| /* Analyze RTL for GNU compiler. |
| Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, |
| 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 |
| Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "toplev.h" |
| #include "rtl.h" |
| #include "hard-reg-set.h" |
| #include "insn-config.h" |
| #include "recog.h" |
| #include "target.h" |
| #include "output.h" |
| #include "tm_p.h" |
| #include "flags.h" |
| #include "real.h" |
| #include "regs.h" |
| #include "function.h" |
| #include "df.h" |
| #include "tree.h" |
| |
| /* Information about a subreg of a hard register. */ |
| struct subreg_info |
| { |
| /* Offset of first hard register involved in the subreg. */ |
| int offset; |
| /* Number of hard registers involved in the subreg. */ |
| int nregs; |
| /* Whether this subreg can be represented as a hard reg with the new |
| mode. */ |
| bool representable_p; |
| }; |
| |
| /* Forward declarations */ |
| static void set_of_1 (rtx, const_rtx, void *); |
| static bool covers_regno_p (const_rtx, unsigned int); |
| static bool covers_regno_no_parallel_p (const_rtx, unsigned int); |
| static int rtx_referenced_p_1 (rtx *, void *); |
| static int computed_jump_p_1 (const_rtx); |
| static void parms_set (rtx, const_rtx, void *); |
| static void subreg_get_info (unsigned int, enum machine_mode, |
| unsigned int, enum machine_mode, |
| struct subreg_info *); |
| |
| static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode, |
| const_rtx, enum machine_mode, |
| unsigned HOST_WIDE_INT); |
| static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode, |
| const_rtx, enum machine_mode, |
| unsigned HOST_WIDE_INT); |
| static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx, |
| enum machine_mode, |
| unsigned int); |
| static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx, |
| enum machine_mode, unsigned int); |
| |
| /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or |
| -1 if a code has no such operand. */ |
| static int non_rtx_starting_operands[NUM_RTX_CODE]; |
| |
| /* Bit flags that specify the machine subtype we are compiling for. |
| Bits are tested using macros TARGET_... defined in the tm.h file |
| and set by `-m...' switches. Must be defined in rtlanal.c. */ |
| |
| int target_flags; |
| |
| /* Truncation narrows the mode from SOURCE mode to DESTINATION mode. |
| If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is |
| SIGN_EXTEND then while narrowing we also have to enforce the |
| representation and sign-extend the value to mode DESTINATION_REP. |
| |
| If the value is already sign-extended to DESTINATION_REP mode we |
| can just switch to DESTINATION mode on it. For each pair of |
| integral modes SOURCE and DESTINATION, when truncating from SOURCE |
| to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION] |
| contains the number of high-order bits in SOURCE that have to be |
| copies of the sign-bit so that we can do this mode-switch to |
| DESTINATION. */ |
| |
| static unsigned int |
| num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1]; |
| |
| /* Return 1 if the value of X is unstable |
| (would be different at a different point in the program). |
| The frame pointer, arg pointer, etc. are considered stable |
| (within one function) and so is anything marked `unchanging'. */ |
| |
| int |
| rtx_unstable_p (const_rtx x) |
| { |
| const RTX_CODE code = GET_CODE (x); |
| int i; |
| const char *fmt; |
| |
| switch (code) |
| { |
| case MEM: |
| return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0)); |
| |
| case CONST: |
| case CONST_INT: |
| case CONST_DOUBLE: |
| case CONST_FIXED: |
| case CONST_VECTOR: |
| case SYMBOL_REF: |
| case LABEL_REF: |
| return 0; |
| |
| case REG: |
| /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */ |
| if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx |
| /* The arg pointer varies if it is not a fixed register. */ |
| || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])) |
| return 0; |
| #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED |
| /* ??? When call-clobbered, the value is stable modulo the restore |
| that must happen after a call. This currently screws up local-alloc |
| into believing that the restore is not needed. */ |
| if (x == pic_offset_table_rtx) |
| return 0; |
| #endif |
| return 1; |
| |
| case ASM_OPERANDS: |
| if (MEM_VOLATILE_P (x)) |
| return 1; |
| |
| /* Fall through. */ |
| |
| default: |
| break; |
| } |
| |
| fmt = GET_RTX_FORMAT (code); |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| if (fmt[i] == 'e') |
| { |
| if (rtx_unstable_p (XEXP (x, i))) |
| return 1; |
| } |
| else if (fmt[i] == 'E') |
| { |
| int j; |
| for (j = 0; j < XVECLEN (x, i); j++) |
| if (rtx_unstable_p (XVECEXP (x, i, j))) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Return 1 if X has a value that can vary even between two |
| executions of the program. 0 means X can be compared reliably |
| against certain constants or near-constants. |
| FOR_ALIAS is nonzero if we are called from alias analysis; if it is |
| zero, we are slightly more conservative. |
| The frame pointer and the arg pointer are considered constant. */ |
| |
| bool |
| rtx_varies_p (const_rtx x, bool for_alias) |
| { |
| RTX_CODE code; |
| int i; |
| const char *fmt; |
| |
| if (!x) |
| return 0; |
| |
| code = GET_CODE (x); |
| switch (code) |
| { |
| case MEM: |
| return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias); |
| |
| case CONST: |
| case CONST_INT: |
| case CONST_DOUBLE: |
| case CONST_FIXED: |
| case CONST_VECTOR: |
| case SYMBOL_REF: |
| case LABEL_REF: |
| return 0; |
| |
| case REG: |
| /* Note that we have to test for the actual rtx used for the frame |
| and arg pointers and not just the register number in case we have |
| eliminated the frame and/or arg pointer and are using it |
| for pseudos. */ |
| if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx |
| /* The arg pointer varies if it is not a fixed register. */ |
| || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])) |
| return 0; |
| if (x == pic_offset_table_rtx |
| #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED |
| /* ??? When call-clobbered, the value is stable modulo the restore |
| that must happen after a call. This currently screws up |
| local-alloc into believing that the restore is not needed, so we |
| must return 0 only if we are called from alias analysis. */ |
| && for_alias |
| #endif |
| ) |
| return 0; |
| return 1; |
| |
| case LO_SUM: |
| /* The operand 0 of a LO_SUM is considered constant |
| (in fact it is related specifically to operand 1) |
| during alias analysis. */ |
| return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias)) |
| || rtx_varies_p (XEXP (x, 1), for_alias); |
| |
| case ASM_OPERANDS: |
| if (MEM_VOLATILE_P (x)) |
| return 1; |
| |
| /* Fall through. */ |
| |
| default: |
| break; |
| } |
| |
| fmt = GET_RTX_FORMAT (code); |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| if (fmt[i] == 'e') |
| { |
| if (rtx_varies_p (XEXP (x, i), for_alias)) |
| return 1; |
| } |
| else if (fmt[i] == 'E') |
| { |
| int j; |
| for (j = 0; j < XVECLEN (x, i); j++) |
| if (rtx_varies_p (XVECEXP (x, i, j), for_alias)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Return nonzero if the use of X as an address in a MEM can cause a trap. |
| MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls |
| whether nonzero is returned for unaligned memory accesses on strict |
| alignment machines. */ |
| |
| static int |
| rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size, |
| enum machine_mode mode, bool unaligned_mems) |
| { |
| enum rtx_code code = GET_CODE (x); |
| |
| if (STRICT_ALIGNMENT |
| && unaligned_mems |
| && GET_MODE_SIZE (mode) != 0) |
| { |
| HOST_WIDE_INT actual_offset = offset; |
| #ifdef SPARC_STACK_BOUNDARY_HACK |
| /* ??? The SPARC port may claim a STACK_BOUNDARY higher than |
| the real alignment of %sp. However, when it does this, the |
| alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */ |
| if (SPARC_STACK_BOUNDARY_HACK |
| && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx)) |
| actual_offset -= STACK_POINTER_OFFSET; |
| #endif |
| |
| if (actual_offset % GET_MODE_SIZE (mode) != 0) |
| return 1; |
| } |
| |
| switch (code) |
| { |
| case SYMBOL_REF: |
| if (SYMBOL_REF_WEAK (x)) |
| return 1; |
| if (!CONSTANT_POOL_ADDRESS_P (x)) |
| { |
| tree decl; |
| HOST_WIDE_INT decl_size; |
| |
| if (offset < 0) |
| return 1; |
| if (size == 0) |
| size = GET_MODE_SIZE (mode); |
| if (size == 0) |
| return offset != 0; |
| |
| /* If the size of the access or of the symbol is unknown, |
| assume the worst. */ |
| decl = SYMBOL_REF_DECL (x); |
| |
| /* Else check that the access is in bounds. TODO: restructure |
| expr_size/lhd_expr_size/int_expr_size and just use the latter. */ |
| if (!decl) |
| decl_size = -1; |
| else if (DECL_P (decl) && DECL_SIZE_UNIT (decl)) |
| decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0) |
| ? tree_low_cst (DECL_SIZE_UNIT (decl), 0) |
| : -1); |
| else if (TREE_CODE (decl) == STRING_CST) |
| decl_size = TREE_STRING_LENGTH (decl); |
| else if (TYPE_SIZE_UNIT (TREE_TYPE (decl))) |
| decl_size = int_size_in_bytes (TREE_TYPE (decl)); |
| else |
| decl_size = -1; |
| |
| return (decl_size <= 0 ? offset != 0 : offset + size > decl_size); |
| } |
| |
| return 0; |
| |
| case LABEL_REF: |
| return 0; |
| |
| case REG: |
| /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */ |
| if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx |
| || x == stack_pointer_rtx |
| /* The arg pointer varies if it is not a fixed register. */ |
| || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])) |
| return 0; |
| /* All of the virtual frame registers are stack references. */ |
| if (REGNO (x) >= FIRST_VIRTUAL_REGISTER |
| && REGNO (x) <= LAST_VIRTUAL_REGISTER) |
| return 0; |
| return 1; |
| |
| case CONST: |
| return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size, |
| mode, unaligned_mems); |
| |
| case PLUS: |
| /* An address is assumed not to trap if: |
| - it is the pic register plus a constant. */ |
| if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1))) |
| return 0; |
| |
| /* - or it is an address that can't trap plus a constant integer, |
| with the proper remainder modulo the mode size if we are |
| considering unaligned memory references. */ |
| if (GET_CODE (XEXP (x, 1)) == CONST_INT |
| && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)), |
| size, mode, unaligned_mems)) |
| return 0; |
| |
| return 1; |
| |
| case LO_SUM: |
| case PRE_MODIFY: |
| return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size, |
| mode, unaligned_mems); |
| |
| case PRE_DEC: |
| case PRE_INC: |
| case POST_DEC: |
| case POST_INC: |
| case POST_MODIFY: |
| return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size, |
| mode, unaligned_mems); |
| |
| default: |
| break; |
| } |
| |
| /* If it isn't one of the case above, it can cause a trap. */ |
| return 1; |
| } |
| |
| /* Return nonzero if the use of X as an address in a MEM can cause a trap. */ |
| |
| int |
| rtx_addr_can_trap_p (const_rtx x) |
| { |
| return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false); |
| } |
| |
| /* Return true if X is an address that is known to not be zero. */ |
| |
| bool |
| nonzero_address_p (const_rtx x) |
| { |
| const enum rtx_code code = GET_CODE (x); |
| |
| switch (code) |
| { |
| case SYMBOL_REF: |
| return !SYMBOL_REF_WEAK (x); |
| |
| case LABEL_REF: |
| return true; |
| |
| case REG: |
| /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */ |
| if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx |
| || x == stack_pointer_rtx |
| || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])) |
| return true; |
| /* All of the virtual frame registers are stack references. */ |
| if (REGNO (x) >= FIRST_VIRTUAL_REGISTER |
| && REGNO (x) <= LAST_VIRTUAL_REGISTER) |
| return true; |
| return false; |
| |
| case CONST: |
| return nonzero_address_p (XEXP (x, 0)); |
| |
| case PLUS: |
| if (GET_CODE (XEXP (x, 1)) == CONST_INT) |
| return nonzero_address_p (XEXP (x, 0)); |
| /* Handle PIC references. */ |
| else if (XEXP (x, 0) == pic_offset_table_rtx |
| && CONSTANT_P (XEXP (x, 1))) |
| return true; |
| return false; |
| |
| case PRE_MODIFY: |
| /* Similar to the above; allow positive offsets. Further, since |
| auto-inc is only allowed in memories, the register must be a |
| pointer. */ |
| if (GET_CODE (XEXP (x, 1)) == CONST_INT |
| && INTVAL (XEXP (x, 1)) > 0) |
| return true; |
| return nonzero_address_p (XEXP (x, 0)); |
| |
| case PRE_INC: |
| /* Similarly. Further, the offset is always positive. */ |
| return true; |
| |
| case PRE_DEC: |
| case POST_DEC: |
| case POST_INC: |
| case POST_MODIFY: |
| return nonzero_address_p (XEXP (x, 0)); |
| |
| case LO_SUM: |
| return nonzero_address_p (XEXP (x, 1)); |
| |
| default: |
| break; |
| } |
| |
| /* If it isn't one of the case above, might be zero. */ |
| return false; |
| } |
| |
| /* Return 1 if X refers to a memory location whose address |
| cannot be compared reliably with constant addresses, |
| or if X refers to a BLKmode memory object. |
| FOR_ALIAS is nonzero if we are called from alias analysis; if it is |
| zero, we are slightly more conservative. */ |
| |
| bool |
| rtx_addr_varies_p (const_rtx x, bool for_alias) |
| { |
| enum rtx_code code; |
| int i; |
| const char *fmt; |
| |
| if (x == 0) |
| return 0; |
| |
| code = GET_CODE (x); |
| if (code == MEM) |
| return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias); |
| |
| fmt = GET_RTX_FORMAT (code); |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| if (fmt[i] == 'e') |
| { |
| if (rtx_addr_varies_p (XEXP (x, i), for_alias)) |
| return 1; |
| } |
| else if (fmt[i] == 'E') |
| { |
| int j; |
| for (j = 0; j < XVECLEN (x, i); j++) |
| if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Return the value of the integer term in X, if one is apparent; |
| otherwise return 0. |
| Only obvious integer terms are detected. |
| This is used in cse.c with the `related_value' field. */ |
| |
| HOST_WIDE_INT |
| get_integer_term (const_rtx x) |
| { |
| if (GET_CODE (x) == CONST) |
| x = XEXP (x, 0); |
| |
| if (GET_CODE (x) == MINUS |
| && GET_CODE (XEXP (x, 1)) == CONST_INT) |
| return - INTVAL (XEXP (x, 1)); |
| if (GET_CODE (x) == PLUS |
| && GET_CODE (XEXP (x, 1)) == CONST_INT) |
| return INTVAL (XEXP (x, 1)); |
| return 0; |
| } |
| |
| /* If X is a constant, return the value sans apparent integer term; |
| otherwise return 0. |
| Only obvious integer terms are detected. */ |
| |
| rtx |
| get_related_value (const_rtx x) |
| { |
| if (GET_CODE (x) != CONST) |
| return 0; |
| x = XEXP (x, 0); |
| if (GET_CODE (x) == PLUS |
| && GET_CODE (XEXP (x, 1)) == CONST_INT) |
| return XEXP (x, 0); |
| else if (GET_CODE (x) == MINUS |
| && GET_CODE (XEXP (x, 1)) == CONST_INT) |
| return XEXP (x, 0); |
| return 0; |
| } |
| |
| /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points |
| to somewhere in the same object or object_block as SYMBOL. */ |
| |
| bool |
| offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset) |
| { |
| tree decl; |
| |
| if (GET_CODE (symbol) != SYMBOL_REF) |
| return false; |
| |
| if (offset == 0) |
| return true; |
| |
| if (offset > 0) |
| { |
| if (CONSTANT_POOL_ADDRESS_P (symbol) |
| && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol))) |
| return true; |
| |
| decl = SYMBOL_REF_DECL (symbol); |
| if (decl && offset < int_size_in_bytes (TREE_TYPE (decl))) |
| return true; |
| } |
| |
| if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol) |
| && SYMBOL_REF_BLOCK (symbol) |
| && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0 |
| && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol) |
| < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size)) |
| return true; |
| |
| return false; |
| } |
| |
| /* Split X into a base and a constant offset, storing them in *BASE_OUT |
| and *OFFSET_OUT respectively. */ |
| |
| void |
| split_const (rtx x, rtx *base_out, rtx *offset_out) |
| { |
| if (GET_CODE (x) == CONST) |
| { |
| x = XEXP (x, 0); |
| if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT) |
| { |
| *base_out = XEXP (x, 0); |
| *offset_out = XEXP (x, 1); |
| return; |
| } |
| } |
| *base_out = x; |
| *offset_out = const0_rtx; |
| } |
| |
| /* Return the number of places FIND appears within X. If COUNT_DEST is |
| zero, we do not count occurrences inside the destination of a SET. */ |
| |
| int |
| count_occurrences (const_rtx x, const_rtx find, int count_dest) |
| { |
| int i, j; |
| enum rtx_code code; |
| const char *format_ptr; |
| int count; |
| |
| if (x == find) |
| return 1; |
| |
| code = GET_CODE (x); |
| |
| switch (code) |
| { |
| case REG: |
| case CONST_INT: |
| case CONST_DOUBLE: |
| case CONST_FIXED: |
| case CONST_VECTOR: |
| case SYMBOL_REF: |
| case CODE_LABEL: |
| case PC: |
| case CC0: |
| return 0; |
| |
| case EXPR_LIST: |
| count = count_occurrences (XEXP (x, 0), find, count_dest); |
| if (XEXP (x, 1)) |
| count += count_occurrences (XEXP (x, 1), find, count_dest); |
| return count; |
| |
| case MEM: |
| if (MEM_P (find) && rtx_equal_p (x, find)) |
| return 1; |
| break; |
| |
| case SET: |
| if (SET_DEST (x) == find && ! count_dest) |
| return count_occurrences (SET_SRC (x), find, count_dest); |
| break; |
| |
| default: |
| break; |
| } |
| |
| format_ptr = GET_RTX_FORMAT (code); |
| count = 0; |
| |
| for (i = 0; i < GET_RTX_LENGTH (code); i++) |
| { |
| switch (*format_ptr++) |
| { |
| case 'e': |
| count += count_occurrences (XEXP (x, i), find, count_dest); |
| break; |
| |
| case 'E': |
| for (j = 0; j < XVECLEN (x, i); j++) |
| count += count_occurrences (XVECEXP (x, i, j), find, count_dest); |
| break; |
| } |
| } |
| return count; |
| } |
| |
| |
| /* Nonzero if register REG appears somewhere within IN. |
| Also works if REG is not a register; in this case it checks |
| for a subexpression of IN that is Lisp "equal" to REG. */ |
| |
| int |
| reg_mentioned_p (const_rtx reg, const_rtx in) |
| { |
| const char *fmt; |
| int i; |
| enum rtx_code code; |
| |
| if (in == 0) |
| return 0; |
| |
| if (reg == in) |
| return 1; |
| |
| if (GET_CODE (in) == LABEL_REF) |
| return reg == XEXP (in, 0); |
| |
| code = GET_CODE (in); |
| |
| switch (code) |
| { |
| /* Compare registers by number. */ |
| case REG: |
| return REG_P (reg) && REGNO (in) == REGNO (reg); |
| |
| /* These codes have no constituent expressions |
| and are unique. */ |
| case SCRATCH: |
| case CC0: |
| case PC: |
| return 0; |
| |
| case CONST_INT: |
| case CONST_VECTOR: |
| case CONST_DOUBLE: |
| case CONST_FIXED: |
| /* These are kept unique for a given value. */ |
| return 0; |
| |
| default: |
| break; |
| } |
| |
| if (GET_CODE (reg) == code && rtx_equal_p (reg, in)) |
| return 1; |
| |
| fmt = GET_RTX_FORMAT (code); |
| |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'E') |
| { |
| int j; |
| for (j = XVECLEN (in, i) - 1; j >= 0; j--) |
| if (reg_mentioned_p (reg, XVECEXP (in, i, j))) |
| return 1; |
| } |
| else if (fmt[i] == 'e' |
| && reg_mentioned_p (reg, XEXP (in, i))) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Return 1 if in between BEG and END, exclusive of BEG and END, there is |
| no CODE_LABEL insn. */ |
| |
| int |
| no_labels_between_p (const_rtx beg, const_rtx end) |
| { |
| rtx p; |
| if (beg == end) |
| return 0; |
| for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p)) |
| if (LABEL_P (p)) |
| return 0; |
| return 1; |
| } |
| |
| /* Nonzero if register REG is used in an insn between |
| FROM_INSN and TO_INSN (exclusive of those two). */ |
| |
| int |
| reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn) |
| { |
| rtx insn; |
| |
| if (from_insn == to_insn) |
| return 0; |
| |
| for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn)) |
| if (INSN_P (insn) |
| && (reg_overlap_mentioned_p (reg, PATTERN (insn)) |
| || (CALL_P (insn) && find_reg_fusage (insn, USE, reg)))) |
| return 1; |
| return 0; |
| } |
| |
| /* Nonzero if the old value of X, a register, is referenced in BODY. If X |
| is entirely replaced by a new value and the only use is as a SET_DEST, |
| we do not consider it a reference. */ |
| |
| int |
| reg_referenced_p (const_rtx x, const_rtx body) |
| { |
| int i; |
| |
| switch (GET_CODE (body)) |
| { |
