| /* Instruction scheduling pass. This file contains definitions used |
| internally in the scheduler. |
| Copyright (C) 2006, 2007, 2008 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #ifndef GCC_SEL_SCHED_IR_H |
| #define GCC_SEL_SCHED_IR_H |
| |
| /* For state_t. */ |
| #include "insn-attr.h" |
| /* For regset_head. */ |
| #include "basic-block.h" |
| /* For reg_note. */ |
| #include "rtl.h" |
| #include "ggc.h" |
| #include "bitmap.h" |
| #include "vecprim.h" |
| #include "sched-int.h" |
| #include "cfgloop.h" |
| |
| /* tc_t is a short for target context. This is a state of the target |
| backend. */ |
| typedef void *tc_t; |
| |
| /* List data types used for av sets, fences, paths, and boundaries. */ |
| |
| /* Forward declarations for types that are part of some list nodes. */ |
| struct _list_node; |
| |
| /* List backend. */ |
| typedef struct _list_node *_list_t; |
| #define _LIST_NEXT(L) ((L)->next) |
| |
| /* Instruction data that is part of vinsn type. */ |
| struct idata_def; |
| typedef struct idata_def *idata_t; |
| |
| /* A virtual instruction, i.e. an instruction as seen by the scheduler. */ |
| struct vinsn_def; |
| typedef struct vinsn_def *vinsn_t; |
| |
| /* RTX list. |
| This type is the backend for ilist. */ |
| typedef _list_t _xlist_t; |
| #define _XLIST_X(L) ((L)->u.x) |
| #define _XLIST_NEXT(L) (_LIST_NEXT (L)) |
| |
| /* Instruction. */ |
| typedef rtx insn_t; |
| |
| /* List of insns. */ |
| typedef _xlist_t ilist_t; |
| #define ILIST_INSN(L) (_XLIST_X (L)) |
| #define ILIST_NEXT(L) (_XLIST_NEXT (L)) |
| |
| /* This lists possible transformations that done locally, i.e. in |
| moveup_expr. */ |
| enum local_trans_type |
| { |
| TRANS_SUBSTITUTION, |
| TRANS_SPECULATION |
| }; |
| |
| /* This struct is used to record the history of expression's |
| transformations. */ |
| struct expr_history_def_1 |
| { |
| /* UID of the insn. */ |
| unsigned uid; |
| |
| /* How the expression looked like. */ |
| vinsn_t old_expr_vinsn; |
| |
| /* How the expression looks after the transformation. */ |
| vinsn_t new_expr_vinsn; |
| |
| /* And its speculative status. */ |
| ds_t spec_ds; |
| |
| /* Type of the transformation. */ |
| enum local_trans_type type; |
| }; |
| |
| typedef struct expr_history_def_1 expr_history_def; |
| |
| DEF_VEC_O (expr_history_def); |
| DEF_VEC_ALLOC_O (expr_history_def, heap); |
| |
| /* Expression information. */ |
| struct _expr |
| { |
| /* Insn description. */ |
| vinsn_t vinsn; |
| |
| /* SPEC is the degree of speculativeness. |
| FIXME: now spec is increased when an rhs is moved through a |
| conditional, thus showing only control speculativeness. In the |
| future we'd like to count data spec separately to allow a better |
| control on scheduling. */ |
| int spec; |
| |
| /* