| /* Source code for an implementation of the Omega test, an integer |
| programming algorithm for dependence analysis, by William Pugh, |
| appeared in Supercomputing '91 and CACM Aug 92. |
| |
| This code has no license restrictions, and is considered public |
| domain. |
| |
| Changes copyright (C) 2005, 2006, 2007, 2008 Free Software Foundation, |
| Inc. |
| Contributed by Sebastian Pop <sebastian.pop@inria.fr> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* For a detailed description, see "Constraint-Based Array Dependence |
| Analysis" William Pugh, David Wonnacott, TOPLAS'98 and David |
| Wonnacott's thesis: |
| ftp://ftp.cs.umd.edu/pub/omega/davewThesis/davewThesis.ps.gz |
| */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "errors.h" |
| #include "ggc.h" |
| #include "tree.h" |
| #include "diagnostic.h" |
| #include "varray.h" |
| #include "tree-pass.h" |
| #include "omega.h" |
| |
| /* When set to true, keep substitution variables. When set to false, |
| resurrect substitution variables (convert substitutions back to EQs). */ |
| static bool omega_reduce_with_subs = true; |
| |
| /* When set to true, omega_simplify_problem checks for problem with no |
| solutions, calling verify_omega_pb. */ |
| static bool omega_verify_simplification = false; |
| |
| /* When set to true, only produce a single simplified result. */ |
| static bool omega_single_result = false; |
| |
| /* Set return_single_result to 1 when omega_single_result is true. */ |
| static int return_single_result = 0; |
| |
| /* Hash table for equations generated by the solver. */ |
| #define HASH_TABLE_SIZE PARAM_VALUE (PARAM_OMEGA_HASH_TABLE_SIZE) |
| #define MAX_KEYS PARAM_VALUE (PARAM_OMEGA_MAX_KEYS) |
| static eqn hash_master; |
| static int next_key; |
| static int hash_version = 0; |
| |
| /* Set to true for making the solver enter in approximation mode. */ |
| static bool in_approximate_mode = false; |
| |
| /* When set to zero, the solver is allowed to add new equalities to |
| the problem to be solved. */ |
| static int conservative = 0; |
| |
| /* Set to omega_true when the problem was successfully reduced, set to |
| omega_unknown when the solver is unable to determine an answer. */ |
| static enum omega_result omega_found_reduction; |
| |
| /* Set to true when the solver is allowed to add omega_red equations. */ |
| static bool create_color = false; |
| |
| /* Set to nonzero when the problem to be solved can be reduced. */ |
| static int may_be_red = 0; |
| |
| /* When false, there should be no substitution equations in the |
| simplified problem. */ |
| static int please_no_equalities_in_simplified_problems = 0; |
| |
| /* Variables names for pretty printing. */ |
| static char wild_name[200][40]; |
| |
| /* Pointer to the void problem. */ |
| static omega_pb no_problem = (omega_pb) 0; |
| |
| /* Pointer to the problem to be solved. */ |
| static omega_pb original_problem = (omega_pb) 0; |
| |
| |
| /* Return the integer A divided by B. */ |
| |
| static inline int |
| int_div (int a, int b) |
| { |
| if (a > 0) |
| return a/b; |
| else |
| return -((-a + b - 1)/b); |
| } |
| |
| /* Return the integer A modulo B. */ |
| |
| static inline int |
| int_mod (int a, int b) |
| { |
| return a - b * int_div (a, b); |
| } |
| |
| /* For X and Y positive integers, return X multiplied by Y and check |
| that the result does not overflow. */ |
| |
| static inline int |
| check_pos_mul (int x, int y) |
| { |
| if (x != 0) |
| gcc_assert ((INT_MAX) / x > y); |
| |
| return x * y; |
| } |
| |
| /* Return X multiplied by Y and check that the result does not |
| overflow. */ |
| |
| static inline int |
| check_mul (int x, int y) |
| { |
| if (x >= 0) |
| { |
| if (y >= 0) |
| return check_pos_mul (x, y); |
| else |
| return -check_pos_mul (x, -y); |
| } |
| else if (y >= 0) |
| return -check_pos_mul (-x, y); |
| else |
| return check_pos_mul (-x, -y); |
| } |
| |
| /* Test whether equation E is red. */ |
| |
| static inline bool |
| omega_eqn_is_red (eqn e, int desired_res) |
| { |
| return (desired_res == omega_simplify && e->color == omega_red); |
| } |
| |
| /* Return a string for VARIABLE. */ |
| |
| static inline char * |
| omega_var_to_str (int variable) |
| { |
| if (0 <= variable && variable <= 20) |
| return wild_name[variable]; |
| |
| if (-20 < variable && variable < 0) |
| return wild_name[40 + variable]; |
| |
| /* Collapse all the entries that would have overflowed. */ |
| return wild_name[21]; |
| } |
| |
| /* Return a string for variable I in problem PB. */ |
| |
| static inline char * |
| omega_variable_to_str (omega_pb pb, int i) |
| { |
| return omega_var_to_str (pb->var[i]); |
| } |
| |
| /* Do nothing function: used for default initializations. */ |
| |
| void |
| omega_no_procedure (omega_pb pb ATTRIBUTE_UNUSED) |
| { |
| } |
| |
| void (*omega_when_reduced) (omega_pb) = omega_no_procedure; |
| |
| /* Compute the greatest common divisor of A and B. */ |
| |
| static inline int |
| gcd (int b, int a) |
| { |
| if (b == 1) |
| return 1; |
| |
| while (b != 0) |
| { |
| int t = b; |
| b = a % b; |
| a = t; |
| } |
| |
| return a; |
| } |
| |
| /* Print to FILE from PB equation E with all its coefficients |
| multiplied by C. */ |
| |
| static void |
| omega_print_term (FILE *file, omega_pb pb, eqn e, int c) |
| { |
| int i; |
| bool first = true; |
| int n = pb->num_vars; |
| int went_first = -1; |
| |
| for (i = 1; i <= n; i++) |
| if (c * e->coef[i] > 0) |
| { |
| first = false; |
| went_first = i; |
| |
| if (c * e->coef[i] == 1) |
| fprintf (file, "%s", omega_variable_to_str (pb, i)); |
| else |
| fprintf (file, "%d * %s", c * e->coef[i], |
| omega_variable_to_str (pb, i)); |
| break; |
| } |
| |
| for (i = 1; i <= n; i++) |
| if (i != went_first && c * e->coef[i] != 0) |
| { |
| if (!first && c * e->coef[i] > 0) |
| fprintf (file, " + "); |
| |
| first = false; |
| |
| if (c * e->coef[i] == 1) |
| fprintf (file, "%s", omega_variable_to_str (pb, i)); |
| else if (c * e->coef[i] == -1) |
| fprintf (file, " - %s", omega_variable_to_str (pb, i)); |
| else |
| fprintf (file, "%d * %s", c * e->coef[i], |
| omega_variable_to_str (pb, i)); |
| } |
| |
| if (!first && c * e->coef[0] > 0) |
| fprintf (file, " + "); |
| |
| if (first || c * e->coef[0] != 0) |
| fprintf (file, "%d", c * e->coef[0]); |
| } |
| |
| /* Print to FILE the equation E of problem PB. */ |
| |
| void |
| omega_print_eqn (FILE *file, omega_pb pb, eqn e, bool test, int extra) |
| { |
| int i; |
| int n = pb->num_vars + extra; |
| bool is_lt = test && e->coef[0] == -1; |
| bool first; |
| |
| if (test) |
| { |
| if (e->touched) |
| fprintf (file, "!"); |
| |
| else if (e->key != 0) |
| fprintf (file, "%d: ", e->key); |
| } |
| |
| if (e->color == omega_red) |
| fprintf (file, "["); |
| |
| first = true; |
| |
| for (i = is_lt ? 1 : 0; i <= n; i++) |
| if (e->coef[i] < 0) |
| { |
| if (!first) |
| fprintf (file, " + "); |
| else |
| first = false; |
| |
| if (i == 0) |
| fprintf (file, "%d", -e->coef[i]); |
| else if (e->coef[i] == -1) |
| fprintf (file, "%s", omega_variable_to_str (pb, i)); |
| else |
| fprintf (file, "%d * %s", -e->coef[i], |
| omega_variable_to_str (pb, i)); |
| } |
| |
| if (first) |
| { |
| if (is_lt) |
| { |
| fprintf (file, "1"); |
| is_lt = false; |
| } |
| else |
| fprintf (file, "0"); |
| } |
| |
| if (test == 0) |
| fprintf (file, " = "); |
| else if (is_lt) |
| fprintf (file, " < "); |
| else |
| fprintf (file, " <= "); |
| |
| first = true; |
| |
| for (i = 0; i <= n; i++) |
| if (e->coef[i] > 0) |
| { |
| if (!first) |
| fprintf (file, " + "); |
| else |
| first = false; |
| |
| if (i == 0) |
| fprintf (file, "%d", e->coef[i]); |
| else if (e->coef[i] == 1) |
| fprintf (file, "%s", omega_variable_to_str (pb, i)); |
| else |
| fprintf (file, "%d * %s", e->coef[i], |
| omega_variable_to_str (pb, i)); |
| } |
| |
| if (first) |
| fprintf (file, "0"); |
| |
| if (e->color == omega_red) |
| fprintf (file, "]"); |
| } |
| |
| /* Print to FILE all the variables of problem PB. */ |
| |
| static void |
| omega_print_vars (FILE *file, omega_pb pb) |
| { |
| int i; |
| |
| fprintf (file, "variables = "); |
| |
| if (pb->safe_vars > 0) |
| fprintf (file, "protected ("); |
| |
| for (i = 1; i <= pb->num_vars; i++) |
| { |
| fprintf (file, "%s", omega_variable_to_str (pb, i)); |
| |
| if (i == pb->safe_vars) |
| fprintf (file, ")"); |
| |
| if (i < pb->num_vars) |
| fprintf (file, ", "); |
| } |
| |
| fprintf (file, "\n"); |
| } |
| |
| /* Debug problem PB. */ |
| |
| void |
| debug_omega_problem (omega_pb pb) |
| { |
| omega_print_problem (stderr, pb); |
| } |
| |
| /* Print to FILE problem PB. */ |
| |
| void |
| omega_print_problem (FILE *file, omega_pb pb) |
| { |
| int e; |
| |
| if (!pb->variables_initialized) |
| omega_initialize_variables (pb); |
| |
| omega_print_vars (file, pb); |
| |
| for (e = 0; e < pb->num_eqs; e++) |
| { |
| omega_print_eq (file, pb, &pb->eqs[e]); |
| fprintf (file, "\n"); |
| } |
| |
| fprintf (file, "Done with EQ\n"); |
| |
| for (e = 0; e < pb->num_geqs; e++) |
| { |
| omega_print_geq (file, pb, &pb->geqs[e]); |
| fprintf (file, "\n"); |
| } |
| |
| fprintf (file, "Done with GEQ\n"); |
| |
| for (e = 0; e < pb->num_subs; e++) |
| { |
| eqn eq = &pb->subs[e]; |
| |
| if (eq->color == omega_red) |
| fprintf (file, "["); |
| |
| if (eq->key > 0) |
| fprintf (file, "%s := ", omega_var_to_str (eq->key)); |
| else |
| fprintf (file, "#%d := ", eq->key); |
| |
| omega_print_term (file, pb, eq, 1); |
| |
| if (eq->color == omega_red) |
| fprintf (file, "]"); |
| |
| fprintf (file, "\n"); |
| } |
| } |
| |
| /* Return the number of equations in PB tagged omega_red. */ |
| |
| int |
| omega_count_red_equations (omega_pb pb) |
| { |
| int e, i; |
| int result = 0; |
| |
| for (e = 0; e < pb->num_eqs; e++) |
| if (pb->eqs[e].color == omega_red) |
| { |
| for (i = pb->num_vars; i > 0; i--) |
| if (pb->geqs[e].coef[i]) |
| break; |
| |
| if (i == 0 && pb->geqs[e].coef[0] == 1) |
| return 0; |
| else |
| result += 2; |
| } |
| |
| for (e = 0; e < pb->num_geqs; e++) |
| if (pb->geqs[e].color == omega_red) |
| result += 1; |
| |
| for (e = 0; e < pb->num_subs; e++) |
| if (pb->subs[e].color == omega_red) |
| result += 2; |
| |
| return result; |
| } |
| |
| /* Print to FILE all the equations in PB that are tagged omega_red. */ |
| |
| void |
| omega_print_red_equations (FILE *file, omega_pb pb) |
| { |
| int e; |
| |
| if (!pb->variables_initialized) |
| omega_initialize_variables (pb); |
| |
| omega_print_vars (file, pb); |
| |
| for (e = 0; e < pb->num_eqs; e++) |
| if (pb->eqs[e].color == omega_red) |
| { |
| omega_print_eq (file, pb, &pb->eqs[e]); |
| fprintf (file, "\n"); |
| } |
| |
| for (e = 0; e < pb->num_geqs; e++) |
| if (pb->geqs[e].color == omega_red) |
| { |
| omega_print_geq (file, pb, &pb->geqs[e]); |
| fprintf (file, "\n"); |
| } |
| |
| for (e = 0; e < pb->num_subs; e++) |
| if (pb->subs[e].color == omega_red) |
| { |
| eqn eq = &pb->subs[e]; |
| fprintf (file, "["); |
| |
| if (eq->key > 0) |
| fprintf (file, "%s := ", omega_var_to_str (eq->key)); |
| else |
| fprintf (file, "#%d := ", eq->key); |
| |
| omega_print_term (file, pb, eq, 1); |
| fprintf (file, "]\n"); |
| } |
| } |
| |
| /* Pretty print PB to FILE. */ |
| |
| void |
| omega_pretty_print_problem (FILE *file, omega_pb pb) |
| { |
| int e, v, v1, v2, v3, t; |
| bool *live = XNEWVEC (bool, OMEGA_MAX_GEQS); |
| int stuffPrinted = 0; |
| bool change; |
| |
| typedef enum { |
| none, le, lt |
| } partial_order_type; |
| |
| partial_order_type **po = XNEWVEC (partial_order_type *, |
| OMEGA_MAX_VARS * OMEGA_MAX_VARS); |
| int **po_eq = XNEWVEC (int *, OMEGA_MAX_VARS * OMEGA_MAX_VARS); |
| int *last_links = XNEWVEC (int, OMEGA_MAX_VARS); |
| int *first_links = XNEWVEC (int, OMEGA_MAX_VARS); |
| int *chain_length = XNEWVEC (int, OMEGA_MAX_VARS); |
| int *chain = XNEWVEC (int, OMEGA_MAX_VARS); |
| int i, m; |
| bool multiprint; |
| |
| if (!pb->variables_initialized) |
| omega_initialize_variables (pb); |
| |
| if (pb->num_vars > 0) |
| { |
| omega_eliminate_redundant (pb, false); |
| |
| for (e = 0; e < pb->num_eqs; e++) |
| { |
| if (stuffPrinted) |
| fprintf (file, "; "); |
| |
| stuffPrinted = 1; |
| omega_print_eq (file, pb, &pb->eqs[e]); |
| } |
| |
| for (e = 0; e < pb->num_geqs; e++) |
| live[e] = true; |
| |
| while (1) |
| { |
| for (v = 1; v <= pb->num_vars; v++) |
| { |
| last_links[v] = first_links[v] = 0; |
| chain_length[v] = 0; |
| |
| for (v2 = 1; v2 <= pb->num_vars; v2++) |
| po[v][v2] = none; |
| } |
| |
| for (e = 0; e < pb->num_geqs; e++) |
| if (live[e]) |
| { |
| for (v = 1; v <= pb->num_vars; v++) |
| if (pb->geqs[e].coef[v] == 1) |
| first_links[v]++; |
| else if (pb->geqs[e].coef[v] == -1) |
| last_links[v]++; |
| |
| v1 = pb->num_vars; |
| |
| while (v1 > 0 && pb->geqs[e].coef[v1] == 0) |
| v1--; |
| |
| v2 = v1 - 1; |
| |
| while (v2 > 0 && pb->geqs[e].coef[v2] == 0) |
| v2--; |
| |
| v3 = v2 - 1; |
| |
| while (v3 > 0 && pb->geqs[e].coef[v3] == 0) |
| v3--; |
| |
| if (pb->geqs[e].coef[0] > 0 || pb->geqs[e].coef[0] < -1 |
| || v2 <= 0 || v3 > 0 |
| || pb->geqs[e].coef[v1] * pb->geqs[e].coef[v2] != -1) |
| { |
| /* Not a partial order relation. */ |
| } |
| else |
| { |
| if (pb->geqs[e].coef[v1] == 1) |
| { |
| v3 = v2; |
| v2 = v1; |
| v1 = v3; |
| } |
| |
| /* Relation is v1 <= v2 or v1 < v2. */ |
| po[v1][v2] = ((pb->geqs[e].coef[0] == 0) ? le : lt); |
| po_eq[v1][v2] = e; |
| } |
| } |
| for (v = 1; v <= pb->num_vars; v++) |
| chain_length[v] = last_links[v]; |
| |
| /* Just in case pb->num_vars <= 0. */ |
| change = false; |
| for (t = 0; t < pb->num_vars; t++) |
| { |
| change = false; |
| |
| for (v1 = 1; v1 <= pb->num_vars; v1++) |
| for (v2 = 1; v2 <= pb->num_vars; v2++) |
| if (po[v1][v2] != none && |
| chain_length[v1] <= chain_length[v2]) |
| { |
| chain_length[v1] = chain_length[v2] + 1; |
| change = true; |
| } |
| } |
| |
| /* Caught in cycle. */ |
| gcc_assert (!change); |
| |
| for (v1 = 1; v1 <= pb->num_vars; v1++) |
| if (chain_length[v1] == 0) |
| first_links[v1] = 0; |
| |
| v = 1; |
| |
| for (v1 = 2; v1 <= pb->num_vars; v1++) |
| if (chain_length[v1] + first_links[v1] > |
| chain_length[v] + first_links[v]) |
| v = v1; |
| |
| if (chain_length[v] + first_links[v] == 0) |
| break; |
| |
| if (stuffPrinted) |
| fprintf (file, "; "); |
| |
| stuffPrinted = 1; |
| |
| /* Chain starts at v. */ |
| { |
| int tmp; |
| bool first = true; |
| |
| for (e = 0; e < pb->num_geqs; e++) |
| if (live[e] && pb->geqs[e].coef[v] == 1) |
| { |
| if (!first) |
| fprintf (file, ", "); |
| |
| tmp = pb->geqs[e].coef[v]; |
| pb->geqs[e].coef[v] = 0; |
| omega_print_term (file, pb, &pb->geqs[e], -1); |
| pb->geqs[e].coef[v] = tmp; |
| live[e] = false; |
| first = false; |
| } |
| |
| if (!first) |
| fprintf (file, " <= "); |
| } |
| |
| /* Find chain. */ |
| chain[0] = v; |
| m = 1; |
| while (1) |
| { |
| /* Print chain. */ |
| for (v2 = 1; v2 <= pb->num_vars; v2++) |
| if (po[v][v2] && chain_length[v] == 1 + chain_length[v2]) |
| break; |
| |
| if (v2 > pb->num_vars) |
| break; |
| |
| chain[m++] = v2; |
| v = v2; |
| } |
| |
| fprintf (file, "%s", omega_variable_to_str (pb, chain[0])); |
| |
| for (multiprint = false, i = 1; i < m; i++) |
| { |
| v = chain[i - 1]; |
| v2 = chain[i]; |
| |
| if (po[v][v2] == le) |
| fprintf (file, " <= "); |
| else |
| fprintf (file, " < "); |
| |
| fprintf (file, "%s", omega_variable_to_str (pb, v2)); |
| live[po_eq[v][v2]] = false; |
| |
| if (!multiprint && i < m - 1) |
| for (v3 = 1; v3 <= pb->num_vars; v3++) |
| { |
| if (v == v3 || v2 == v3 |
| || po[v][v2] != po[v][v3] |
| || po[v2][chain[i + 1]] != po[v3][chain[i + 1]]) |
| continue; |
| |
| fprintf (file, ",%s", omega_variable_to_str (pb, v3)); |
| live[po_eq[v][v3]] = false; |
| live[po_eq[v3][chain[i + 1]]] = false; |
| multiprint = true; |
| } |
| else |
| multiprint = false; |
| } |
| |
| v = chain[m - 1]; |
| /* Print last_links. */ |
| { |
| int tmp; |
| bool first = true; |
| |
| for (e = 0; e < pb->num_geqs; e++) |
| if (live[e] && pb->geqs[e].coef[v] == -1) |
| { |
| if (!first) |
| fprintf (file, ", "); |
| else |
| fprintf (file, " <= "); |
| |
| tmp = pb->geqs[e].coef[v]; |
| pb->geqs[e].coef[v] = 0; |
| omega_print_term (file, pb, &pb->geqs[e], 1); |
| pb->geqs[e].coef[v] = tmp; |
| live[e] = false; |
| first = false; |
| } |
| } |
| } |
| |
| for (e = 0; e < pb->num_geqs; e++) |
| if (live[e]) |
| { |
| if (stuffPrinted) |
| fprintf (file, "; "); |
| stuffPrinted = 1; |
| omega_print_geq (file, pb, &pb->geqs[e]); |
| } |
| |
| for (e = 0; e < pb->num_subs; e++) |
| { |
| eqn eq = &pb->subs[e]; |
| |
| if (stuffPrinted) |
| fprintf (file, "; "); |
| |
| stuffPrinted = 1; |
| |
| if (eq->key > 0) |
| fprintf (file, "%s := ", omega_var_to_str (eq->key)); |
| else |
| fprintf (file, "#%d := ", eq->key); |
| |
| omega_print_term (file, pb, eq, 1); |
| } |
| } |
| |
| free (live); |
| free (po); |
| free (po_eq); |
| free (last_links); |
| free (first_links); |
| free (chain_length); |
| free (chain); |
| } |
| |
| /* Assign to variable I in PB the next wildcard name. The name of a |
| wildcard is a negative number. */ |
| static int next_wild_card = 0; |
| |
| static void |
| omega_name_wild_card (omega_pb pb, int i) |
| { |
| --next_wild_card; |
| if (next_wild_card < -PARAM_VALUE (PARAM_OMEGA_MAX_WILD_CARDS)) |
| next_wild_card = -1; |
| pb->var[i] = next_wild_card; |
| } |
| |
| /* Return the index of the last protected (or safe) variable in PB, |
| after having added a new wildcard variable. */ |
| |
| static int |
| omega_add_new_wild_card (omega_pb pb) |
| { |
| int e; |
| int i = ++pb->safe_vars; |
| pb->num_vars++; |
| |
| /* Make a free place in the protected (safe) variables, by moving |
| the non protected variable pointed by "I" at the end, ie. at |
| offset pb->num_vars. */ |
| if (pb->num_vars != i) |
| { |
| /* Move "I" for all the inequalities. */ |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| { |
| if (pb->geqs[e].coef[i]) |
| pb->geqs[e].touched = 1; |
| |
| pb->geqs[e].coef[pb->num_vars] = pb->geqs[e].coef[i]; |
| } |
| |
| /* Move "I" for all the equalities. */ |
| for (e = pb->num_eqs - 1; e >= 0; e--) |
| pb->eqs[e].coef[pb->num_vars] = pb->eqs[e].coef[i]; |
| |
| /* Move "I" for all the substitutions. */ |
| for (e = pb->num_subs - 1; e >= 0; e--) |
| pb->subs[e].coef[pb->num_vars] = pb->subs[e].coef[i]; |
| |
| /* Move the identifier. */ |
| pb->var[pb->num_vars] = pb->var[i]; |
| } |
| |
| /* Initialize at zero all the coefficients */ |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| pb->geqs[e].coef[i] = 0; |
| |
| for (e = pb->num_eqs - 1; e >= 0; e--) |
| pb->eqs[e].coef[i] = 0; |
| |
| for (e = pb->num_subs - 1; e >= 0; e--) |
| pb->subs[e].coef[i] = 0; |
| |
| /* And give it a name. */ |
| omega_name_wild_card (pb, i); |
| return i; |
| } |
| |
| /* Delete inequality E from problem PB that has N_VARS variables. */ |
| |
| static void |
| omega_delete_geq (omega_pb pb, int e, int n_vars) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Deleting %d (last:%d): ", e, pb->num_geqs - 1); |
| omega_print_geq (dump_file, pb, &pb->geqs[e]); |
| fprintf (dump_file, "\n"); |
| } |
| |
| if (e < pb->num_geqs - 1) |
| omega_copy_eqn (&pb->geqs[e], &pb->geqs[pb->num_geqs - 1], n_vars); |
| |
| pb->num_geqs--; |
| } |
| |
| /* Delete extra inequality E from problem PB that has N_VARS |
| variables. */ |
| |
| static void |
| omega_delete_geq_extra (omega_pb pb, int e, int n_vars) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Deleting %d: ",e); |
| omega_print_geq_extra (dump_file, pb, &pb->geqs[e]); |
| fprintf (dump_file, "\n"); |
| } |
| |
| if (e < pb->num_geqs - 1) |
| omega_copy_eqn (&pb->geqs[e], &pb->geqs[pb->num_geqs - 1], n_vars); |
| |
| pb->num_geqs--; |
| } |
| |
| |
| /* Remove variable I from problem PB. */ |
| |
| static void |
| omega_delete_variable (omega_pb pb, int i) |
| { |
| int n_vars = pb->num_vars; |
| int e; |
| |
| if (omega_safe_var_p (pb, i)) |
| { |
| int j = pb->safe_vars; |
| |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| { |
| pb->geqs[e].touched = 1; |
| pb->geqs[e].coef[i] = pb->geqs[e].coef[j]; |
| pb->geqs[e].coef[j] = pb->geqs[e].coef[n_vars]; |
| } |
| |
| for (e = pb->num_eqs - 1; e >= 0; e--) |
| { |
| pb->eqs[e].coef[i] = pb->eqs[e].coef[j]; |
| pb->eqs[e].coef[j] = pb->eqs[e].coef[n_vars]; |
| } |
| |
| for (e = pb->num_subs - 1; e >= 0; e--) |
| { |
| pb->subs[e].coef[i] = pb->subs[e].coef[j]; |
| pb->subs[e].coef[j] = pb->subs[e].coef[n_vars]; |
| } |
| |
| pb->var[i] = pb->var[j]; |
| pb->var[j] = pb->var[n_vars]; |
| } |
| else if (i < n_vars) |
| { |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| if (pb->geqs[e].coef[n_vars]) |
| { |
| pb->geqs[e].coef[i] = pb->geqs[e].coef[n_vars]; |
| pb->geqs[e].touched = 1; |
| } |
| |
| for (e = pb->num_eqs - 1; e >= 0; e--) |
| pb->eqs[e].coef[i] = pb->eqs[e].coef[n_vars]; |
| |
| for (e = pb->num_subs - 1; e >= 0; e--) |
| pb->subs[e].coef[i] = pb->subs[e].coef[n_vars]; |
| |
| pb->var[i] = pb->var[n_vars]; |
| } |
| |
| if (omega_safe_var_p (pb, i)) |
| pb->safe_vars--; |
| |
| pb->num_vars--; |
| } |
| |
| /* Because the coefficients of an equation are sparse, PACKING records |
| indices for non null coefficients. */ |
| static int *packing; |
| |
| /* Set up the coefficients of PACKING, following the coefficients of |
| equation EQN that has NUM_VARS variables. */ |
| |
| static inline int |
| setup_packing (eqn eqn, int num_vars) |
| { |
| int k; |
| int n = 0; |
| |
| for (k = num_vars; k >= 0; k--) |
| if (eqn->coef[k]) |
| packing[n++] = k; |
| |
| return n; |
| } |
| |
| /* Computes a linear combination of EQ and SUB at VAR with coefficient |
| C, such that EQ->coef[VAR] is set to 0. TOP_VAR is the number of |
| non null indices of SUB stored in PACKING. */ |
| |
| static inline void |
| omega_substitute_red_1 (eqn eq, eqn sub, int var, int c, bool *found_black, |
| int top_var) |
| { |
| if (eq->coef[var] != 0) |
| { |
| if (eq->color == omega_black) |
| *found_black = true; |
| else |
| { |
| int j, k = eq->coef[var]; |
| |
| eq->coef[var] = 0; |
| |
| for (j = top_var; j >= 0; j--) |
| eq->coef[packing[j]] -= sub->coef[packing[j]] * k * c; |
| } |
| } |
| } |
| |
| /* Substitute in PB variable VAR with "C * SUB". */ |
| |
| static void |
| omega_substitute_red (omega_pb pb, eqn sub, int var, int c, bool *found_black) |
| { |
| int e, top_var = setup_packing (sub, pb->num_vars); |
| |
| *found_black = false; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| if (sub->color == omega_red) |
| fprintf (dump_file, "["); |
| |
| fprintf (dump_file, "substituting using %s := ", |
| omega_variable_to_str (pb, var)); |
| omega_print_term (dump_file, pb, sub, -c); |
| |
| if (sub->color == omega_red) |
| fprintf (dump_file, "]"); |
| |
| fprintf (dump_file, "\n"); |
| omega_print_vars (dump_file, pb); |
| } |
| |
| for (e = pb->num_eqs - 1; e >= 0; e--) |
| { |
| eqn eqn = &(pb->eqs[e]); |
| |
| omega_substitute_red_1 (eqn, sub, var, c, found_black, top_var); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| omega_print_eq (dump_file, pb, eqn); |
| fprintf (dump_file, "\n"); |
| } |
| } |
| |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| { |
| eqn eqn = &(pb->geqs[e]); |
| |
| omega_substitute_red_1 (eqn, sub, var, c, found_black, top_var); |
| |
| if (eqn->coef[var] && eqn->color == omega_red) |
| eqn->touched = 1; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| omega_print_geq (dump_file, pb, eqn); |
| fprintf (dump_file, "\n"); |
| } |
| } |
| |
| for (e = pb->num_subs - 1; e >= 0; e--) |
| { |
| eqn eqn = &(pb->subs[e]); |
| |
| omega_substitute_red_1 (eqn, sub, var, c, found_black, top_var); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "%s := ", omega_var_to_str (eqn->key)); |
| omega_print_term (dump_file, pb, eqn, 1); |
| fprintf (dump_file, "\n"); |
| } |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "---\n\n"); |
| |
| if (omega_safe_var_p (pb, var) && !omega_wildcard_p (pb, var)) |
| *found_black = true; |
| } |
| |
| /* Substitute in PB variable VAR with "C * SUB". */ |
| |
| static void |
| omega_substitute (omega_pb pb, eqn sub, int var, int c) |
| { |
| int e, j, j0; |
| int top_var = setup_packing (sub, pb->num_vars); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "substituting using %s := ", |
| omega_variable_to_str (pb, var)); |
| omega_print_term (dump_file, pb, sub, -c); |
| fprintf (dump_file, "\n"); |
| omega_print_vars (dump_file, pb); |
| } |
| |
| if (top_var < 0) |
| { |
| for (e = pb->num_eqs - 1; e >= 0; e--) |
| pb->eqs[e].coef[var] = 0; |
| |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| if (pb->geqs[e].coef[var] != 0) |
| { |
| pb->geqs[e].touched = 1; |
| pb->geqs[e].coef[var] = 0; |
| } |
| |
| for (e = pb->num_subs - 1; e >= 0; e--) |
| pb->subs[e].coef[var] = 0; |
| |
| if (omega_safe_var_p (pb, var) && !omega_wildcard_p (pb, var)) |
| { |
| int k; |
| eqn eqn = &(pb->subs[pb->num_subs++]); |
| |
| for (k = pb->num_vars; k >= 0; k--) |
| eqn->coef[k] = 0; |
| |
| eqn->key = pb->var[var]; |
| eqn->color = omega_black; |
| } |
| } |
| else if (top_var == 0 && packing[0] == 0) |
| { |
| c = -sub->coef[0] * c; |
| |
| for (e = pb->num_eqs - 1; e >= 0; e--) |
| { |
| pb->eqs[e].coef[0] += pb->eqs[e].coef[var] * c; |
| pb->eqs[e].coef[var] = 0; |
| } |
| |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| if (pb->geqs[e].coef[var] != 0) |
| { |
| pb->geqs[e].coef[0] += pb->geqs[e].coef[var] * c; |
| pb->geqs[e].coef[var] = 0; |
| pb->geqs[e].touched = 1; |
| } |
| |
| for (e = pb->num_subs - 1; e >= 0; e--) |
| { |
| pb->subs[e].coef[0] += pb->subs[e].coef[var] * c; |
| pb->subs[e].coef[var] = 0; |
| } |
| |
| if (omega_safe_var_p (pb, var) && !omega_wildcard_p (pb, var)) |
| { |
| int k; |
| eqn eqn = &(pb->subs[pb->num_subs++]); |
| |
| for (k = pb->num_vars; k >= 1; k--) |
| eqn->coef[k] = 0; |
| |
| eqn->coef[0] = c; |
| eqn->key = pb->var[var]; |
| eqn->color = omega_black; |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "---\n\n"); |
| omega_print_problem (dump_file, pb); |
| fprintf (dump_file, "===\n\n"); |
| } |
| } |
| else |
| { |
| for (e = pb->num_eqs - 1; e >= 0; e--) |
| { |
| eqn eqn = &(pb->eqs[e]); |
| int k = eqn->coef[var]; |
| |
| if (k != 0) |
| { |
| k = c * k; |
| eqn->coef[var] = 0; |
| |
| for (j = top_var; j >= 0; j--) |
| { |
| j0 = packing[j]; |
| eqn->coef[j0] -= sub->coef[j0] * k; |
| } |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| omega_print_eq (dump_file, pb, eqn); |
| fprintf (dump_file, "\n"); |
| } |
| } |
| |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| { |
| eqn eqn = &(pb->geqs[e]); |
| int k = eqn->coef[var]; |
| |
| if (k != 0) |
| { |
| k = c * k; |
| eqn->touched = 1; |
| eqn->coef[var] = 0; |
| |
| for (j = top_var; j >= 0; j--) |
| { |
| j0 = packing[j]; |
| eqn->coef[j0] -= sub->coef[j0] * k; |
| } |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| omega_print_geq (dump_file, pb, eqn); |
| fprintf (dump_file, "\n"); |
| } |
| } |
| |
| for (e = pb->num_subs - 1; e >= 0; e--) |
| { |
| eqn eqn = &(pb->subs[e]); |
| int k = eqn->coef[var]; |
| |
| if (k != 0) |
| { |
| k = c * k; |
| eqn->coef[var] = 0; |
| |
| for (j = top_var; j >= 0; j--) |
| { |
| j0 = packing[j]; |
| eqn->coef[j0] -= sub->coef[j0] * k; |
| } |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "%s := ", omega_var_to_str (eqn->key)); |
| omega_print_term (dump_file, pb, eqn, 1); |
| fprintf (dump_file, "\n"); |
| } |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "---\n\n"); |
| omega_print_problem (dump_file, pb); |
| fprintf (dump_file, "===\n\n"); |
| } |
| |
| if (omega_safe_var_p (pb, var) && !omega_wildcard_p (pb, var)) |
| { |
| int k; |
| eqn eqn = &(pb->subs[pb->num_subs++]); |
| c = -c; |
| |
| for (k = pb->num_vars; k >= 0; k--) |
| eqn->coef[k] = c * (sub->coef[k]); |
| |
| eqn->key = pb->var[var]; |
| eqn->color = sub->color; |
| } |
| } |
| } |
| |
| /* Solve e = factor alpha for x_j and substitute. */ |
| |
| static void |
| omega_do_mod (omega_pb pb, int factor, int e, int j) |
| { |
| int k, i; |
| eqn eq = omega_alloc_eqns (0, 1); |
| int nfactor; |
| bool kill_j = false; |
| |
| omega_copy_eqn (eq, &pb->eqs[e], pb->num_vars); |
| |
| for (k = pb->num_vars; k >= 0; k--) |
| { |
| eq->coef[k] = int_mod (eq->coef[k], factor); |
| |
| if (2 * eq->coef[k] >= factor) |
| eq->coef[k] -= factor; |
| } |
| |
| nfactor = eq->coef[j]; |
| |
| if (omega_safe_var_p (pb, j) && !omega_wildcard_p (pb, j)) |
| { |
| i = omega_add_new_wild_card (pb); |
| eq->coef[pb->num_vars] = eq->coef[i]; |
| eq->coef[j] = 0; |
| eq->coef[i] = -factor; |
| kill_j = true; |
| } |
| else |
| { |
| eq->coef[j] = -factor; |
| if (!omega_wildcard_p (pb, j)) |
| omega_name_wild_card (pb, j); |
| } |
| |
| omega_substitute (pb, eq, j, nfactor); |
| |
| for (k = pb->num_vars; k >= 0; k--) |
| pb->eqs[e].coef[k] = pb->eqs[e].coef[k] / factor; |
| |
| if (kill_j) |
| omega_delete_variable (pb, j); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Mod-ing and normalizing produces:\n"); |
| omega_print_problem (dump_file, pb); |
| } |
| |
| omega_free_eqns (eq, 1); |
| } |
| |
| /* Multiplies by -1 inequality E. */ |
| |
| void |
| omega_negate_geq (omega_pb pb, int e) |
| { |
| int i; |
| |
| for (i = pb->num_vars; i >= 0; i--) |
| pb->geqs[e].coef[i] *= -1; |
| |
| pb->geqs[e].coef[0]--; |
| pb->geqs[e].touched = 1; |
| } |
| |
| /* Returns OMEGA_TRUE when problem PB has a solution. */ |
| |
| static enum omega_result |
| verify_omega_pb (omega_pb pb) |
| { |
| enum omega_result result; |
| int e; |
| bool any_color = false; |
| omega_pb tmp_problem = XNEW (struct omega_pb); |
| |
| omega_copy_problem (tmp_problem, pb); |
| tmp_problem->safe_vars = 0; |
| tmp_problem->num_subs = 0; |
| |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| if (pb->geqs[e].color == omega_red) |
| { |
| any_color = true; |
| break; |
| } |
| |
| if (please_no_equalities_in_simplified_problems) |
| any_color = true; |
| |
| if (any_color) |
| original_problem = no_problem; |
| else |
| original_problem = pb; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "verifying problem"); |
| |
| if (any_color) |
| fprintf (dump_file, " (color mode)"); |
| |
| fprintf (dump_file, " :\n"); |
| omega_print_problem (dump_file, pb); |
| } |
| |
| result = omega_solve_problem (tmp_problem, omega_unknown); |
| original_problem = no_problem; |
| free (tmp_problem); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| if (result != omega_false) |
| fprintf (dump_file, "verified problem\n"); |
| else |
| fprintf (dump_file, "disproved problem\n"); |
| omega_print_problem (dump_file, pb); |
| } |
| |
| return result; |
| } |
| |
| /* Add a new equality to problem PB at last position E. */ |
| |
| static void |
| adding_equality_constraint (omega_pb pb, int e) |
| { |
| if (original_problem != no_problem |
| && original_problem != pb |
| && !conservative) |
| { |
| int i, j; |
| int e2 = original_problem->num_eqs++; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| "adding equality constraint %d to outer problem\n", e2); |
| omega_init_eqn_zero (&original_problem->eqs[e2], |
| original_problem->num_vars); |
| |
| for (i = pb->num_vars; i >= 1; i--) |
| { |
| for (j = original_problem->num_vars; j >= 1; j--) |
| if (original_problem->var[j] == pb->var[i]) |
| break; |
| |
| if (j <= 0) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "retracting\n"); |
| original_problem->num_eqs--; |
| return; |
| } |
| original_problem->eqs[e2].coef[j] = pb->eqs[e].coef[i]; |
| } |
| |
| original_problem->eqs[e2].coef[0] = pb->eqs[e].coef[0]; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| omega_print_problem (dump_file, original_problem); |
| } |
| } |
| |
| static int *fast_lookup; |
| static int *fast_lookup_red; |
| |
| typedef enum { |
| normalize_false, |
| normalize_uncoupled, |
| normalize_coupled |
| } normalize_return_type; |
| |
| /* Normalizes PB by removing redundant constraints. Returns |
| normalize_false when the constraints system has no solution, |
| otherwise returns normalize_coupled or normalize_uncoupled. */ |
| |
| static normalize_return_type |
| normalize_omega_problem (omega_pb pb) |
| { |
| int e, i, j, k, n_vars; |
| int coupled_subscripts = 0; |
| |
| n_vars = pb->num_vars; |
| |
| for (e = 0; e < pb->num_geqs; e++) |
| { |
| if (!pb->geqs[e].touched) |
| { |
| if (!single_var_geq (&pb->geqs[e], n_vars)) |
| coupled_subscripts = 1; |
| } |
| else |
| { |
| int g, top_var, i0, hashCode; |
| int *p = &packing[0]; |
| |
| for (k = 1; k <= n_vars; k++) |
| if (pb->geqs[e].coef[k]) |
| *(p++) = k; |
| |
| top_var = (p - &packing[0]) - 1; |
| |
| if (top_var == -1) |
| { |
| if (pb->geqs[e].coef[0] < 0) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| omega_print_geq (dump_file, pb, &pb->geqs[e]); |
| fprintf (dump_file, "\nequations have no solution \n"); |
| } |
| return normalize_false; |
| } |
| |
| omega_delete_geq (pb, e, n_vars); |
| e--; |
| continue; |
| } |
| else if (top_var == 0) |
| { |
| int singlevar = packing[0]; |
| |
| g = pb->geqs[e].coef[singlevar]; |
| |
| if (g > 0) |
| { |
| pb->geqs[e].coef[singlevar] = 1; |
| pb->geqs[e].key = singlevar; |
| } |
| else |
| { |
| g = -g; |
| pb->geqs[e].coef[singlevar] = -1; |
| pb->geqs[e].key = -singlevar; |
| } |
| |
| if (g > 1) |
| pb->geqs[e].coef[0] = int_div (pb->geqs[e].coef[0], g); |
| } |
| else |
| { |
| int g2; |
| int hash_key_multiplier = 31; |
| |
| coupled_subscripts = 1; |
| i0 = top_var; |
| i = packing[i0--]; |
| g = pb->geqs[e].coef[i]; |
| hashCode = g * (i + 3); |
| |
| if (g < 0) |
| g = -g; |
| |
| for (; i0 >= 0; i0--) |
| { |
| int x; |
| |
| i = packing[i0]; |
| x = pb->geqs[e].coef[i]; |
| hashCode = hashCode * hash_key_multiplier * (i + 3) + x; |
| |
| if (x < 0) |
| x = -x; |
| |
| if (x == 1) |
| { |
| g = 1; |
| i0--; |
| break; |
| } |
| else |
| g = gcd (x, g); |
| } |
| |
| for (; i0 >= 0; i0--) |
| { |
| int x; |
| i = packing[i0]; |
| x = pb->geqs[e].coef[i]; |
| hashCode = hashCode * hash_key_multiplier * (i + 3) + x; |
| } |
| |
| if (g > 1) |
| { |
| pb->geqs[e].coef[0] = int_div (pb->geqs[e].coef[0], g); |
| i0 = top_var; |
| i = packing[i0--]; |
| pb->geqs[e].coef[i] = pb->geqs[e].coef[i] / g; |
| hashCode = pb->geqs[e].coef[i] * (i + 3); |
| |
| for (; i0 >= 0; i0--) |
| { |
| i = packing[i0]; |
| pb->geqs[e].coef[i] = pb->geqs[e].coef[i] / g; |
| hashCode = hashCode * hash_key_multiplier * (i + 3) |
| + pb->geqs[e].coef[i]; |
| } |
| } |
| |
| g2 = abs (hashCode); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Hash code = %d, eqn = ", hashCode); |
| omega_print_geq (dump_file, pb, &pb->geqs[e]); |
| fprintf (dump_file, "\n"); |
| } |
| |
| j = g2 % HASH_TABLE_SIZE; |
| |
| do { |
| eqn proto = &(hash_master[j]); |
| |
| if (proto->touched == g2) |
| { |
| if (proto->coef[0] == top_var) |
| { |
| if (hashCode >= 0) |
| for (i0 = top_var; i0 >= 0; i0--) |
| { |
| i = packing[i0]; |
| |
| if (pb->geqs[e].coef[i] != proto->coef[i]) |
| break; |
| } |
| else |
| for (i0 = top_var; i0 >= 0; i0--) |
| { |
| i = packing[i0]; |
| |
| if (pb->geqs[e].coef[i] != -proto->coef[i]) |
| break; |
| } |
| |
| if (i0 < 0) |
| { |
| if (hashCode >= 0) |
| pb->geqs[e].key = proto->key; |
| else |
| pb->geqs[e].key = -proto->key; |
| break; |
| } |
| } |
| } |
| else if (proto->touched < 0) |
| { |
| omega_init_eqn_zero (proto, pb->num_vars); |
| if (hashCode >= 0) |
| for (i0 = top_var; i0 >= 0; i0--) |
| { |
| i = packing[i0]; |
| proto->coef[i] = pb->geqs[e].coef[i]; |
| } |
| else |
| for (i0 = top_var; i0 >= 0; i0--) |
| { |
| i = packing[i0]; |
| proto->coef[i] = -pb->geqs[e].coef[i]; |
| } |
| |
| proto->coef[0] = top_var; |
| proto->touched = g2; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, " constraint key = %d\n", |
| next_key); |
| |
| proto->key = next_key++; |
| |
| /* Too many hash keys generated. */ |
| gcc_assert (proto->key <= MAX_KEYS); |
| |
| if (hashCode >= 0) |
| pb->geqs[e].key = proto->key; |
| else |
| pb->geqs[e].key = -proto->key; |
| |
| break; |
| } |
| |
| j = (j + 1) % HASH_TABLE_SIZE; |
| } while (1); |
| } |
| |
| pb->geqs[e].touched = 0; |
| } |
| |
| { |
| int eKey = pb->geqs[e].key; |
| int e2; |
| if (e > 0) |
| { |
| int cTerm = pb->geqs[e].coef[0]; |
| e2 = fast_lookup[MAX_KEYS - eKey]; |
| |
| if (e2 < e && pb->geqs[e2].key == -eKey |
| && pb->geqs[e2].color == omega_black) |
| { |
| if (pb->geqs[e2].coef[0] < -cTerm) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| omega_print_geq (dump_file, pb, &pb->geqs[e]); |
| fprintf (dump_file, "\n"); |
| omega_print_geq (dump_file, pb, &pb->geqs[e2]); |
| fprintf (dump_file, |
| "\nequations have no solution \n"); |
| } |
| return normalize_false; |
| } |
| |
| if (pb->geqs[e2].coef[0] == -cTerm |
| && (create_color |
| || pb->geqs[e].color == omega_black)) |
| { |
| omega_copy_eqn (&pb->eqs[pb->num_eqs], &pb->geqs[e], |
| pb->num_vars); |
| if (pb->geqs[e].color == omega_black) |
| adding_equality_constraint (pb, pb->num_eqs); |
| pb->num_eqs++; |
| gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS); |
| } |
| } |
| |
| e2 = fast_lookup_red[MAX_KEYS - eKey]; |
| |
| if (e2 < e && pb->geqs[e2].key == -eKey |
| && pb->geqs[e2].color == omega_red) |
| { |
| if (pb->geqs[e2].coef[0] < -cTerm) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| omega_print_geq (dump_file, pb, &pb->geqs[e]); |
| fprintf (dump_file, "\n"); |
| omega_print_geq (dump_file, pb, &pb->geqs[e2]); |
| fprintf (dump_file, |
| "\nequations have no solution \n"); |
| } |
| return normalize_false; |
| } |
| |
| if (pb->geqs[e2].coef[0] == -cTerm && create_color) |
| { |
| omega_copy_eqn (&pb->eqs[pb->num_eqs], &pb->geqs[e], |
| pb->num_vars); |
| pb->eqs[pb->num_eqs].color = omega_red; |
| pb->num_eqs++; |
| gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS); |
| } |
| } |
| |
| e2 = fast_lookup[MAX_KEYS + eKey]; |
| |
| if (e2 < e && pb->geqs[e2].key == eKey |
| && pb->geqs[e2].color == omega_black) |
| { |
| if (pb->geqs[e2].coef[0] > cTerm) |
| { |
| if (pb->geqs[e].color == omega_black) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, |
| "Removing Redundant Equation: "); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e2])); |
| fprintf (dump_file, "\n"); |
| fprintf (dump_file, |
| "[a] Made Redundant by: "); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e])); |
| fprintf (dump_file, "\n"); |
| } |
| pb->geqs[e2].coef[0] = cTerm; |
| omega_delete_geq (pb, e, n_vars); |
| e--; |
| continue; |
| } |
| } |
| else |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Removing Redundant Equation: "); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e])); |
| fprintf (dump_file, "\n"); |
| fprintf (dump_file, "[b] Made Redundant by: "); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e2])); |
| fprintf (dump_file, "\n"); |
| } |
| omega_delete_geq (pb, e, n_vars); |
| e--; |
| continue; |
| } |
| } |
| |
| e2 = fast_lookup_red[MAX_KEYS + eKey]; |
| |
| if (e2 < e && pb->geqs[e2].key == eKey |
| && pb->geqs[e2].color == omega_red) |
| { |
| if (pb->geqs[e2].coef[0] >= cTerm) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Removing Redundant Equation: "); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e2])); |
| fprintf (dump_file, "\n"); |
| fprintf (dump_file, "[c] Made Redundant by: "); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e])); |
| fprintf (dump_file, "\n"); |
| } |
| pb->geqs[e2].coef[0] = cTerm; |
| pb->geqs[e2].color = pb->geqs[e].color; |
| } |
| else if (pb->geqs[e].color == omega_red) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Removing Redundant Equation: "); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e])); |
| fprintf (dump_file, "\n"); |
| fprintf (dump_file, "[d] Made Redundant by: "); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e2])); |
| fprintf (dump_file, "\n"); |
| } |
| } |
| omega_delete_geq (pb, e, n_vars); |
| e--; |
| continue; |
| |
| } |
| } |
| |
| if (pb->geqs[e].color == omega_red) |
| fast_lookup_red[MAX_KEYS + eKey] = e; |
| else |
| fast_lookup[MAX_KEYS + eKey] = e; |
| } |
| } |
| |
| create_color = false; |
| return coupled_subscripts ? normalize_coupled : normalize_uncoupled; |
| } |
| |
| /* Divide the coefficients of EQN by their gcd. N_VARS is the number |
| of variables in EQN. */ |
| |
| static inline void |
| divide_eqn_by_gcd (eqn eqn, int n_vars) |
| { |
| int var, g = 0; |
| |
| for (var = n_vars; var >= 0; var--) |
| g = gcd (abs (eqn->coef[var]), g); |
| |
| if (g) |
| for (var = n_vars; var >= 0; var--) |
| eqn->coef[var] = eqn->coef[var] / g; |
| } |
| |
| /* Rewrite some non-safe variables in function of protected |
| wildcard variables. */ |
| |
| static void |
| cleanout_wildcards (omega_pb pb) |
| { |
| int e, i, j; |
| int n_vars = pb->num_vars; |
| bool renormalize = false; |
| |
| for (e = pb->num_eqs - 1; e >= 0; e--) |
| for (i = n_vars; !omega_safe_var_p (pb, i); i--) |
| if (pb->eqs[e].coef[i] != 0) |
| { |
| /* i is the last nonzero non-safe variable. */ |
| |
| for (j = i - 1; !omega_safe_var_p (pb, j); j--) |
| if (pb->eqs[e].coef[j] != 0) |
| break; |
| |
| /* j is the next nonzero non-safe variable, or points |
| to a safe variable: it is then a wildcard variable. */ |
| |
| /* Clean it out. */ |
| if (omega_safe_var_p (pb, j)) |
| { |
| eqn sub = &(pb->eqs[e]); |
| int c = pb->eqs[e].coef[i]; |
| int a = abs (c); |
| int e2; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, |
| "Found a single wild card equality: "); |
| omega_print_eq (dump_file, pb, &pb->eqs[e]); |
| fprintf (dump_file, "\n"); |
| omega_print_problem (dump_file, pb); |
| } |
| |
| for (e2 = pb->num_eqs - 1; e2 >= 0; e2--) |