| case SET: |
| if (reg_overlap_mentioned_p (x, SET_SRC (body))) |
| return 1; |
| |
| /* If the destination is anything other than CC0, PC, a REG or a SUBREG |
| of a REG that occupies all of the REG, the insn references X if |
| it is mentioned in the destination. */ |
| if (GET_CODE (SET_DEST (body)) != CC0 |
| && GET_CODE (SET_DEST (body)) != PC |
| && !REG_P (SET_DEST (body)) |
| && ! (GET_CODE (SET_DEST (body)) == SUBREG |
| && REG_P (SUBREG_REG (SET_DEST (body))) |
| && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body)))) |
| + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD) |
| == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body))) |
| + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))) |
| && reg_overlap_mentioned_p (x, SET_DEST (body))) |
| return 1; |
| return 0; |
| |
| case ASM_OPERANDS: |
| for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--) |
| if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i))) |
| return 1; |
| return 0; |
| |
| case CALL: |
| case USE: |
| case IF_THEN_ELSE: |
| return reg_overlap_mentioned_p (x, body); |
| |
| case TRAP_IF: |
| return reg_overlap_mentioned_p (x, TRAP_CONDITION (body)); |
| |
| case PREFETCH: |
| return reg_overlap_mentioned_p (x, XEXP (body, 0)); |
| |
| case UNSPEC: |
| case UNSPEC_VOLATILE: |
| for (i = XVECLEN (body, 0) - 1; i >= 0; i--) |
| if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i))) |
| return 1; |
| return 0; |
| |
| case PARALLEL: |
| for (i = XVECLEN (body, 0) - 1; i >= 0; i--) |
| if (reg_referenced_p (x, XVECEXP (body, 0, i))) |
| return 1; |
| return 0; |
| |
| case CLOBBER: |
| if (MEM_P (XEXP (body, 0))) |
| if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0))) |
| return 1; |
| return 0; |
| |
| case COND_EXEC: |
| if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body))) |
| return 1; |
| return reg_referenced_p (x, COND_EXEC_CODE (body)); |
| |
| default: |
| return 0; |
| } |
| } |
| |
| /* Nonzero if register REG is set or clobbered in an insn between |
| FROM_INSN and TO_INSN (exclusive of those two). */ |
| |
| int |
| reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn) |
| { |
| const_rtx insn; |
| |
| if (from_insn == to_insn) |
| return 0; |
| |
| for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn)) |
| if (INSN_P (insn) && reg_set_p (reg, insn)) |
| return 1; |
| return 0; |
| } |
| |
| /* Internals of reg_set_between_p. */ |
| int |
| reg_set_p (const_rtx reg, const_rtx insn) |
| { |
| /* We can be passed an insn or part of one. If we are passed an insn, |
| check if a side-effect of the insn clobbers REG. */ |
| if (INSN_P (insn) |
| && (FIND_REG_INC_NOTE (insn, reg) |
| || (CALL_P (insn) |
| && ((REG_P (reg) |
| && REGNO (reg) < FIRST_PSEUDO_REGISTER |
| && overlaps_hard_reg_set_p (regs_invalidated_by_call, |
| GET_MODE (reg), REGNO (reg))) |
| || MEM_P (reg) |
| || find_reg_fusage (insn, CLOBBER, reg))))) |
| return 1; |
| |
| return set_of (reg, insn) != NULL_RTX; |
| } |
| |
| /* Similar to reg_set_between_p, but check all registers in X. Return 0 |
| only if none of them are modified between START and END. Return 1 if |
| X contains a MEM; this routine does use memory aliasing. */ |
| |
| int |
| modified_between_p (const_rtx x, const_rtx start, const_rtx end) |
| { |
| const enum rtx_code code = GET_CODE (x); |
| const char *fmt; |
| int i, j; |
| rtx insn; |
| |
| if (start == end) |
| return 0; |
| |
| switch (code) |
| { |
| case CONST_INT: |
| case CONST_DOUBLE: |
| case CONST_FIXED: |
| case CONST_VECTOR: |
| case CONST: |
| case SYMBOL_REF: |
| case LABEL_REF: |
| return 0; |
| |
| case PC: |
| case CC0: |
| return 1; |
| |
| case MEM: |
| if (modified_between_p (XEXP (x, 0), start, end)) |
| return 1; |
| if (MEM_READONLY_P (x)) |
| return 0; |
| for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn)) |
| if (memory_modified_in_insn_p (x, insn)) |
| return 1; |
| return 0; |
| break; |
| |
| case REG: |
| return reg_set_between_p (x, start, end); |
| |
| default: |
| break; |
| } |
| |
| fmt = GET_RTX_FORMAT (code); |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end)) |
| return 1; |
| |
| else if (fmt[i] == 'E') |
| for (j = XVECLEN (x, i) - 1; j >= 0; j--) |
| if (modified_between_p (XVECEXP (x, i, j), start, end)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Similar to reg_set_p, but check all registers in X. Return 0 only if none |
| of them are modified in INSN. Return 1 if X contains a MEM; this routine |
| does use memory aliasing. */ |
| |
| int |
| modified_in_p (const_rtx x, const_rtx insn) |
| { |
| const enum rtx_code code = GET_CODE (x); |
| const char *fmt; |
| int i, j; |
| |
| switch (code) |
| { |
| case CONST_INT: |
| case CONST_DOUBLE: |
| case CONST_FIXED: |
| case CONST_VECTOR: |
| case CONST: |
| case SYMBOL_REF: |
| case LABEL_REF: |
| return 0; |
| |
| case PC: |
| case CC0: |
| return 1; |
| |
| case MEM: |
| if (modified_in_p (XEXP (x, 0), insn)) |
| return 1; |
| if (MEM_READONLY_P (x)) |
| return 0; |
| if (memory_modified_in_insn_p (x, insn)) |
| return 1; |
| return 0; |
| break; |
| |
| case REG: |
| return reg_set_p (x, insn); |
| |
| default: |
| break; |
| } |
| |
| fmt = GET_RTX_FORMAT (code); |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn)) |
| return 1; |
| |
| else if (fmt[i] == 'E') |
| for (j = XVECLEN (x, i) - 1; j >= 0; j--) |
| if (modified_in_p (XVECEXP (x, i, j), insn)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Helper function for set_of. */ |
| struct set_of_data |
| { |
| const_rtx found; |
| const_rtx pat; |
| }; |
| |
| static void |
| set_of_1 (rtx x, const_rtx pat, void *data1) |
| { |
| struct set_of_data *const data = (struct set_of_data *) (data1); |
| if (rtx_equal_p (x, data->pat) |
| || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x))) |
| data->found = pat; |
| } |
| |
| /* Give an INSN, return a SET or CLOBBER expression that does modify PAT |
| (either directly or via STRICT_LOW_PART and similar modifiers). */ |
| const_rtx |
| set_of (const_rtx pat, const_rtx insn) |
| { |
| struct set_of_data data; |
| data.found = NULL_RTX; |
| data.pat = pat; |
| note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data); |
| return data.found; |
| } |
| |
| /* Given an INSN, return a SET expression if this insn has only a single SET. |
| It may also have CLOBBERs, USEs, or SET whose output |
| will not be used, which we ignore. */ |
| |
| rtx |
| single_set_2 (const_rtx insn, const_rtx pat) |
| { |
| rtx set = NULL; |
| int set_verified = 1; |
| int i; |
| |
| if (GET_CODE (pat) == PARALLEL) |
| { |
| for (i = 0; i < XVECLEN (pat, 0); i++) |
| { |
| rtx sub = XVECEXP (pat, 0, i); |
| switch (GET_CODE (sub)) |
| { |
| case USE: |
| case CLOBBER: |
| break; |
| |
| case SET: |
| /* We can consider insns having multiple sets, where all |
| but one are dead as single set insns. In common case |
| only single set is present in the pattern so we want |
| to avoid checking for REG_UNUSED notes unless necessary. |
| |
| When we reach set first time, we just expect this is |
| the single set we are looking for and only when more |
| sets are found in the insn, we check them. */ |
| if (!set_verified) |
| { |
| if (find_reg_note (insn, REG_UNUSED, SET_DEST (set)) |
| && !side_effects_p (set)) |
| set = NULL; |
| else |
| set_verified = 1; |
| } |
| if (!set) |
| set = sub, set_verified = 0; |
| else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub)) |
| || side_effects_p (sub)) |
| return NULL_RTX; |
| break; |
| |
| default: |
| return NULL_RTX; |
| } |
| } |
| } |
| return set; |
| } |
| |
| /* Given an INSN, return nonzero if it has more than one SET, else return |
| zero. */ |
| |
| int |
| multiple_sets (const_rtx insn) |
| { |
| int found; |
| int i; |
| |
| /* INSN must be an insn. */ |
| if (! INSN_P (insn)) |
| return 0; |
| |
| /* Only a PARALLEL can have multiple SETs. */ |
| if (GET_CODE (PATTERN (insn)) == PARALLEL) |
| { |
| for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++) |
| if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET) |
| { |
| /* If we have already found a SET, then return now. */ |
| if (found) |
| return 1; |
| else |
| found = 1; |
| } |
| } |
| |
| /* Either zero or one SET. */ |
| return 0; |
| } |
| |
| /* Return nonzero if the destination of SET equals the source |
| and there are no side effects. */ |
| |
| int |
| set_noop_p (const_rtx set) |
| { |
| rtx src = SET_SRC (set); |
| rtx dst = SET_DEST (set); |
| |
| if (dst == pc_rtx && src == pc_rtx) |
| return 1; |
| |
| if (MEM_P (dst) && MEM_P (src)) |
| return rtx_equal_p (dst, src) && !side_effects_p (dst); |
| |
| if (GET_CODE (dst) == ZERO_EXTRACT) |
| return rtx_equal_p (XEXP (dst, 0), src) |
| && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx |
| && !side_effects_p (src); |
| |
| if (GET_CODE (dst) == STRICT_LOW_PART) |
| dst = XEXP (dst, 0); |
| |
| if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG) |
| { |
| if (SUBREG_BYTE (src) != SUBREG_BYTE (dst)) |
| return 0; |
| src = SUBREG_REG (src); |
| dst = SUBREG_REG (dst); |
| } |
| |
| return (REG_P (src) && REG_P (dst) |
| && REGNO (src) == REGNO (dst)); |
| } |
| |
| /* Return nonzero if an insn consists only of SETs, each of which only sets a |
| value to itself. */ |
| |
| int |
| noop_move_p (const_rtx insn) |
| { |
| rtx pat = PATTERN (insn); |
| |
| if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE) |
| return 1; |
| |
| /* Insns carrying these notes are useful later on. */ |
| if (find_reg_note (insn, REG_EQUAL, NULL_RTX)) |
| return 0; |
| |
| if (GET_CODE (pat) == SET && set_noop_p (pat)) |
| return 1; |
| |
| if (GET_CODE (pat) == PARALLEL) |
| { |
| int i; |
| /* If nothing but SETs of registers to themselves, |
| this insn can also be deleted. */ |
| for (i = 0; i < XVECLEN (pat, 0); i++) |
| { |
| rtx tem = XVECEXP (pat, 0, i); |
| |
| if (GET_CODE (tem) == USE |
| || GET_CODE (tem) == CLOBBER) |
| continue; |
| |
| if (GET_CODE (tem) != SET || ! set_noop_p (tem)) |
| return 0; |
| } |
| |
| return 1; |
| } |
| return 0; |
| } |
| |
| |
| /* Return the last thing that X was assigned from before *PINSN. If VALID_TO |
| is not NULL_RTX then verify that the object is not modified up to VALID_TO. |
| If the object was modified, if we hit a partial assignment to X, or hit a |
| CODE_LABEL first, return X. If we found an assignment, update *PINSN to |
| point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to |
| be the src. */ |
| |
| rtx |
| find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg) |
| { |
| rtx p; |
| |
| for (p = PREV_INSN (*pinsn); p && !LABEL_P (p); |
| p = PREV_INSN (p)) |
| if (INSN_P (p)) |
| { |
| rtx set = single_set (p); |
| rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX); |
| |
| if (set && rtx_equal_p (x, SET_DEST (set))) |
| { |
| rtx src = SET_SRC (set); |
| |
| if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST) |
| src = XEXP (note, 0); |
| |
| if ((valid_to == NULL_RTX |
| || ! modified_between_p (src, PREV_INSN (p), valid_to)) |
| /* Reject hard registers because we don't usually want |
| to use them; we'd rather use a pseudo. */ |
| && (! (REG_P (src) |
| && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg)) |
| { |
| *pinsn = p; |
| return src; |
| } |
| } |
| |
| /* If set in non-simple way, we don't have a value. */ |
| if (reg_set_p (x, p)) |
| break; |
| } |
| |
| return x; |
| } |
| |
| /* Return nonzero if register in range [REGNO, ENDREGNO) |
| appears either explicitly or implicitly in X |
| other than being stored into. |
| |
| References contained within the substructure at LOC do not count. |
| LOC may be zero, meaning don't ignore anything. */ |
| |
| int |
| refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x, |
| rtx *loc) |
| { |
| int i; |
| unsigned int x_regno; |
| RTX_CODE code; |
| const char *fmt; |
| |
| repeat: |
| /* The contents of a REG_NONNEG note is always zero, so we must come here |
| upon repeat in case the last REG_NOTE is a REG_NONNEG note. */ |
| if (x == 0) |
| return 0; |
| |
| code = GET_CODE (x); |
| |
| switch (code) |
| { |
| case REG: |
| x_regno = REGNO (x); |
| |
| /* If we modifying the stack, frame, or argument pointer, it will |
| clobber a virtual register. In fact, we could be more precise, |
| but it isn't worth it. */ |
| if ((x_regno == STACK_POINTER_REGNUM |
| #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM |
| || x_regno == ARG_POINTER_REGNUM |
| #endif |
| || x_regno == FRAME_POINTER_REGNUM) |
| && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER) |
| return 1; |
| |
| return endregno > x_regno && regno < END_REGNO (x); |
| |
| case SUBREG: |
| /* If this is a SUBREG of a hard reg, we can see exactly which |
| registers are being modified. Otherwise, handle normally. */ |
| if (REG_P (SUBREG_REG (x)) |
| && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER) |
| { |
| unsigned int inner_regno = subreg_regno (x); |
| unsigned int inner_endregno |
| = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER |
| ? subreg_nregs (x) : 1); |
| |
| return endregno > inner_regno && regno < inner_endregno; |
| } |
| break; |
| |
| case CLOBBER: |
| case SET: |
| if (&SET_DEST (x) != loc |
| /* Note setting a SUBREG counts as referring to the REG it is in for |
| a pseudo but not for hard registers since we can |
| treat each word individually. */ |
| && ((GET_CODE (SET_DEST (x)) == SUBREG |
| && loc != &SUBREG_REG (SET_DEST (x)) |
| && REG_P (SUBREG_REG (SET_DEST (x))) |
| && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER |
| && refers_to_regno_p (regno, endregno, |
| SUBREG_REG (SET_DEST (x)), loc)) |
| || (!REG_P (SET_DEST (x)) |
| && refers_to_regno_p (regno, endregno, SET_DEST (x), loc)))) |
| return 1; |
| |
| if (code == CLOBBER || loc == &SET_SRC (x)) |
| return 0; |
| x = SET_SRC (x); |
| goto repeat; |
| |
| default: |
| break; |
| } |
| |
| /* X does not match, so try its subexpressions. */ |
| |
| fmt = GET_RTX_FORMAT (code); |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e' && loc != &XEXP (x, i)) |
| { |
| if (i == 0) |
| { |
| x = XEXP (x, 0); |
| goto repeat; |
| } |
| else |
| if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc)) |
| return 1; |
| } |
| else if (fmt[i] == 'E') |
| { |
| int j; |
| for (j = XVECLEN (x, i) - 1; j >= 0; j--) |
| if (loc != &XVECEXP (x, i, j) |
| && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc)) |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG, |
| we check if any register number in X conflicts with the relevant register |
| numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN |
| contains a MEM (we don't bother checking for memory addresses that can't |
| conflict because we expect this to be a rare case. */ |
| |
| int |
| reg_overlap_mentioned_p (const_rtx x, const_rtx in) |
| { |
| unsigned int regno, endregno; |
| |
| /* If either argument is a constant, then modifying X can not |
| affect IN. Here we look at IN, we can profitably combine |
| CONSTANT_P (x) with the switch statement below. */ |
| if (CONSTANT_P (in)) |
| return 0; |
| |
| recurse: |
| switch (GET_CODE (x)) |
| { |
| case STRICT_LOW_PART: |
| case ZERO_EXTRACT: |
| case SIGN_EXTRACT: |
| /* Overly conservative. */ |
| x = XEXP (x, 0); |
| goto recurse; |
| |
| case SUBREG: |
| regno = REGNO (SUBREG_REG (x)); |
| if (regno < FIRST_PSEUDO_REGISTER) |
| regno = subreg_regno (x); |
| endregno = regno + (regno < FIRST_PSEUDO_REGISTER |
| ? subreg_nregs (x) : 1); |
| goto do_reg; |
| |
| case REG: |
| regno = REGNO (x); |
| endregno = END_REGNO (x); |
| do_reg: |
| return refers_to_regno_p (regno, endregno, in, (rtx*) 0); |
| |
| case MEM: |
| { |
| const char *fmt; |
| int i; |
| |
| if (MEM_P (in)) |
| return 1; |
| |
| fmt = GET_RTX_FORMAT (GET_CODE (in)); |
| for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--) |
| if (fmt[i] == 'e') |
| { |
| if (reg_overlap_mentioned_p (x, XEXP (in, i))) |
| return 1; |
| } |
| else if (fmt[i] == 'E') |
| { |
| int j; |
| for (j = XVECLEN (in, i) - 1; j >= 0; --j) |
| if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j))) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| case SCRATCH: |
| case PC: |
| case CC0: |
| return reg_mentioned_p (x, in); |
| |
| case PARALLEL: |
| { |
| int i; |
| |
| /* If any register in here refers to it we return true. */ |
| for (i = XVECLEN (x, 0) - 1; i >= 0; i--) |
| if (XEXP (XVECEXP (x, 0, i), 0) != 0 |
| && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in)) |
| return 1; |
| return 0; |
| } |
| |
| default: |
| gcc_assert (CONSTANT_P (x)); |
| return 0; |
| } |
| } |
| |
| /* Call FUN on each register or MEM that is stored into or clobbered by X. |
| (X would be the pattern of an insn). DATA is an arbitrary pointer, |
| ignored by note_stores, but passed to FUN. |
| |
| FUN receives three arguments: |
| 1. the REG, MEM, CC0 or PC being stored in or clobbered, |
| 2. the SET or CLOBBER rtx that does the store, |
| 3. the pointer DATA provided to note_stores. |
| |
| If the item being stored in or clobbered is a SUBREG of a hard register, |
| the SUBREG will be passed. */ |
| |
| void |
| note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data) |
| { |
| int i; |
| |
| if (GET_CODE (x) == COND_EXEC) |
| x = COND_EXEC_CODE (x); |
| |
| if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER) |
| { |
| rtx dest = SET_DEST (x); |
| |
| while ((GET_CODE (dest) == SUBREG |
| && (!REG_P (SUBREG_REG (dest)) |
| || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER)) |
| || GET_CODE (dest) == ZERO_EXTRACT |
| || GET_CODE (dest) == STRICT_LOW_PART) |
| dest = XEXP (dest, 0); |
| |
| /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions, |
| each of whose first operand is a register. */ |
| if (GET_CODE (dest) == PARALLEL) |
| { |
| for (i = XVECLEN (dest, 0) - 1; i >= 0; i--) |
| if (XEXP (XVECEXP (dest, 0, i), 0) != 0) |
| (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data); |
| } |
| else |
| (*fun) (dest, x, data); |
| } |
| |
| else if (GET_CODE (x) == PARALLEL) |
| for (i = XVECLEN (x, 0) - 1; i >= 0; i--) |
| note_stores (XVECEXP (x, 0, i), fun, data); |
| } |
| |
| /* Like notes_stores, but call FUN for each expression that is being |
| referenced in PBODY, a pointer to the PATTERN of an insn. We only call |
| FUN for each expression, not any interior subexpressions. FUN receives a |
| pointer to the expression and the DATA passed to this function. |
| |
| Note that this is not quite the same test as that done in reg_referenced_p |
| since that considers something as being referenced if it is being |
| partially set, while we do not. */ |
| |
| void |
| note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data) |
| { |
| rtx body = *pbody; |
| int i; |
| |
| switch (GET_CODE (body)) |
| { |
| case COND_EXEC: |
| (*fun) (&COND_EXEC_TEST (body), data); |
| note_uses (&COND_EXEC_CODE (body), fun, data); |
| return; |
| |
| case PARALLEL: |
| for (i = XVECLEN (body, 0) - 1; i >= 0; i--) |
| note_uses (&XVECEXP (body, 0, i), fun, data); |
| return; |
| |
| case SEQUENCE: |
| for (i = XVECLEN (body, 0) - 1; i >= 0; i--) |
| note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data); |
| return; |
| |
| case USE: |
| (*fun) (&XEXP (body, 0), data); |
| return; |
| |
| case ASM_OPERANDS: |
| for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--) |
| (*fun) (&ASM_OPERANDS_INPUT (body, i), data); |
| return; |
| |
| case TRAP_IF: |
| (*fun) (&TRAP_CONDITION (body), data); |
| return; |
| |
| case PREFETCH: |
| (*fun) (&XEXP (body, 0), data); |
| return; |
| |
| case UNSPEC: |
| case UNSPEC_VOLATILE: |
| for (i = XVECLEN (body, 0) - 1; i >= 0; i--) |
| (*fun) (&XVECEXP (body, 0, i), data); |
| return; |
| |
| case CLOBBER: |
| if (MEM_P (XEXP (body, 0))) |
| (*fun) (&XEXP (XEXP (body, 0), 0), data); |
| return; |
| |
| case SET: |
| { |
| rtx dest = SET_DEST (body); |
| |
| /* For sets we replace everything in source plus registers in memory |
| expression in store and operands of a ZERO_EXTRACT. */ |
| (*fun) (&SET_SRC (body), data); |
| |
| if (GET_CODE (dest) == ZERO_EXTRACT) |
| { |
| (*fun) (&XEXP (dest, 1), data); |
| (*fun) (&XEXP (dest, 2), data); |
| } |
| |
| while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART) |
| dest = XEXP (dest, 0); |
| |
| if (MEM_P (dest)) |
| (*fun) (&XEXP (dest, 0), data); |
