_file, "earliest", "", earliest, num_edges); |
| #endif |
| |
| sbitmap_vector_free (antout); |
| sbitmap_vector_free (antin); |
| sbitmap_vector_free (avout); |
| |
| later = sbitmap_vector_alloc (num_edges, n_exprs); |
| |
| /* Allocate an extra element for the exit block in the laterin vector. */ |
| laterin = sbitmap_vector_alloc (last_basic_block + 1, n_exprs); |
| compute_laterin (edge_list, earliest, antloc, later, laterin); |
| |
| #ifdef LCM_DEBUG_INFO |
| if (dump_file) |
| { |
| dump_sbitmap_vector (dump_file, "laterin", "", laterin, last_basic_block + 1); |
| dump_sbitmap_vector (dump_file, "later", "", later, num_edges); |
| } |
| #endif |
| |
| sbitmap_vector_free (earliest); |
| |
| *insert = sbitmap_vector_alloc (num_edges, n_exprs); |
| *del = sbitmap_vector_alloc (last_basic_block, n_exprs); |
| compute_insert_delete (edge_list, antloc, later, laterin, *insert, *del); |
| |
| sbitmap_vector_free (laterin); |
| sbitmap_vector_free (later); |
| |
| #ifdef LCM_DEBUG_INFO |
| if (dump_file) |
| { |
| dump_sbitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges); |
| dump_sbitmap_vector (dump_file, "pre_delete_map", "", *del, |
| last_basic_block); |
| } |
| #endif |
| |
| return edge_list; |
| } |
| |
| /* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors. |
| Return the number of passes we performed to iterate to a solution. */ |
| |
| void |
| compute_available (sbitmap *avloc, sbitmap *kill, sbitmap *avout, |
| sbitmap *avin) |
| { |
| edge e; |
| basic_block *worklist, *qin, *qout, *qend, bb; |
| unsigned int qlen; |
| edge_iterator ei; |
| |
| /* Allocate a worklist array/queue. Entries are only added to the |
| list if they were not already on the list. So the size is |
| bounded by the number of basic blocks. */ |
| qin = qout = worklist = |
| XNEWVEC (basic_block, n_basic_blocks - NUM_FIXED_BLOCKS); |
| |
| /* We want a maximal solution. */ |
| sbitmap_vector_ones (avout, last_basic_block); |
| |
| /* Put every block on the worklist; this is necessary because of the |
| optimistic initialization of AVOUT above. */ |
| FOR_EACH_BB (bb) |
| { |
| *qin++ = bb; |
| bb->aux = bb; |
| } |
| |
| qin = worklist; |
| qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS]; |
| qlen = n_basic_blocks - NUM_FIXED_BLOCKS; |
| |
| /* Mark blocks which are successors of the entry block so that we |
| can easily identify them below. */ |
| FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs) |
| e->dest->aux = ENTRY_BLOCK_PTR; |
| |
| /* Iterate until the worklist is empty. */ |
| while (qlen) |
| { |
| /* Take the first entry off the worklist. */ |
| bb = *qout++; |
| qlen--; |
| |
| if (qout >= qend) |
| qout = worklist; |
| |
| /* If one of the predecessor blocks is the ENTRY block, then the |
| intersection of avouts is the null set. We can identify such blocks |
| by the special value in the AUX field in the block structure. */ |
| if (bb->aux == ENTRY_BLOCK_PTR) |
| /* Do not clear the aux field for blocks which are successors of the |
| ENTRY block. That way we never add then to the worklist again. */ |
| sbitmap_zero (avin[bb->index]); |
| else |
| { |
| /* Clear the aux field of this block so that it can be added to |
| the worklist again if necessary. */ |
| bb->aux = NULL; |
| sbitmap_intersection_of_preds (avin[bb->index], avout, bb->index); |
| } |
| |
| if (sbitmap_union_of_diff_cg (avout[bb->index], avloc[bb->index], |
| avin[bb->index], kill[bb->index])) |
| /* If the out state of this block changed, then we need |
| to add the successors of this block to the worklist |
| if they are not already on the worklist. */ |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR) |
| { |
| *qin++ = e->dest; |
| e->dest->aux = e; |
| qlen++; |
| |
| if (qin >= qend) |
| qin = worklist; |
| } |
| } |
| |
| clear_aux_for_edges (); |
| clear_aux_for_blocks (); |
| free (worklist); |
| } |
| |
| /* Compute the farthest vector for edge based lcm. */ |
| |
| static void |
| compute_farthest (struct edge_list *edge_list, int n_exprs, |
| sbitmap *st_avout, sbitmap *st_avin, sbitmap *st_antin, |
| sbitmap *kill, sbitmap *farthest) |