| if (e != e2 && pb->eqs[e2].coef[i] |
| && (pb->eqs[e2].color == omega_red |
| || (pb->eqs[e2].color == omega_black |
| && pb->eqs[e].color == omega_black))) |
| { |
| eqn eqn = &(pb->eqs[e2]); |
| int var, k; |
| |
| for (var = n_vars; var >= 0; var--) |
| eqn->coef[var] *= a; |
| |
| k = eqn->coef[i]; |
| |
| for (var = n_vars; var >= 0; var--) |
| eqn->coef[var] -= sub->coef[var] * k / c; |
| |
| eqn->coef[i] = 0; |
| divide_eqn_by_gcd (eqn, n_vars); |
| } |
| |
| for (e2 = pb->num_geqs - 1; e2 >= 0; e2--) |
| if (pb->geqs[e2].coef[i] |
| && (pb->geqs[e2].color == omega_red |
| || (pb->eqs[e].color == omega_black |
| && pb->geqs[e2].color == omega_black))) |
| { |
| eqn eqn = &(pb->geqs[e2]); |
| int var, k; |
| |
| for (var = n_vars; var >= 0; var--) |
| eqn->coef[var] *= a; |
| |
| k = eqn->coef[i]; |
| |
| for (var = n_vars; var >= 0; var--) |
| eqn->coef[var] -= sub->coef[var] * k / c; |
| |
| eqn->coef[i] = 0; |
| eqn->touched = 1; |
| renormalize = true; |
| } |
| |
| for (e2 = pb->num_subs - 1; e2 >= 0; e2--) |
| if (pb->subs[e2].coef[i] |
| && (pb->subs[e2].color == omega_red |
| || (pb->subs[e2].color == omega_black |
| && pb->eqs[e].color == omega_black))) |
| { |
| eqn eqn = &(pb->subs[e2]); |
| int var, k; |
| |
| for (var = n_vars; var >= 0; var--) |
| eqn->coef[var] *= a; |
| |
| k = eqn->coef[i]; |
| |
| for (var = n_vars; var >= 0; var--) |
| eqn->coef[var] -= sub->coef[var] * k / c; |
| |
| eqn->coef[i] = 0; |
| divide_eqn_by_gcd (eqn, n_vars); |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "cleaned-out wildcard: "); |
| omega_print_problem (dump_file, pb); |
| } |
| break; |
| } |
| } |
| |
| if (renormalize) |
| normalize_omega_problem (pb); |
| } |
| |
| /* Swap values contained in I and J. */ |
| |
| static inline void |
| swap (int *i, int *j) |
| { |
| int tmp; |
| tmp = *i; |
| *i = *j; |
| *j = tmp; |
| } |
| |
| /* Swap values contained in I and J. */ |
| |
| static inline void |
| bswap (bool *i, bool *j) |
| { |
| bool tmp; |
| tmp = *i; |
| *i = *j; |
| *j = tmp; |
| } |
| |
| /* Make variable IDX unprotected in PB, by swapping its index at the |
| PB->safe_vars rank. */ |
| |
| static inline void |
| omega_unprotect_1 (omega_pb pb, int *idx, bool *unprotect) |
| { |
| /* If IDX is protected... */ |
| if (*idx < pb->safe_vars) |
| { |
| /* ... swap its index with the last non protected index. */ |
| int j = pb->safe_vars; |
| int e; |
| |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| { |
| pb->geqs[e].touched = 1; |
| swap (&pb->geqs[e].coef[*idx], &pb->geqs[e].coef[j]); |
| } |
| |
| for (e = pb->num_eqs - 1; e >= 0; e--) |
| swap (&pb->eqs[e].coef[*idx], &pb->eqs[e].coef[j]); |
| |
| for (e = pb->num_subs - 1; e >= 0; e--) |
| swap (&pb->subs[e].coef[*idx], &pb->subs[e].coef[j]); |
| |
| if (unprotect) |
| bswap (&unprotect[*idx], &unprotect[j]); |
| |
| swap (&pb->var[*idx], &pb->var[j]); |
| pb->forwarding_address[pb->var[*idx]] = *idx; |
| pb->forwarding_address[pb->var[j]] = j; |
| (*idx)--; |
| } |
| |
| /* The variable at pb->safe_vars is also unprotected now. */ |
| pb->safe_vars--; |
| } |
| |
| /* During the Fourier-Motzkin elimination some variables are |
| substituted with other variables. This function resurrects the |
| substituted variables in PB. */ |
| |
| static void |
| resurrect_subs (omega_pb pb) |
| { |
| if (pb->num_subs > 0 |
| && please_no_equalities_in_simplified_problems == 0) |
| { |
| int i, e, n, m; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, |
| "problem reduced, bringing variables back to life\n"); |
| omega_print_problem (dump_file, pb); |
| } |
| |
| for (i = 1; omega_safe_var_p (pb, i); i++) |
| if (omega_wildcard_p (pb, i)) |
| omega_unprotect_1 (pb, &i, NULL); |
| |
| m = pb->num_subs; |
| n = MAX (pb->num_vars, pb->safe_vars + m); |
| |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| if (single_var_geq (&pb->geqs[e], pb->num_vars)) |
| { |
| if (!omega_safe_var_p (pb, abs (pb->geqs[e].key))) |
| pb->geqs[e].key += (pb->geqs[e].key > 0 ? m : -m); |
| } |
| else |
| { |
| pb->geqs[e].touched = 1; |
| pb->geqs[e].key = 0; |
| } |
| |
| for (i = pb->num_vars; !omega_safe_var_p (pb, i); i--) |
| { |
| pb->var[i + m] = pb->var[i]; |
| |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| pb->geqs[e].coef[i + m] = pb->geqs[e].coef[i]; |
| |
| for (e = pb->num_eqs - 1; e >= 0; e--) |
| pb->eqs[e].coef[i + m] = pb->eqs[e].coef[i]; |
| |
| for (e = pb->num_subs - 1; e >= 0; e--) |
| pb->subs[e].coef[i + m] = pb->subs[e].coef[i]; |
| } |
| |
| for (i = pb->safe_vars + m; !omega_safe_var_p (pb, i); i--) |
| { |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| pb->geqs[e].coef[i] = 0; |
| |
| for (e = pb->num_eqs - 1; e >= 0; e--) |
| pb->eqs[e].coef[i] = 0; |
| |
| for (e = pb->num_subs - 1; e >= 0; e--) |
| pb->subs[e].coef[i] = 0; |
| } |
| |
| pb->num_vars += m; |
| |
| for (e = pb->num_subs - 1; e >= 0; e--) |
| { |
| pb->var[pb->safe_vars + 1 + e] = pb->subs[e].key; |
| omega_copy_eqn (&(pb->eqs[pb->num_eqs]), &(pb->subs[e]), |
| pb->num_vars); |
| pb->eqs[pb->num_eqs].coef[pb->safe_vars + 1 + e] = -1; |
| pb->eqs[pb->num_eqs].color = omega_black; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "brought back: "); |
| omega_print_eq (dump_file, pb, &pb->eqs[pb->num_eqs]); |
| fprintf (dump_file, "\n"); |
| } |
| |
| pb->num_eqs++; |
| gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS); |
| } |
| |
| pb->safe_vars += m; |
| pb->num_subs = 0; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "variables brought back to life\n"); |
| omega_print_problem (dump_file, pb); |
| } |
| |
| cleanout_wildcards (pb); |
| } |
| } |
| |
| static inline bool |
| implies (unsigned int a, unsigned int b) |
| { |
| return (a == (a & b)); |
| } |
| |
| /* Eliminate redundant equations in PB. When EXPENSIVE is true, an |
| extra step is performed. Returns omega_false when there exist no |
| solution, omega_true otherwise. */ |
| |
| enum omega_result |
| omega_eliminate_redundant (omega_pb pb, bool expensive) |
| { |
| int c, e, e1, e2, e3, p, q, i, k, alpha, alpha1, alpha2, alpha3; |
| bool *is_dead = XNEWVEC (bool, OMEGA_MAX_GEQS); |
| omega_pb tmp_problem; |
| |
| /* {P,Z,N}EQS = {Positive,Zero,Negative} Equations. */ |
| unsigned int *peqs = XNEWVEC (unsigned int, OMEGA_MAX_GEQS); |
| unsigned int *zeqs = XNEWVEC (unsigned int, OMEGA_MAX_GEQS); |
| unsigned int *neqs = XNEWVEC (unsigned int, OMEGA_MAX_GEQS); |
| |
| /* PP = Possible Positives, PZ = Possible Zeros, PN = Possible Negatives */ |
| unsigned int pp, pz, pn; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "in eliminate Redundant:\n"); |
| omega_print_problem (dump_file, pb); |
| } |
| |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| { |
| int tmp = 1; |
| |
| is_dead[e] = false; |
| peqs[e] = zeqs[e] = neqs[e] = 0; |
| |
| for (i = pb->num_vars; i >= 1; i--) |
| { |
| if (pb->geqs[e].coef[i] > 0) |
| peqs[e] |= tmp; |
| else if (pb->geqs[e].coef[i] < 0) |
| neqs[e] |= tmp; |
| else |
| zeqs[e] |= tmp; |
| |
| tmp <<= 1; |
| } |
| } |
| |
| |
| for (e1 = pb->num_geqs - 1; e1 >= 0; e1--) |
| if (!is_dead[e1]) |
| for (e2 = e1 - 1; e2 >= 0; e2--) |
| if (!is_dead[e2]) |
| { |
| for (p = pb->num_vars; p > 1; p--) |
| for (q = p - 1; q > 0; q--) |
| if ((alpha = pb->geqs[e1].coef[p] * pb->geqs[e2].coef[q] |
| - pb->geqs[e2].coef[p] * pb->geqs[e1].coef[q]) != 0) |
| goto foundPQ; |
| |
| continue; |
| |
| foundPQ: |
| pz = ((zeqs[e1] & zeqs[e2]) | (peqs[e1] & neqs[e2]) |
| | (neqs[e1] & peqs[e2])); |
| pp = peqs[e1] | peqs[e2]; |
| pn = neqs[e1] | neqs[e2]; |
| |
| for (e3 = pb->num_geqs - 1; e3 >= 0; e3--) |
| if (e3 != e1 && e3 != e2) |
| { |
| if (!implies (zeqs[e3], pz)) |
| goto nextE3; |
| |
| alpha1 = (pb->geqs[e2].coef[q] * pb->geqs[e3].coef[p] |
| - pb->geqs[e2].coef[p] * pb->geqs[e3].coef[q]); |
| alpha2 = -(pb->geqs[e1].coef[q] * pb->geqs[e3].coef[p] |
| - pb->geqs[e1].coef[p] * pb->geqs[e3].coef[q]); |
| alpha3 = alpha; |
| |
| if (alpha1 * alpha2 <= 0) |
| goto nextE3; |
| |
| if (alpha1 < 0) |
| { |
| alpha1 = -alpha1; |
| alpha2 = -alpha2; |
| alpha3 = -alpha3; |
| } |
| |
| if (alpha3 > 0) |
| { |
| /* Trying to prove e3 is redundant. */ |
| if (!implies (peqs[e3], pp) |
| || !implies (neqs[e3], pn)) |
| goto nextE3; |
| |
| if (pb->geqs[e3].color == omega_black |
| && (pb->geqs[e1].color == omega_red |