| } |
| return; |
| |
| default: |
| /* All the other possibilities never store. */ |
| (*fun) (pbody, data); |
| return; |
| } |
| } |
| |
| /* Return nonzero if X's old contents don't survive after INSN. |
| This will be true if X is (cc0) or if X is a register and |
| X dies in INSN or because INSN entirely sets X. |
| |
| "Entirely set" means set directly and not through a SUBREG, or |
| ZERO_EXTRACT, so no trace of the old contents remains. |
| Likewise, REG_INC does not count. |
| |
| REG may be a hard or pseudo reg. Renumbering is not taken into account, |
| but for this use that makes no difference, since regs don't overlap |
| during their lifetimes. Therefore, this function may be used |
| at any time after deaths have been computed. |
| |
| If REG is a hard reg that occupies multiple machine registers, this |
| function will only return 1 if each of those registers will be replaced |
| by INSN. */ |
| |
| int |
| dead_or_set_p (const_rtx insn, const_rtx x) |
| { |
| unsigned int regno, end_regno; |
| unsigned int i; |
| |
| /* Can't use cc0_rtx below since this file is used by genattrtab.c. */ |
| if (GET_CODE (x) == CC0) |
| return 1; |
| |
| gcc_assert (REG_P (x)); |
| |
| regno = REGNO (x); |
| end_regno = END_REGNO (x); |
| for (i = regno; i < end_regno; i++) |
| if (! dead_or_set_regno_p (insn, i)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Return TRUE iff DEST is a register or subreg of a register and |
| doesn't change the number of words of the inner register, and any |
| part of the register is TEST_REGNO. */ |
| |
| static bool |
| covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno) |
| { |
| unsigned int regno, endregno; |
| |
| if (GET_CODE (dest) == SUBREG |
| && (((GET_MODE_SIZE (GET_MODE (dest)) |
| + UNITS_PER_WORD - 1) / UNITS_PER_WORD) |
| == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) |
| + UNITS_PER_WORD - 1) / UNITS_PER_WORD))) |
| dest = SUBREG_REG (dest); |
| |
| if (!REG_P (dest)) |
| return false; |
| |
| regno = REGNO (dest); |
| endregno = END_REGNO (dest); |
| return (test_regno >= regno && test_regno < endregno); |
| } |
| |
| /* Like covers_regno_no_parallel_p, but also handles PARALLELs where |
| any member matches the covers_regno_no_parallel_p criteria. */ |
| |
| static bool |
| covers_regno_p (const_rtx dest, unsigned int test_regno) |
| { |
| if (GET_CODE (dest) == PARALLEL) |
| { |
| /* Some targets place small structures in registers for return |
| values of functions, and those registers are wrapped in |
| PARALLELs that we may see as the destination of a SET. */ |
| int i; |
| |
| for (i = XVECLEN (dest, 0) - 1; i >= 0; i--) |
| { |
| rtx inner = XEXP (XVECEXP (dest, 0, i), 0); |
| if (inner != NULL_RTX |
| && covers_regno_no_parallel_p (inner, test_regno)) |
| return true; |
| } |
| |
| return false; |
| } |
| else |
| return covers_regno_no_parallel_p (dest, test_regno); |
| } |
| |
| /* Utility function for dead_or_set_p to check an individual register. */ |
| |
| int |
| dead_or_set_regno_p (const_rtx insn, unsigned int test_regno) |
| { |
| const_rtx pattern; |
| |
| /* See if there is a death note for something that includes TEST_REGNO. */ |
| if (find_regno_note (insn, REG_DEAD, test_regno)) |
| return 1; |
| |
| if (CALL_P (insn) |
| && find_regno_fusage (insn, CLOBBER, test_regno)) |
| return 1; |
| |
| pattern = PATTERN (insn); |
| |
| if (GET_CODE (pattern) == COND_EXEC) |
| pattern = COND_EXEC_CODE (pattern); |
| |
| if (GET_CODE (pattern) == SET) |
| return covers_regno_p (SET_DEST (pattern), test_regno); |
| else if (GET_CODE (pattern) == PARALLEL) |
| { |
| int i; |
| |
| for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--) |
| { |
| rtx body = XVECEXP (pattern, 0, i); |
| |
| if (GET_CODE (body) == COND_EXEC) |
| body = COND_EXEC_CODE (body); |
| |
| if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER) |
| && covers_regno_p (SET_DEST (body), test_regno)) |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Return the reg-note of kind KIND in insn INSN, if there is one. |
| If DATUM is nonzero, look for one whose datum is DATUM. */ |
| |
| rtx |
| find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum) |
| { |
| rtx link; |
| |
| gcc_assert (insn); |
| |
| /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */ |
| if (! INSN_P (insn)) |
| return 0; |
| if (datum == 0) |
| { |
| for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) |
| if (REG_NOTE_KIND (link) == kind) |
| return link; |
| return 0; |
| } |
| |
| for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) |
| if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0)) |
| return link; |
| return 0; |
| } |
| |
| /* Return the reg-note of kind KIND in insn INSN which applies to register |
| number REGNO, if any. Return 0 if there is no such reg-note. Note that |
| the REGNO of this NOTE need not be REGNO if REGNO is a hard register; |
| it might be the case that the note overlaps REGNO. */ |
| |
| rtx |
| find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno) |
| { |
| rtx link; |
| |
| /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */ |
| if (! INSN_P (insn)) |
| return 0; |
| |
| for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) |
| if (REG_NOTE_KIND (link) == kind |
| /* Verify that it is a register, so that scratch and MEM won't cause a |
| problem here. */ |
| && REG_P (XEXP (link, 0)) |
| && REGNO (XEXP (link, 0)) <= regno |
| && END_REGNO (XEXP (link, 0)) > regno) |
| return link; |
| return 0; |
| } |
| |
| /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and |
| has such a note. */ |
| |
| rtx |
| find_reg_equal_equiv_note (const_rtx insn) |
| { |
| rtx link; |
| |
| if (!INSN_P (insn)) |
| return 0; |
| |
| for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) |
| if (REG_NOTE_KIND (link) == REG_EQUAL |
| || REG_NOTE_KIND (link) == REG_EQUIV) |
| { |
| /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on |
| insns that have multiple sets. Checking single_set to |
| make sure of this is not the proper check, as explained |
| in the comment in set_unique_reg_note. |
| |
| This should be changed into an assert. */ |
| if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn)) |
| return 0; |
| return link; |
| } |
| return NULL; |
| } |
| |
| /* Check whether INSN is a single_set whose source is known to be |
| equivalent to a constant. Return that constant if so, otherwise |
| return null. */ |
| |
| rtx |
| find_constant_src (const_rtx insn) |
| { |
| rtx note, set, x; |
| |
| set = single_set (insn); |
| if (set) |
| { |
| x = avoid_constant_pool_reference (SET_SRC (set)); |
| if (CONSTANT_P (x)) |
| return x; |
| } |
| |
| note = find_reg_equal_equiv_note (insn); |
| if (note && CONSTANT_P (XEXP (note, 0))) |
| return XEXP (note, 0); |
| |
| return NULL_RTX; |
| } |
| |
| /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found |
| in the CALL_INSN_FUNCTION_USAGE information of INSN. */ |
| |
| int |
| find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum) |
| { |
| /* If it's not a CALL_INSN, it can't possibly have a |
| CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */ |
| if (!CALL_P (insn)) |
| return 0; |
| |
| gcc_assert (datum); |
| |
| if (!REG_P (datum)) |
| { |
| rtx link; |
| |
| for (link = CALL_INSN_FUNCTION_USAGE (insn); |
| link; |
| link = XEXP (link, 1)) |
| if (GET_CODE (XEXP (link, 0)) == code |
| && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0))) |
| return 1; |
| } |
| else |
| { |
| unsigned int regno = REGNO (datum); |
| |
| /* CALL_INSN_FUNCTION_USAGE information cannot contain references |
| to pseudo registers, so don't bother checking. */ |
| |
| if (regno < FIRST_PSEUDO_REGISTER) |
| { |
| unsigned int end_regno = END_HARD_REGNO (datum); |
| unsigned int i; |
| |
| for (i = regno; i < end_regno; i++) |
| if (find_regno_fusage (insn, code, i)) |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found |
| in the CALL_INSN_FUNCTION_USAGE information of INSN. */ |
| |
| int |
| find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno) |
| { |
| rtx link; |
| |
| /* CALL_INSN_FUNCTION_USAGE information cannot contain references |
| to pseudo registers, so don't bother checking. */ |
| |
| if (regno >= FIRST_PSEUDO_REGISTER |
| || !CALL_P (insn) ) |
| return 0; |
| |
| for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1)) |
| { |
| rtx op, reg; |
| |
| if (GET_CODE (op = XEXP (link, 0)) == code |
| && REG_P (reg = XEXP (op, 0)) |
| && REGNO (reg) <= regno |
| && END_HARD_REGNO (reg) > regno) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* Add register note with kind KIND and datum DATUM to INSN. */ |
| |
| void |
| add_reg_note (rtx insn, enum reg_note kind, rtx datum) |
| { |
| rtx note; |
| |
| switch (kind) |
| { |
| case REG_CC_SETTER: |
| case REG_CC_USER: |
| case REG_LABEL_TARGET: |
| case REG_LABEL_OPERAND: |
| /* These types of register notes use an INSN_LIST rather than an |
| EXPR_LIST, so that copying is done right and dumps look |
| better. */ |
| note = alloc_INSN_LIST (datum, REG_NOTES (insn)); |
| PUT_REG_NOTE_KIND (note, kind); |
| break; |
| |
| default: |
| note = alloc_EXPR_LIST (kind, datum, REG_NOTES (insn)); |
| break; |
| } |
| |
| REG_NOTES (insn) = note; |
| } |
| |
| /* Remove register note NOTE from the REG_NOTES of INSN. */ |
| |
| void |
| remove_note (rtx insn, const_rtx note) |
| { |
| rtx link; |
| |
| if (note == NULL_RTX) |
| return; |
| |
| if (REG_NOTES (insn) == note) |
| REG_NOTES (insn) = XEXP (note, 1); |
| else |
| for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) |
| if (XEXP (link, 1) == note) |
| { |
| XEXP (link, 1) = XEXP (note, 1); |
| break; |
| } |
| |
| switch (REG_NOTE_KIND (note)) |
| { |
| case REG_EQUAL: |
| case REG_EQUIV: |
| df_notes_rescan (insn); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */ |
| |
| void |
| remove_reg_equal_equiv_notes (rtx insn) |
| { |
| rtx *loc; |
| |
| loc = ®_NOTES (insn); |
| while (*loc) |
| { |
| enum reg_note kind = REG_NOTE_KIND (*loc); |
| if (kind == REG_EQUAL || kind == REG_EQUIV) |
| *loc = XEXP (*loc, 1); |
| else |
| loc = &XEXP (*loc, 1); |
| } |
| } |
| |