| { |
| sbitmap difference, temp_bitmap; |
| int x, num_edges; |
| basic_block pred, succ; |
| |
| num_edges = NUM_EDGES (edge_list); |
| |
| difference = sbitmap_alloc (n_exprs); |
| temp_bitmap = sbitmap_alloc (n_exprs); |
| |
| for (x = 0; x < num_edges; x++) |
| { |
| pred = INDEX_EDGE_PRED_BB (edge_list, x); |
| succ = INDEX_EDGE_SUCC_BB (edge_list, x); |
| if (succ == EXIT_BLOCK_PTR) |
| sbitmap_copy (farthest[x], st_avout[pred->index]); |
| else |
| { |
| if (pred == ENTRY_BLOCK_PTR) |
| sbitmap_zero (farthest[x]); |
| else |
| { |
| sbitmap_difference (difference, st_avout[pred->index], |
| st_antin[succ->index]); |
| sbitmap_not (temp_bitmap, st_avin[succ->index]); |
| sbitmap_a_and_b_or_c (farthest[x], difference, |
| kill[succ->index], temp_bitmap); |
| } |
| } |
| } |
| |
| sbitmap_free (temp_bitmap); |
| sbitmap_free (difference); |
| } |
| |
| /* Compute nearer and nearerout vectors for edge based lcm. |
| |
| This is the mirror of compute_laterin, additional comments on the |
| implementation can be found before compute_laterin. */ |
| |
| static void |
| compute_nearerout (struct edge_list *edge_list, sbitmap *farthest, |
| sbitmap *st_avloc, sbitmap *nearer, sbitmap *nearerout) |
| { |
| int num_edges, i; |
| edge e; |
| basic_block *worklist, *tos, bb; |
| edge_iterator ei; |
| |
| num_edges = NUM_EDGES (edge_list); |
| |
| /* Allocate a worklist array/queue. Entries are only added to the |
| list if they were not already on the list. So the size is |
| bounded by the number of basic blocks. */ |
| tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1); |
| |
| /* Initialize NEARER for each edge and build a mapping from an edge to |
| its index. */ |
| for (i = 0; i < num_edges; i++) |
| INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i; |
| |
| /* We want a maximal solution. */ |
| sbitmap_vector_ones (nearer, num_edges); |
| |
| /* Note that even though we want an optimistic setting of NEARER, we |
| do not want to be overly optimistic. Consider an incoming edge to |
| the exit block. That edge should always have a NEARER value the |
| same as FARTHEST for that edge. */ |
| FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) |
| sbitmap_copy (nearer[(size_t)e->aux], farthest[(size_t)e->aux]); |
| |
| /* Add all the blocks to the worklist. This prevents an early exit |
| from the loop given our optimistic initialization of NEARER. */ |
| FOR_EACH_BB (bb) |
| { |
| *tos++ = bb; |
| bb->aux = bb; |
| } |
| |
| /* Iterate until the worklist is empty. */ |
| while (tos != worklist) |
| { |
| /* Take the first entry off the worklist. */ |
| bb = *--tos; |
| bb->aux = NULL; |
| |
| /* Compute the intersection of NEARER for each outgoing edge from B. */ |
| sbitmap_ones (nearerout[bb->index]); |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| sbitmap_a_and_b (nearerout[bb->index], nearerout[bb->index], |
| nearer[(size_t) e->aux]); |
| |
| /* Calculate NEARER for all incoming edges. */ |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| if (sbitmap_union_of_diff_cg (nearer[(size_t) e->aux], |
| farthest[(size_t) e->aux], |
| nearerout[e->dest->index], |
| st_avloc[e->dest->index]) |
| /* If NEARER for an incoming edge was changed, then we need |
| to add the source of the incoming edge to the worklist. */ |
| && e->src != ENTRY_BLOCK_PTR && e->src->aux == 0) |
| { |
| *tos++ = e->src; |
| e->src->aux = e; |
| } |
| } |
| |
| /* Computation of insertion and deletion points requires computing NEAREROUT |
| for the ENTRY block. We allocated an extra entry in the NEAREROUT array |
| for just this purpose. */ |
| sbitmap_ones (nearerout[last_basic_block]); |
| FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs) |
| sbitmap_a_and_b (nearerout[last_basic_block], |
| nearerout[last_basic_block], |
| nearer[(size_t) e->aux]); |
| |
| clear_aux_for_edges (); |
| free (tos); |
| } |
| |
| /* Compute the insertion and deletion points for edge based LCM. */ |
| |
| static void |
| compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *st_avloc, |
| sbitmap *nearer, sbitmap *nearerout, |
| sbitmap *insert, sbitmap *del) |