| || pb->geqs[e2].color == omega_red)) |
| goto nextE3; |
| |
| for (k = pb->num_vars; k >= 1; k--) |
| if (alpha3 * pb->geqs[e3].coef[k] |
| != (alpha1 * pb->geqs[e1].coef[k] |
| + alpha2 * pb->geqs[e2].coef[k])) |
| goto nextE3; |
| |
| c = (alpha1 * pb->geqs[e1].coef[0] |
| + alpha2 * pb->geqs[e2].coef[0]); |
| |
| if (c < alpha3 * (pb->geqs[e3].coef[0] + 1)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, |
| "found redundant inequality\n"); |
| fprintf (dump_file, |
| "alpha1, alpha2, alpha3 = %d,%d,%d\n", |
| alpha1, alpha2, alpha3); |
| |
| omega_print_geq (dump_file, pb, &(pb->geqs[e1])); |
| fprintf (dump_file, "\n"); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e2])); |
| fprintf (dump_file, "\n=> "); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e3])); |
| fprintf (dump_file, "\n\n"); |
| } |
| |
| is_dead[e3] = true; |
| } |
| } |
| else |
| { |
| /* Trying to prove e3 <= 0 and therefore e3 = 0, |
| or trying to prove e3 < 0, and therefore the |
| problem has no solutions. */ |
| if (!implies (peqs[e3], pn) |
| || !implies (neqs[e3], pp)) |
| goto nextE3; |
| |
| if (pb->geqs[e1].color == omega_red |
| || pb->geqs[e2].color == omega_red |
| || pb->geqs[e3].color == omega_red) |
| goto nextE3; |
| |
| alpha3 = alpha3; |
| /* verify alpha1*v1+alpha2*v2 = alpha3*v3 */ |
| for (k = pb->num_vars; k >= 1; k--) |
| if (alpha3 * pb->geqs[e3].coef[k] |
| != (alpha1 * pb->geqs[e1].coef[k] |
| + alpha2 * pb->geqs[e2].coef[k])) |
| goto nextE3; |
| |
| c = (alpha1 * pb->geqs[e1].coef[0] |
| + alpha2 * pb->geqs[e2].coef[0]); |
| |
| if (c < alpha3 * (pb->geqs[e3].coef[0])) |
| { |
| /* We just proved e3 < 0, so no solutions exist. */ |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, |
| "found implied over tight inequality\n"); |
| fprintf (dump_file, |
| "alpha1, alpha2, alpha3 = %d,%d,%d\n", |
| alpha1, alpha2, -alpha3); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e1])); |
| fprintf (dump_file, "\n"); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e2])); |
| fprintf (dump_file, "\n=> not "); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e3])); |
| fprintf (dump_file, "\n\n"); |
| } |
| free (is_dead); |
| free (peqs); |
| free (zeqs); |
| free (neqs); |
| return omega_false; |
| } |
| else if (c < alpha3 * (pb->geqs[e3].coef[0] - 1)) |
| { |
| /* We just proved that e3 <=0, so e3 = 0. */ |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, |
| "found implied tight inequality\n"); |
| fprintf (dump_file, |
| "alpha1, alpha2, alpha3 = %d,%d,%d\n", |
| alpha1, alpha2, -alpha3); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e1])); |
| fprintf (dump_file, "\n"); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e2])); |
| fprintf (dump_file, "\n=> inverse "); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e3])); |
| fprintf (dump_file, "\n\n"); |
| } |
| |
| omega_copy_eqn (&pb->eqs[pb->num_eqs++], |
| &pb->geqs[e3], pb->num_vars); |
| gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS); |
| adding_equality_constraint (pb, pb->num_eqs - 1); |
| is_dead[e3] = true; |
| } |
| } |
| nextE3:; |
| } |
| } |
| |
| /* Delete the inequalities that were marked as dead. */ |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| if (is_dead[e]) |
| omega_delete_geq (pb, e, pb->num_vars); |
| |
| if (!expensive) |
| goto eliminate_redundant_done; |
| |
| tmp_problem = XNEW (struct omega_pb); |
| conservative++; |
| |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, |
| "checking equation %d to see if it is redundant: ", e); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e])); |
| fprintf (dump_file, "\n"); |
| } |
| |
| omega_copy_problem (tmp_problem, pb); |
| omega_negate_geq (tmp_problem, e); |
| tmp_problem->safe_vars = 0; |
| tmp_problem->variables_freed = false; |
| |
| if (omega_solve_problem (tmp_problem, omega_false) == omega_false) |
| omega_delete_geq (pb, e, pb->num_vars); |
| } |
| |
| free (tmp_problem); |
| conservative--; |
| |
| if (!omega_reduce_with_subs) |
| { |
| resurrect_subs (pb); |
| gcc_assert (please_no_equalities_in_simplified_problems |
| || pb->num_subs == 0); |
| } |
| |
| eliminate_redundant_done: |
| free (is_dead); |
| free (peqs); |
| free (zeqs); |
| free (neqs); |
| return omega_true; |
| } |
| |
| /* For each inequality that has coefficients bigger than 20, try to |
| create a new constraint that cannot be derived from the original |
| constraint and that has smaller coefficients. Add the new |
| constraint at the end of geqs. Return the number of inequalities |
| that have been added to PB. */ |
| |
| static int |
| smooth_weird_equations (omega_pb pb) |
| { |
| int e1, e2, e3, p, q, k, alpha, alpha1, alpha2, alpha3; |
| int c; |
| int v; |
| int result = 0; |
| |
| for (e1 = pb->num_geqs - 1; e1 >= 0; e1--) |
| if (pb->geqs[e1].color == omega_black) |
| { |
| int g = 999999; |
| |
| for (v = pb->num_vars; v >= 1; v--) |
| if (pb->geqs[e1].coef[v] != 0 && abs (pb->geqs[e1].coef[v]) < g) |
| g = abs (pb->geqs[e1].coef[v]); |
| |
| /* Magic number. */ |
| if (g > 20) |
| { |
| e3 = pb->num_geqs; |
| |
| for (v = pb->num_vars; v >= 1; v--) |
| pb->geqs[e3].coef[v] = int_div (6 * pb->geqs[e1].coef[v] + g / 2, |
| g); |
| |
| pb->geqs[e3].color = omega_black; |
| pb->geqs[e3].touched = 1; |
| /* Magic number. */ |
| pb->geqs[e3].coef[0] = 9997; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Checking to see if we can derive: "); |
| omega_print_geq (dump_file, pb, &pb->geqs[e3]); |
| fprintf (dump_file, "\n from: "); |
| omega_print_geq (dump_file, pb, &pb->geqs[e1]); |
| fprintf (dump_file, "\n"); |
| } |
| |
| for (e2 = pb->num_geqs - 1; e2 >= 0; e2--) |
| if (e1 != e2 && pb->geqs[e2].color == omega_black) |
| { |
| for (p = pb->num_vars; p > 1; p--) |
| { |
| for (q = p - 1; q > 0; q--) |
| { |
| alpha = |
| (pb->geqs[e1].coef[p] * pb->geqs[e2].coef[q] - |
| pb->geqs[e2].coef[p] * pb->geqs[e1].coef[q]); |
| if (alpha != 0) |
| goto foundPQ; |
| } |
| } |
| continue; |
| |
| foundPQ: |
| |
| alpha1 = (pb->geqs[e2].coef[q] * pb->geqs[e3].coef[p] |
| - pb->geqs[e2].coef[p] * pb->geqs[e3].coef[q]); |
| alpha2 = -(pb->geqs[e1].coef[q] * pb->geqs[e3].coef[p] |
| - pb->geqs[e1].coef[p] * pb->geqs[e3].coef[q]); |
| alpha3 = alpha; |
| |
| if (alpha1 * alpha2 <= 0) |
| continue; |
| |
| if (alpha1 < 0) |
| { |
| alpha1 = -alpha1; |
| alpha2 = -alpha2; |
| alpha3 = -alpha3; |
| } |
| |
| if (alpha3 > 0) |
| { |
| /* Try to prove e3 is redundant: verify |
| alpha1*v1 + alpha2*v2 = alpha3*v3. */ |
| for (k = pb->num_vars; k >= 1; k--) |
| if (alpha3 * pb->geqs[e3].coef[k] |
| != (alpha1 * pb->geqs[e1].coef[k] |
| + alpha2 * pb->geqs[e2].coef[k])) |
| goto nextE2; |
| |
| c = alpha1 * pb->geqs[e1].coef[0] |
| + alpha2 * pb->geqs[e2].coef[0]; |
| |
| if (c < alpha3 * (pb->geqs[e3].coef[0] + 1)) |
| pb->geqs[e3].coef[0] = int_div (c, alpha3); |
| } |
| nextE2:; |
| } |
| |
| if (pb->geqs[e3].coef[0] < 9997) |
| { |
| result++; |
| pb->num_geqs++; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, |
| "Smoothing weird equations; adding:\n"); |
| omega_print_geq (dump_file, pb, &pb->geqs[e3]); |
| fprintf (dump_file, "\nto:\n"); |
| omega_print_problem (dump_file, pb); |
| fprintf (dump_file, "\n\n"); |
| } |
| } |
| } |
| } |
| return result; |
| } |
| |
| /* Replace tuples of inequalities, that define upper and lower half |
| spaces, with an equation. */ |
| |
| static void |
| coalesce (omega_pb pb) |
| { |
| int e, e2; |
| int colors = 0; |
| bool *is_dead; |
| int found_something = 0; |
| |
| for (e = 0; e < pb->num_geqs; e++) |
| if (pb->geqs[e].color == omega_red) |
| colors++; |
| |
| if (colors < 2) |
| return; |
| |
| is_dead = XNEWVEC (bool, OMEGA_MAX_GEQS); |
| |
| for (e = 0; e < pb->num_geqs; e++) |
| is_dead[e] = false; |
| |
| for (e = 0; e < pb->num_geqs; e++) |
| if (pb->geqs[e].color == omega_red |
| && !pb->geqs[e].touched) |
| for (e2 = e + 1; e2 < pb->num_geqs; e2++) |
| if (!pb->geqs[e2].touched |
| && pb->geqs[e].key == -pb->geqs[e2].key |
| && pb->geqs[e].coef[0] == -pb->geqs[e2].coef[0] |
| && pb->geqs[e2].color == omega_red) |
| { |
| omega_copy_eqn (&pb->eqs[pb->num_eqs++], &pb->geqs[e], |
| pb->num_vars); |
| gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS); |
| found_something++; |
| is_dead[e] = true; |
| is_dead[e2] = true; |
| } |