| /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and |
| return 1 if it is found. A simple equality test is used to determine if |
| NODE matches. */ |
| |
| int |
| in_expr_list_p (const_rtx listp, const_rtx node) |
| { |
| const_rtx x; |
| |
| for (x = listp; x; x = XEXP (x, 1)) |
| if (node == XEXP (x, 0)) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and |
| remove that entry from the list if it is found. |
| |
| A simple equality test is used to determine if NODE matches. */ |
| |
| void |
| remove_node_from_expr_list (const_rtx node, rtx *listp) |
| { |
| rtx temp = *listp; |
| rtx prev = NULL_RTX; |
| |
| while (temp) |
| { |
| if (node == XEXP (temp, 0)) |
| { |
| /* Splice the node out of the list. */ |
| if (prev) |
| XEXP (prev, 1) = XEXP (temp, 1); |
| else |
| *listp = XEXP (temp, 1); |
| |
| return; |
| } |
| |
| prev = temp; |
| temp = XEXP (temp, 1); |
| } |
| } |
| |
| /* Nonzero if X contains any volatile instructions. These are instructions |
| which may cause unpredictable machine state instructions, and thus no |
| instructions should be moved or combined across them. This includes |
| only volatile asms and UNSPEC_VOLATILE instructions. */ |
| |
| int |
| volatile_insn_p (const_rtx x) |
| { |
| const RTX_CODE code = GET_CODE (x); |
| switch (code) |
| { |
| case LABEL_REF: |
| case SYMBOL_REF: |
| case CONST_INT: |
| case CONST: |
| case CONST_DOUBLE: |
| case CONST_FIXED: |
| case CONST_VECTOR: |
| case CC0: |
| case PC: |
| case REG: |
| case SCRATCH: |
| case CLOBBER: |
| case ADDR_VEC: |
| case ADDR_DIFF_VEC: |
| case CALL: |
| case MEM: |
| return 0; |
| |
| case UNSPEC_VOLATILE: |
| /* case TRAP_IF: This isn't clear yet. */ |
| return 1; |
| |
| case ASM_INPUT: |
| case ASM_OPERANDS: |
| if (MEM_VOLATILE_P (x)) |
| return 1; |
| |
| default: |
| break; |
| } |
| |
| /* Recursively scan the operands of this expression. */ |
| |
| { |
| const char *const fmt = GET_RTX_FORMAT (code); |
| int i; |
| |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e') |
| { |
| if (volatile_insn_p (XEXP (x, i))) |
| return 1; |
| } |
| else if (fmt[i] == 'E') |
| { |
| int j; |
| for (j = 0; j < XVECLEN (x, i); j++) |
| if (volatile_insn_p (XVECEXP (x, i, j))) |
| return 1; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* Nonzero if X contains any volatile memory references |
| UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */ |
| |
| int |
| volatile_refs_p (const_rtx x) |
| { |
| const RTX_CODE code = GET_CODE (x); |
| switch (code) |
| { |
| case LABEL_REF: |
| case SYMBOL_REF: |
| case CONST_INT: |
| case CONST: |
| case CONST_DOUBLE: |
| case CONST_FIXED: |
| case CONST_VECTOR: |
| case CC0: |
| case PC: |
| case REG: |
| case SCRATCH: |
| case CLOBBER: |
| case ADDR_VEC: |
| case ADDR_DIFF_VEC: |
| return 0; |
| |
| case UNSPEC_VOLATILE: |
| return 1; |
| |
| case MEM: |
| case ASM_INPUT: |
| case ASM_OPERANDS: |
| if (MEM_VOLATILE_P (x)) |
| return 1; |
| |
| default: |
| break; |
| } |
| |
| /* Recursively scan the operands of this expression. */ |
| |
| { |
| const char *const fmt = GET_RTX_FORMAT (code); |
| int i; |
| |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e') |
| { |
| if (volatile_refs_p (XEXP (x, i))) |
| return 1; |
| } |
| else if (fmt[i] == 'E') |
| { |
| int j; |
| for (j = 0; j < XVECLEN (x, i); j++) |
| if (volatile_refs_p (XVECEXP (x, i, j))) |
| return 1; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* Similar to above, except that it also rejects register pre- and post- |
| incrementing. */ |
| |
| int |
| side_effects_p (const_rtx x) |
| { |
| const RTX_CODE code = GET_CODE (x); |
| switch (code) |
| { |
| case LABEL_REF: |
| case SYMBOL_REF: |
| case CONST_INT: |
| case CONST: |
| case CONST_DOUBLE: |
| case CONST_FIXED: |
| case CONST_VECTOR: |
| case CC0: |
| case PC: |
| case REG: |
| case SCRATCH: |
| case ADDR_VEC: |
| case ADDR_DIFF_VEC: |
| return 0; |
| |
| case CLOBBER: |
| /* Reject CLOBBER with a non-VOID mode. These are made by combine.c |
| when some combination can't be done. If we see one, don't think |
| that we can simplify the expression. */ |
| return (GET_MODE (x) != VOIDmode); |
| |
| case PRE_INC: |
| case PRE_DEC: |
| case POST_INC: |
| case POST_DEC: |
| case PRE_MODIFY: |
| case POST_MODIFY: |
| case CALL: |
| case UNSPEC_VOLATILE: |
| /* case TRAP_IF: This isn't clear yet. */ |
| return 1; |
| |
| case MEM: |
| case ASM_INPUT: |
| case ASM_OPERANDS: |
| if (MEM_VOLATILE_P (x)) |
| return 1; |
| |
| default: |
| break; |
| } |
| |
| /* Recursively scan the operands of this expression. */ |
| |
| { |
| const char *fmt = GET_RTX_FORMAT (code); |
| int i; |
| |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e') |
| { |
| if (side_effects_p (XEXP (x, i))) |
| return 1; |
| } |
| else if (fmt[i] == 'E') |
| { |
| int j; |
| for (j = 0; j < XVECLEN (x, i); j++) |
| if (side_effects_p (XVECEXP (x, i, j))) |
| return 1; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* Return nonzero if evaluating rtx X might cause a trap. |
| FLAGS controls how to consider MEMs. A nonzero means the context |
| of the access may have changed from the original, such that the |
| address may have become invalid. */ |
| |
| int |
| may_trap_p_1 (const_rtx x, unsigned flags) |
| { |
| int i; |
| enum rtx_code code; |
| const char *fmt; |
| |
| /* We make no distinction currently, but this function is part of |
| the internal target-hooks ABI so we keep the parameter as |
| "unsigned flags". */ |
| bool code_changed = flags != 0; |
| |
| if (x == 0) |
| return 0; |
| code = GET_CODE (x); |
| switch (code) |
| { |
| /* Handle these cases quickly. */ |
| case CONST_INT: |
| case CONST_DOUBLE: |
| case CONST_FIXED: |
| case CONST_VECTOR: |
| case SYMBOL_REF: |
| case LABEL_REF: |
| case CONST: |
| case PC: |
| case CC0: |
| case REG: |
| case SCRATCH: |
| return 0; |
| |
| case UNSPEC: |
| case UNSPEC_VOLATILE: |
| return targetm.unspec_may_trap_p (x, flags); |
| |
| case ASM_INPUT: |
| case TRAP_IF: |
| return 1; |
| |
| case ASM_OPERANDS: |
| return MEM_VOLATILE_P (x); |
| |
| /* Memory ref can trap unless it's a static var or a stack slot. */ |
| case MEM: |
| if (/* MEM_NOTRAP_P only relates to the actual position of the memory |
| reference; moving it out of context such as when moving code |
| when optimizing, might cause its address to become invalid. */ |
| code_changed |
| || !MEM_NOTRAP_P (x)) |
| { |
| HOST_WIDE_INT size = MEM_SIZE (x) ? INTVAL (MEM_SIZE (x)) : 0; |
| return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size, |
| GET_MODE (x), code_changed); |
| } |
| |
| return 0; |
| |
| /* Division by a non-constant might trap. */ |
| case DIV: |
| case MOD: |
| case UDIV: |
| case UMOD: |
| if (HONOR_SNANS (GET_MODE (x))) |
| return 1; |
| if (SCALAR_FLOAT_MODE_P (GET_MODE (x))) |
| return flag_trapping_math; |
| if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx)) |
| return 1; |
| break; |
| |
| case EXPR_LIST: |
| /* An EXPR_LIST is used to represent a function call. This |
| certainly may trap. */ |
| return 1; |
| |
| case GE: |
| case GT: |
| case LE: |
| case LT: |
| case LTGT: |
| case COMPARE: |
| /* Some floating point comparisons may trap. */ |
| if (!flag_trapping_math) |
| break; |
| /* ??? There is no machine independent way to check for tests that trap |
| when COMPARE is used, though many targets do make this distinction. |
| For instance, sparc uses CCFPE for compares which generate exceptions |
| and CCFP for compares which do not generate exceptions. */ |
| if (HONOR_NANS (GET_MODE (x))) |
| return 1; |
| /* But often the compare has some CC mode, so check operand |
| modes as well. */ |
| if (HONOR_NANS (GET_MODE (XEXP (x, 0))) |
| || HONOR_NANS (GET_MODE (XEXP (x, 1)))) |
| return 1; |
| break; |
| |
| case EQ: |
| case NE: |
| if (HONOR_SNANS (GET_MODE (x))) |
| return 1; |
| /* Often comparison is CC mode, so check operand modes. */ |
| if (HONOR_SNANS (GET_MODE (XEXP (x, 0))) |
| || HONOR_SNANS (GET_MODE (XEXP (x, 1)))) |
| return 1; |
| break; |
| |
| case FIX: |
| /* Conversion of floating point might trap. */ |
| if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0)))) |
| return 1; |
| break; |
| |
| case NEG: |
| case ABS: |
| case SUBREG: |
| /* These operations don't trap even with floating point. */ |
| break; |
| |
| default: |
| /* Any floating arithmetic may trap. */ |
| if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) |
| && flag_trapping_math) |
| return 1; |
| } |
| |
| fmt = GET_RTX_FORMAT (code); |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e') |
| { |
| if (may_trap_p_1 (XEXP (x, i), flags)) |
| return 1; |
| } |
| else if (fmt[i] == 'E') |
| { |
| int j; |
| for (j = 0; j < XVECLEN (x, i); j++) |
| if (may_trap_p_1 (XVECEXP (x, i, j), flags)) |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* Return nonzero if evaluating rtx X might cause a trap. */ |
| |
| int |
| may_trap_p (const_rtx x) |
| { |
| return may_trap_p_1 (x, 0); |
| } |
| |
| /* Same as above, but additionally return nonzero if evaluating rtx X might |
| cause a fault. We define a fault for the purpose of this function as a |
| erroneous execution condition that cannot be encountered during the normal |
| execution of a valid program; the typical example is an unaligned memory |
| access on a strict alignment machine. The compiler guarantees that it |
| doesn't generate code that will fault from a valid program, but this |
| guarantee doesn't mean anything for individual instructions. Consider |
| the following example: |
| |
| struct S { int d; union { char *cp; int *ip; }; }; |
| |
| int foo(struct S *s) |
| { |
| if (s->d == 1) |
| return *s->ip; |
| else |
| return *s->cp; |
| } |
| |
| on a strict alignment machine. In a valid program, foo will never be |
| invoked on a structure for which d is equal to 1 and the underlying |
| unique field of the union not aligned on a 4-byte boundary, but the |
| expression *s->ip might cause a fault if considered individually. |
| |
| At the RTL level, potentially problematic expressions will almost always |
| verify may_trap_p; for example, the above dereference can be emitted as |