| { |
| int x; |
| basic_block bb; |
| |
| FOR_EACH_BB (bb) |
| sbitmap_difference (del[bb->index], st_avloc[bb->index], |
| nearerout[bb->index]); |
| |
| for (x = 0; x < NUM_EDGES (edge_list); x++) |
| { |
| basic_block b = INDEX_EDGE_PRED_BB (edge_list, x); |
| if (b == ENTRY_BLOCK_PTR) |
| sbitmap_difference (insert[x], nearer[x], nearerout[last_basic_block]); |
| else |
| sbitmap_difference (insert[x], nearer[x], nearerout[b->index]); |
| } |
| } |
| |
| /* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the |
| insert and delete vectors for edge based reverse LCM. Returns an |
| edgelist which is used to map the insert vector to what edge |
| an expression should be inserted on. */ |
| |
| struct edge_list * |
| pre_edge_rev_lcm (int n_exprs, sbitmap *transp, |
| sbitmap *st_avloc, sbitmap *st_antloc, sbitmap *kill, |
| sbitmap **insert, sbitmap **del) |
| { |
| sbitmap *st_antin, *st_antout; |
| sbitmap *st_avout, *st_avin, *farthest; |
| sbitmap *nearer, *nearerout; |
| struct edge_list *edge_list; |
| int num_edges; |
| |
| edge_list = create_edge_list (); |
| num_edges = NUM_EDGES (edge_list); |
| |
| st_antin = sbitmap_vector_alloc (last_basic_block, n_exprs); |
| st_antout = sbitmap_vector_alloc (last_basic_block, n_exprs); |
| sbitmap_vector_zero (st_antin, last_basic_block); |
| sbitmap_vector_zero (st_antout, last_basic_block); |
| compute_antinout_edge (st_antloc, transp, st_antin, st_antout); |
| |
| /* Compute global anticipatability. */ |
| st_avout = sbitmap_vector_alloc (last_basic_block, n_exprs); |
| st_avin = sbitmap_vector_alloc (last_basic_block, n_exprs); |
| compute_available (st_avloc, kill, st_avout, st_avin); |
| |
| #ifdef LCM_DEBUG_INFO |
| if (dump_file) |
| { |
| fprintf (dump_file, "Edge List:\n"); |
| verify_edge_list (dump_file, edge_list); |
| print_edge_list (dump_file, edge_list); |
| dump_sbitmap_vector (dump_file, "transp", "", transp, last_basic_block); |
| dump_sbitmap_vector (dump_file, "st_avloc", "", st_avloc, last_basic_block); |
| dump_sbitmap_vector (dump_file, "st_antloc", "", st_antloc, last_basic_block); |
| dump_sbitmap_vector (dump_file, "st_antin", "", st_antin, last_basic_block); |
| dump_sbitmap_vector (dump_file, "st_antout", "", st_antout, last_basic_block); |
| dump_sbitmap_vector (dump_file, "st_kill", "", kill, last_basic_block); |
| } |
| #endif |
| |
| #ifdef LCM_DEBUG_INFO |
| if (dump_file) |
| { |
| dump_sbitmap_vector (dump_file, "st_avout", "", st_avout, last_basic_block); |
| dump_sbitmap_vector (dump_file, "st_avin", "", st_avin, last_basic_block); |
| } |
| #endif |
| |
| /* Compute farthestness. */ |
| farthest = sbitmap_vector_alloc (num_edges, n_exprs); |
| compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin, |
| kill, farthest); |
| |
| #ifdef LCM_DEBUG_INFO |
| if (dump_file) |
| dump_sbitmap_vector (dump_file, "farthest", "", farthest, num_edges); |
| #endif |
| |
| sbitmap_vector_free (st_antin); |
| sbitmap_vector_free (st_antout); |
| |
| sbitmap_vector_free (st_avin); |
| sbitmap_vector_free (st_avout); |
| |
| nearer = sbitmap_vector_alloc (num_edges, n_exprs); |
| |
| /* Allocate an extra element for the entry block. */ |
| nearerout = sbitmap_vector_alloc (last_basic_block + 1, n_exprs); |
| compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout); |
| |
| #ifdef LCM_DEBUG_INFO |
| if (dump_file) |
| { |
| dump_sbitmap_vector (dump_file, "nearerout", "", nearerout, |
| last_basic_block + 1); |
| dump_sbitmap_vector (dump_file, "nearer", "", nearer, num_edges); |
| } |
| #endif |
| |
| sbitmap_vector_free (farthest); |
| |
| *insert = sbitmap_vector_alloc (num_edges, n_exprs); |
| *del = sbitmap_vector_alloc (last_basic_block, n_exprs); |
| compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout, |
| *insert, *del); |
| |
| sbitmap_vector_free (nearerout); |
| sbitmap_vector_free (nearer); |
| |
| #ifdef LCM_DEBUG_INFO |
| if (dump_file) |
| { |
| dump_sbitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges); |
| dump_sbitmap_vector (dump_file, "pre_delete_map", "", *del, |
| last_basic_block); |
| } |
| #endif |
| return edge_list; |
| } |
| |