| |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| if (is_dead[e]) |
| omega_delete_geq (pb, e, pb->num_vars); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS) && found_something) |
| { |
| fprintf (dump_file, "Coalesced pb->geqs into %d EQ's:\n", |
| found_something); |
| omega_print_problem (dump_file, pb); |
| } |
| |
| free (is_dead); |
| } |
| |
| /* Eliminate red inequalities from PB. When ELIMINATE_ALL is |
| true, continue to eliminate all the red inequalities. */ |
| |
| void |
| omega_eliminate_red (omega_pb pb, bool eliminate_all) |
| { |
| int e, e2, e3, i, j, k, a, alpha1, alpha2; |
| int c = 0; |
| bool *is_dead = XNEWVEC (bool, OMEGA_MAX_GEQS); |
| int dead_count = 0; |
| int red_found; |
| omega_pb tmp_problem; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "in eliminate RED:\n"); |
| omega_print_problem (dump_file, pb); |
| } |
| |
| if (pb->num_eqs > 0) |
| omega_simplify_problem (pb); |
| |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| is_dead[e] = false; |
| |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| if (pb->geqs[e].color == omega_black && !is_dead[e]) |
| for (e2 = e - 1; e2 >= 0; e2--) |
| if (pb->geqs[e2].color == omega_black |
| && !is_dead[e2]) |
| { |
| a = 0; |
| |
| for (i = pb->num_vars; i > 1; i--) |
| for (j = i - 1; j > 0; j--) |
| if ((a = (pb->geqs[e].coef[i] * pb->geqs[e2].coef[j] |
| - pb->geqs[e2].coef[i] * pb->geqs[e].coef[j])) != 0) |
| goto found_pair; |
| |
| continue; |
| |
| found_pair: |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, |
| "found two equations to combine, i = %s, ", |
| omega_variable_to_str (pb, i)); |
| fprintf (dump_file, "j = %s, alpha = %d\n", |
| omega_variable_to_str (pb, j), a); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e])); |
| fprintf (dump_file, "\n"); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e2])); |
| fprintf (dump_file, "\n"); |
| } |
| |
| for (e3 = pb->num_geqs - 1; e3 >= 0; e3--) |
| if (pb->geqs[e3].color == omega_red) |
| { |
| alpha1 = (pb->geqs[e2].coef[j] * pb->geqs[e3].coef[i] |
| - pb->geqs[e2].coef[i] * pb->geqs[e3].coef[j]); |
| alpha2 = -(pb->geqs[e].coef[j] * pb->geqs[e3].coef[i] |
| - pb->geqs[e].coef[i] * pb->geqs[e3].coef[j]); |
| |
| if ((a > 0 && alpha1 > 0 && alpha2 > 0) |
| || (a < 0 && alpha1 < 0 && alpha2 < 0)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, |
| "alpha1 = %d, alpha2 = %d;" |
| "comparing against: ", |
| alpha1, alpha2); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e3])); |
| fprintf (dump_file, "\n"); |
| } |
| |
| for (k = pb->num_vars; k >= 0; k--) |
| { |
| c = (alpha1 * pb->geqs[e].coef[k] |
| + alpha2 * pb->geqs[e2].coef[k]); |
| |
| if (c != a * pb->geqs[e3].coef[k]) |
| break; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS) && k > 0) |
| fprintf (dump_file, " %s: %d, %d\n", |
| omega_variable_to_str (pb, k), c, |
| a * pb->geqs[e3].coef[k]); |
| } |
| |
| if (k < 0 |
| || (k == 0 && |
| ((a > 0 && c < a * pb->geqs[e3].coef[k]) |
| || (a < 0 && c > a * pb->geqs[e3].coef[k])))) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| dead_count++; |
| fprintf (dump_file, |
| "red equation#%d is dead " |
| "(%d dead so far, %d remain)\n", |
| e3, dead_count, |
| pb->num_geqs - dead_count); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e])); |
| fprintf (dump_file, "\n"); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e2])); |
| fprintf (dump_file, "\n"); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e3])); |
| fprintf (dump_file, "\n"); |
| } |
| is_dead[e3] = true; |
| } |
| } |
| } |
| } |
| |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| if (is_dead[e]) |
| omega_delete_geq (pb, e, pb->num_vars); |
| |
| free (is_dead); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "in eliminate RED, easy tests done:\n"); |
| omega_print_problem (dump_file, pb); |
| } |
| |
| for (red_found = 0, e = pb->num_geqs - 1; e >= 0; e--) |
| if (pb->geqs[e].color == omega_red) |
| red_found = 1; |
| |
| if (!red_found) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "fast checks worked\n"); |
| |
| if (!omega_reduce_with_subs) |
| gcc_assert (please_no_equalities_in_simplified_problems |
| || pb->num_subs == 0); |
| |
| return; |
| } |
| |
| if (!omega_verify_simplification |
| && verify_omega_pb (pb) == omega_false) |
| return; |
| |
| conservative++; |
| tmp_problem = XNEW (struct omega_pb); |
| |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| if (pb->geqs[e].color == omega_red) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, |
| "checking equation %d to see if it is redundant: ", e); |
| omega_print_geq (dump_file, pb, &(pb->geqs[e])); |
| fprintf (dump_file, "\n"); |
| } |
| |
| omega_copy_problem (tmp_problem, pb); |
| omega_negate_geq (tmp_problem, e); |
| tmp_problem->safe_vars = 0; |
| tmp_problem->variables_freed = false; |
| tmp_problem->num_subs = 0; |
| |
| if (omega_solve_problem (tmp_problem, omega_false) == omega_false) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "it is redundant\n"); |
| omega_delete_geq (pb, e, pb->num_vars); |
| } |
| else |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "it is not redundant\n"); |
| |
| if (!eliminate_all) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "no need to check other red equations\n"); |
| break; |
| } |
| } |
| } |
| |
| conservative--; |
| free (tmp_problem); |
| /* omega_simplify_problem (pb); */ |
| |
| if (!omega_reduce_with_subs) |
| gcc_assert (please_no_equalities_in_simplified_problems |
| || pb->num_subs == 0); |
| } |
| |
| /* Transform some wildcard variables to non-safe variables. */ |
| |
| static void |
| chain_unprotect (omega_pb pb) |
| { |
| int i, e; |
| bool *unprotect = XNEWVEC (bool, OMEGA_MAX_VARS); |
| |
| for (i = 1; omega_safe_var_p (pb, i); i++) |
| { |
| unprotect[i] = omega_wildcard_p (pb, i); |
| |
| for (e = pb->num_subs - 1; e >= 0; e--) |
| if (pb->subs[e].coef[i]) |
| unprotect[i] = false; |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Doing chain reaction unprotection\n"); |
| omega_print_problem (dump_file, pb); |
| |
| for (i = 1; omega_safe_var_p (pb, i); i++) |
| if (unprotect[i]) |
| fprintf (dump_file, "unprotecting %s\n", |
| omega_variable_to_str (pb, i)); |
| } |
| |
| for (i = 1; omega_safe_var_p (pb, i); i++) |
| if (unprotect[i]) |
| omega_unprotect_1 (pb, &i, unprotect); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "After chain reactions\n"); |
| omega_print_problem (dump_file, pb); |
| } |
| |
| free (unprotect); |
| } |
| |
| /* Reduce problem PB. */ |
| |
| static void |
| omega_problem_reduced (omega_pb pb) |
| { |
| if (omega_verify_simplification |
| && !in_approximate_mode |
| && verify_omega_pb (pb) == omega_false) |
| return; |
| |
| if (PARAM_VALUE (PARAM_OMEGA_ELIMINATE_REDUNDANT_CONSTRAINTS) |
| && !omega_eliminate_redundant (pb, true)) |
| return; |
| |
| omega_found_reduction = omega_true; |
| |
| if (!please_no_equalities_in_simplified_problems) |
| coalesce (pb); |
| |
| if (omega_reduce_with_subs |
| || please_no_equalities_in_simplified_problems) |
| chain_unprotect (pb); |
| else |
| resurrect_subs (pb); |
| |
| if (!return_single_result) |
| { |
| int i; |
| |
| for (i = 1; omega_safe_var_p (pb, i); i++) |
| pb->forwarding_address[pb->var[i]] = i; |
| |
| for (i = 0; i < pb->num_subs; i++) |
| pb->forwarding_address[pb->subs[i].key] = -i - 1; |
| |
| (*omega_when_reduced) (pb); |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "-------------------------------------------\n"); |
| fprintf (dump_file, "problem reduced:\n"); |
| omega_print_problem (dump_file, pb); |
| fprintf (dump_file, "-------------------------------------------\n"); |
| } |
| } |
| |
| /* Eliminates all the free variables for problem PB, that is all the |
| variables from FV to PB->NUM_VARS. */ |
| |
| static void |
| omega_free_eliminations (omega_pb pb, int fv) |
| { |
| bool try_again = true; |
| int i, e, e2; |
| int n_vars = pb->num_vars; |
| |
| while (try_again) |
| { |
| try_again = false; |
| |
| for (i = n_vars; i > fv; i--) |
| { |
| for (e = pb->num_geqs - 1; e >= 0; e--) |
| if (pb->geqs[e].coef[i]) |
| break; |
| |
| if (e < 0) |
| e2 = e; |
| else if (pb->geqs[e].coef[i] > 0) |
| { |
| for (e2 = e - 1; e2 >= 0; e2--) |
| if (pb->geqs[e2].coef[i] < 0) |
| break; |
| } |
| else |
| { |
| for (e2 = e - 1; e2 >= 0; e2--) |
| if |