| (mem:SI (reg:P)) and this expression is may_trap_p for a generic register. |
| However, suppose that foo is inlined in a caller that causes s->cp to |
| point to a local character variable and guarantees that s->d is not set |
| to 1; foo may have been effectively translated into pseudo-RTL as: |
| |
| if ((reg:SI) == 1) |
| (set (reg:SI) (mem:SI (%fp - 7))) |
| else |
| (set (reg:QI) (mem:QI (%fp - 7))) |
| |
| Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a |
| memory reference to a stack slot, but it will certainly cause a fault |
| on a strict alignment machine. */ |
| |
| int |
| may_trap_or_fault_p (const_rtx x) |
| { |
| return may_trap_p_1 (x, 1); |
| } |
| |
| /* Return nonzero if X contains a comparison that is not either EQ or NE, |
| i.e., an inequality. */ |
| |
| int |
| inequality_comparisons_p (const_rtx x) |
| { |
| const char *fmt; |
| int len, i; |
| const enum rtx_code code = GET_CODE (x); |
| |
| switch (code) |
| { |
| case REG: |
| case SCRATCH: |
| case PC: |
| case CC0: |
| case CONST_INT: |
| case CONST_DOUBLE: |
| case CONST_FIXED: |
| case CONST_VECTOR: |
| case CONST: |
| case LABEL_REF: |
| case SYMBOL_REF: |
| return 0; |
| |
| case LT: |
| case LTU: |
| case GT: |
| case GTU: |
| case LE: |
| case LEU: |
| case GE: |
| case GEU: |
| return 1; |
| |
| default: |
| break; |
| } |
| |
| len = GET_RTX_LENGTH (code); |
| fmt = GET_RTX_FORMAT (code); |
| |
| for (i = 0; i < len; i++) |
| { |
| if (fmt[i] == 'e') |
| { |
| if (inequality_comparisons_p (XEXP (x, i))) |
| return 1; |
| } |
| else if (fmt[i] == 'E') |
| { |
| int j; |
| for (j = XVECLEN (x, i) - 1; j >= 0; j--) |
| if (inequality_comparisons_p (XVECEXP (x, i, j))) |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Replace any occurrence of FROM in X with TO. The function does |
| not enter into CONST_DOUBLE for the replace. |
| |
| Note that copying is not done so X must not be shared unless all copies |
| are to be modified. */ |
| |
| rtx |
| replace_rtx (rtx x, rtx from, rtx to) |
| { |
| int i, j; |
| const char *fmt; |
| |
| /* The following prevents loops occurrence when we change MEM in |
| CONST_DOUBLE onto the same CONST_DOUBLE. */ |
| if (x != 0 && GET_CODE (x) == CONST_DOUBLE) |
| return x; |
| |
| if (x == from) |
| return to; |
| |
| /* Allow this function to make replacements in EXPR_LISTs. */ |
| if (x == 0) |
| return 0; |
| |
| if (GET_CODE (x) == SUBREG) |
| { |
| rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to); |
| |
| if (GET_CODE (new_rtx) == CONST_INT) |
| { |
| x = simplify_subreg (GET_MODE (x), new_rtx, |
| GET_MODE (SUBREG_REG (x)), |
| SUBREG_BYTE (x)); |
| gcc_assert (x); |
| } |
| else |
| SUBREG_REG (x) = new_rtx; |
| |
| return x; |
| } |
| else if (GET_CODE (x) == ZERO_EXTEND) |
| { |
| rtx new_rtx = replace_rtx (XEXP (x, 0), from, to); |
| |
| if (GET_CODE (new_rtx) == CONST_INT) |
| { |
| x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x), |
| new_rtx, GET_MODE (XEXP (x, 0))); |
| gcc_assert (x); |
| } |
| else |
| XEXP (x, 0) = new_rtx; |
| |
| return x; |
| } |
| |
| fmt = GET_RTX_FORMAT (GET_CODE (x)); |
| for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e') |
| XEXP (x, i) = replace_rtx (XEXP (x, i), from, to); |
| else if (fmt[i] == 'E') |
| for (j = XVECLEN (x, i) - 1; j >= 0; j--) |
| XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to); |
| } |
| |
| return x; |
| } |
| |
| /* Replace occurrences of the old label in *X with the new one. |
| DATA is a REPLACE_LABEL_DATA containing the old and new labels. */ |
| |
| int |
| replace_label (rtx *x, void *data) |
| { |
| rtx l = *x; |
| rtx old_label = ((replace_label_data *) data)->r1; |
| rtx new_label = ((replace_label_data *) data)->r2; |
| bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses; |
| |
| if (l == NULL_RTX) |
| return 0; |
| |
| if (GET_CODE (l) == SYMBOL_REF |
| && CONSTANT_POOL_ADDRESS_P (l)) |
| { |
| rtx c = get_pool_constant (l); |
| if (rtx_referenced_p (old_label, c)) |
| { |
| rtx new_c, new_l; |
| replace_label_data *d = (replace_label_data *) data; |
| |
| /* Create a copy of constant C; replace the label inside |
| but do not update LABEL_NUSES because uses in constant pool |
| are not counted. */ |
| new_c = copy_rtx (c); |
| d->update_label_nuses = false; |
| for_each_rtx (&new_c, replace_label, data); |
| d->update_label_nuses = update_label_nuses; |
| |
| /* Add the new constant NEW_C to constant pool and replace |
| the old reference to constant by new reference. */ |
| new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0); |
| *x = replace_rtx (l, l, new_l); |
| } |
| return 0; |
| } |
| |
| /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL |
| field. This is not handled by for_each_rtx because it doesn't |
| handle unprinted ('0') fields. */ |
| if (JUMP_P (l) && JUMP_LABEL (l) == old_label) |
| JUMP_LABEL (l) = new_label; |
| |
| if ((GET_CODE (l) == LABEL_REF |
| || GET_CODE (l) == INSN_LIST) |
| && XEXP (l, 0) == old_label) |
| { |
| XEXP (l, 0) = new_label; |
| if (update_label_nuses) |
| { |
| ++LABEL_NUSES (new_label); |
| --LABEL_NUSES (old_label); |
| } |
| return 0; |
| } |
| |
| return 0; |
| } |
| |
| /* When *BODY is equal to X or X is directly referenced by *BODY |
| return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero |
| too, otherwise FOR_EACH_RTX continues traversing *BODY. */ |
| |
| static int |
| rtx_referenced_p_1 (rtx *body, void *x) |
| { |
| rtx y = (rtx) x; |
| |
| if (*body == NULL_RTX) |
| return y == NULL_RTX; |
| |
| /* Return true if a label_ref *BODY refers to label Y. */ |
| if (GET_CODE (*body) == LABEL_REF && LABEL_P (y)) |
| return XEXP (*body, 0) == y; |
| |
| /* If *BODY is a reference to pool constant traverse the constant. */ |
| if (GET_CODE (*body) == SYMBOL_REF |
| && CONSTANT_POOL_ADDRESS_P (*body)) |
| return rtx_referenced_p (y, get_pool_constant (*body)); |
| |
| /* By default, compare the RTL expressions. */ |
| return rtx_equal_p (*body, y); |
| } |
| |
| /* Return true if X is referenced in BODY. */ |
| |
| int |
| rtx_referenced_p (rtx x, rtx body) |
| { |
| return for_each_rtx (&body, rtx_referenced_p_1, x); |
| } |
| |
| /* If INSN is a tablejump return true and store the label (before jump table) to |
| *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */ |
| |
| bool |
| tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep) |
| { |
| rtx label, table; |
| |
| if (JUMP_P (insn) |
| && (label = JUMP_LABEL (insn)) != NULL_RTX |
| && (table = next_active_insn (label)) != NULL_RTX |
| && JUMP_P (table) |
| && (GET_CODE (PATTERN (table)) == ADDR_VEC |
| || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC)) |
| { |
| if (labelp) |
| *labelp = label; |
| if (tablep) |
| *tablep = table; |
| return true; |
| } |
| return false; |
| } |
| |
| /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or |
| constant that is not in the constant pool and not in the condition |
| of an IF_THEN_ELSE. */ |
| |
| static int |
| computed_jump_p_1 (const_rtx x) |
| { |
| const enum rtx_code code = GET_CODE (x); |
| int i, j; |
| const char *fmt; |
| |
| switch (code) |
| { |
| case LABEL_REF: |
| case PC: |
| return 0; |
| |
| case CONST: |
| case CONST_INT: |
| case CONST_DOUBLE: |
| case CONST_FIXED: |
| case CONST_VECTOR: |
| case SYMBOL_REF: |
| case REG: |
| return 1; |
| |
| case MEM: |
| return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF |
| && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0))); |
| |
| case IF_THEN_ELSE: |
| return (computed_jump_p_1 (XEXP (x, 1)) |
| || computed_jump_p_1 (XEXP (x, 2))); |
| |
| default: |
| break; |
| } |
| |
| fmt = GET_RTX_FORMAT (code); |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e' |
| && computed_jump_p_1 (XEXP (x, i))) |
| return 1; |
| |
| else if (fmt[i] == 'E') |
| for (j = 0; j < XVECLEN (x, i); j++) |
| if (computed_jump_p_1 (XVECEXP (x, i, j))) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Return nonzero if INSN is an indirect jump (aka computed jump). |
| |
| Tablejumps and casesi insns are not considered indirect jumps; |
| we can recognize them by a (use (label_ref)). */ |
| |
| int |
| computed_jump_p (const_rtx insn) |
| { |
| int i; |
| if (JUMP_P (insn)) |
| { |
| rtx pat = PATTERN (insn); |
| |
| /* If we have a JUMP_LABEL set, we're not a computed jump. */ |
| if (JUMP_LABEL (insn) != NULL) |
| return 0; |
| |
| if (GET_CODE (pat) == PARALLEL) |
| { |
| int len = XVECLEN (pat, 0); |
| int has_use_labelref = 0; |
| |
| for (i = len - 1; i >= 0; i--) |
| if (GET_CODE (XVECEXP (pat, 0, i)) == USE |
| && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) |
| == LABEL_REF)) |
| has_use_labelref = 1; |
| |
| if (! has_use_labelref) |
| for (i = len - 1; i >= 0; i--) |
| if (GET_CODE (XVECEXP (pat, 0, i)) == SET |
| && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx |
| && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i)))) |
| return 1; |
| } |
| else if (GET_CODE (pat) == SET |
| && SET_DEST (pat) == pc_rtx |
| && computed_jump_p_1 (SET_SRC (pat))) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Optimized loop of for_each_rtx, trying to avoid useless recursive |
| calls. Processes the subexpressions of EXP and passes them to F. */ |
| static int |
| for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data) |
| { |
| int result, i, j; |
| const char *format = GET_RTX_FORMAT (GET_CODE (exp)); |
| rtx *x; |
| |
| for (; format[n] != '\0'; n++) |
| { |
| switch (format[n]) |
| { |
| case 'e': |
| /* Call F on X. */ |
| x = &XEXP (exp, n); |
| result = (*f) (x, data); |
| if (result == -1) |
| /* Do not traverse sub-expressions. */ |
| continue; |
| else if (result != 0) |
| /* Stop the traversal. */ |
| return result; |
| |
| if (*x == NULL_RTX) |
| /* There are no sub-expressions. */ |
| continue; |
| |
| i = non_rtx_starting_operands[GET_CODE (*x)]; |
| if (i >= 0) |
| { |
| result = for_each_rtx_1 (*x, i, f, data); |
| if (result != 0) |
| return result; |
| } |
| break; |
| |
| case 'V': |
| case 'E': |
| if (XVEC (exp, n) == 0) |
| continue; |
| for (j = 0; j < XVECLEN (exp, n); ++j) |
| { |
| /* Call F on X. */ |
| x = &XVECEXP (exp, n, j); |
| result = (*f) (x, data); |
| if (result == -1) |
| /* Do not traverse sub-expressions. */ |
| continue; |
| else if (result != 0) |
| /* Stop the traversal. */ |
| return result; |
| |
| if (*x == NULL_RTX) |
| /* There are no sub-expressions. */ |
| continue; |
| |
| i = non_rtx_starting_operands[GET_CODE (*x)]; |
| if (i >= 0) |
| { |
| result = for_each_rtx_1 (*x, i, f, data); |
| if (result != 0) |
| return result; |
| } |
| } |
| break; |
| |
| default: |
| /* Nothing to do. */ |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Traverse X via depth-first search, calling F for each |
| sub-expression (including X itself). F is also passed the DATA. |
| If F returns -1, do not traverse sub-expressions, but continue |
| traversing the rest of the tree. If F ever returns any other |
| nonzero value, stop the traversal, and return the value returned |
| by F. Otherwise, return 0. This function does not traverse inside |
| tree structure that contains RTX_EXPRs, or into sub-expressions |
| whose format code is `0' since it is not known whether or not those |
| codes are actually RTL. |
| |
| This routine is very general, and could (should?) be used to |
| implement many of the other routines in this file. */ |
| |
| int |
| for_each_rtx (rtx *x, rtx_function f, void *data) |
| { |
| int result; |
| int i; |
| |
| /* Call F on X. */ |
| result = (*f) (x, data); |
| if (result == -1) |
| /* Do not traverse sub-expressions. */ |
| return 0; |
| else if (result != 0) |
| /* Stop the traversal. */ |
| return result; |
| |
| if (*x == NULL_RTX) |
| /* There are no sub-expressions. */ |
| return 0; |
| |
| i = non_rtx_starting_operands[GET_CODE (*x)]; |
| if (i < 0) |
| return 0; |
| |
| return for_each_rtx_1 (*x, i, f, data); |
| } |
| |
| |
| /* Searches X for any reference to REGNO, returning the rtx of the |
| reference found if any. Otherwise, returns NULL_RTX. */ |
| |
| rtx |
| regno_use_in (unsigned int regno, rtx x) |
| { |
| const char *fmt; |
| int i, j; |
| rtx tem; |
| |
| if (REG_P (x) && REGNO (x) == regno) |
| return x; |
| |
| fmt = GET_RTX_FORMAT (GET_CODE (x)); |
| for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e') |
| { |
| if ((tem = regno_use_in (regno, XEXP (x, i)))) |
| return tem; |
| } |
| else if (fmt[i] == 'E') |
| for (j = XVECLEN (x, i) - 1; j >= 0; j--) |
| if ((tem = regno_use_in (regno , XVECEXP (x, i, j)))) |
| return tem; |
| } |
| |
| return NULL_RTX; |
| } |
| |
| /* Return a value indicating whether OP, an operand of a commutative |
| operation, is preferred as the first or second operand. The higher |
| the value, the stronger the preference for being the first operand. |
| We use negative values to indicate a preference for the first operand |
| and positive values for the second operand. */ |
| |
| int |
| commutative_operand_precedence (rtx op) |
| { |
| enum rtx_code code = GET_CODE (op); |
| |
| /* Constants always come the second operand. Prefer "nice" constants. */ |
| if (code == CONST_INT) |
| return -8; |
| if (code == CONST_DOUBLE) |
| return -7; |
| if (code == CONST_FIXED) |
| return -7; |
| op = avoid_constant_pool_reference (op); |
| code = GET_CODE (op); |
| |
| switch (GET_RTX_CLASS (code)) |
| { |
| case RTX_CONST_OBJ: |
| if (code == CONST_INT) |
| return -6; |
| if (code == CONST_DOUBLE) |
| return -5; |
| if (code == CONST_FIXED) |
| return -5; |
| return -4; |
| |
| case RTX_EXTRA: |
| /* SUBREGs of objects should come second. */ |
| if (code == SUBREG && OBJECT_P (SUBREG_REG (op))) |
| return -3; |
| return 0; |
| |
| case RTX_OBJ: |
| /* Complex expressions should be the first, so decrease priority |
| of objects. Prefer pointer objects over non pointer objects. */ |
| if ((REG_P (op) && REG_POINTER (op)) |
| || (MEM_P (op) && MEM_POINTER (op))) |
| return -1; |
| return -2; |
| |
| case RTX_COMM_ARITH: |
| /* Prefer operands that are themselves commutative to be first. |
| This helps to make things linear. In particular, |
| (and (and (reg) (reg)) (not (reg))) is canonical. */ |
| return 4; |
| |
| case RTX_BIN_ARITH: |
| /* If only one operand is a binary expression, it will be the first |
| operand. In particular, (plus (minus (reg) (reg)) (neg (reg))) |
| is canonical, although it will usually be further simplified. */ |
| return 2; |
| |
| case RTX_UNARY: |
| /* Then prefer NEG and NOT. */ |
| if (code == NEG || code == NOT) |
| return 1; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| /* Return 1 iff it is necessary to swap operands of commutative operation |
| in order to canonicalize expression. */ |
| |
| bool |
| swap_commutative_operands_p (rtx x, rtx y) |
| { |
| return (commutative_operand_precedence (x) |
| < commutative_operand_precedence (y)); |
| } |
| |
| /* Return 1 if X is an autoincrement side effect and the register is |
| not the stack pointer. */ |
| int |
| auto_inc_p (const_rtx x) |
| { |
| switch (GET_CODE (x)) |
| { |
| case PRE_INC: |
| case POST_INC: |
| case PRE_DEC: |
| case POST_DEC: |
| case PRE_MODIFY: |
| case POST_MODIFY: |
| /* There are no REG_INC notes for SP. */ |
| if (XEXP (x, 0) != stack_pointer_rtx) |
| return 1; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| /* Return nonzero if IN contains a piece of rtl that has the address LOC. */ |
| int |
| loc_mentioned_in_p (rtx *loc, const_rtx in) |
| { |
| enum rtx_code code; |
| const char *fmt; |
| int i, j; |
| |
| if (!in) |
| return 0; |
| |
| code = GET_CODE (in); |
| fmt = GET_RTX_FORMAT (code); |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e') |
| { |
| if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i))) |
| return 1; |
| } |
| else if (fmt[i] == 'E') |
| for (j = XVECLEN (in, i) - 1; j >= 0; j--) |
| if (loc == &XVECEXP (in, i, j) |
| || loc_mentioned_in_p (loc, XVECEXP (in, i, j))) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE, |
| and SUBREG_BYTE, return the bit offset where the subreg begins |
| (counting from the least significant bit of the operand). */ |
| |
| unsigned int |
| subreg_lsb_1 (enum machine_mode outer_mode, |
| enum machine_mode inner_mode, |
| unsigned int subreg_byte) |
| { |
| unsigned int bitpos; |
| unsigned int byte; |
| unsigned int word; |
| |
| /* A paradoxical subreg begins at bit position 0. */ |
| if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode)) |
| return 0; |
| |
| if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN) |
| /* If the subreg crosses a word boundary ensure that |
| it also begins and ends on a word boundary. */ |
| gcc_assert (!((subreg_byte % UNITS_PER_WORD |
| + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD |
| && (subreg_byte % UNITS_PER_WORD |
| || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD))); |
| |
| if (WORDS_BIG_ENDIAN) |
| word = (GET_MODE_SIZE (inner_mode) |
| - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD; |
| else |
| word = subreg_byte / UNITS_PER_WORD; |
| bitpos = word * BITS_PER_WORD; |
| |
| if (BYTES_BIG_ENDIAN) |
| byte = (GET_MODE_SIZE (inner_mode) |
| - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD; |
| else |
| byte = subreg_byte % UNITS_PER_WORD; |
| bitpos += byte * BITS_PER_UNIT; |
| |
| return bitpos; |
| } |
| |
| /* Given a subreg X, return the bit offset where the subreg begins |
| (counting from the least significant bit of the reg). */ |
| |
| unsigned int |
| subreg_lsb (const_rtx x) |
| { |
| return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)), |
| SUBREG_BYTE (x)); |
| } |
| |
| /* Fill in information about a subreg of a hard register. |
| xregno - A regno of an inner hard subreg_reg (or what will become one). |
| xmode - The mode of xregno. |
| offset - The byte offset. |
| ymode - The mode of a top level SUBREG (or what may become one). |
| info - Pointer to structure to fill in. */ |
| static void |
| subreg_get_info (unsigned int xregno, enum machine_mode xmode, |
| unsigned int offset, enum machine_mode ymode, |
| struct subreg_info *info) |
| { |
| int nregs_xmode, nregs_ymode; |
| int mode_multiple, nregs_multiple; |
| int offset_adj, y_offset, y_offset_adj; |
| int regsize_xmode, regsize_ymode; |
| bool rknown; |
| |
| gcc_assert (xregno < FIRST_PSEUDO_REGISTER); |
| |
| rknown = false; |
| |
| /* If there are holes in a non-scalar mode in registers, we expect |
| that it is made up of its units concatenated together. */ |
| if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)) |
| { |
| enum machine_mode xmode_unit; |
| |
| nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode); |
| if (GET_MODE_INNER (xmode) == VOIDmode) |
| xmode_unit = xmode; |
| else |
| xmode_unit = GET_MODE_INNER (xmode); |
| gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit)); |
| gcc_assert (nregs_xmode |
| == (GET_MODE_NUNITS (xmode) |
| * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit))); |
| gcc_assert (hard_regno_nregs[xregno][xmode] |
| == (hard_regno_nregs[xregno][xmode_unit] |
| * GET_MODE_NUNITS (xmode))); |
| |
| /* You can only ask for a SUBREG of a value with holes in the middle |
| if you don't cross the holes. (Such a SUBREG should be done by |
| picking a different register class, or doing it in memory if |
| necessary.) An example of a value with holes is XCmode on 32-bit |
| x86 with -m128bit-long-double; it's represented in 6 32-bit registers, |
| 3 for each part, but in memory it's two 128-bit parts. |
| Padding is assumed to be at the end (not necessarily the 'high part') |
| of each unit. */ |
| if ((offset / GET_MODE_SIZE (xmode_unit) + 1 |
| < GET_MODE_NUNITS (xmode)) |
| && (offset / GET_MODE_SIZE (xmode_unit) |
| != ((offset + GET_MODE_SIZE (ymode) - 1) |
| / GET_MODE_SIZE (xmode_unit)))) |
| { |
| info->representable_p = false; |
| rknown = true; |
| } |
| } |
| else |
| nregs_xmode = hard_regno_nregs[xregno][xmode]; |
| |
| nregs_ymode = hard_regno_nregs[xregno][ymode]; |
| |
| /* Paradoxical subregs are otherwise valid. */ |
| if (!rknown |
| && offset == 0 |
| && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode)) |
| { |
| info->representable_p = true; |
| /* If this is a big endian paradoxical subreg, which uses more |
| actual hard registers than the original register, we must |
| return a negative offset so that we find the prope
|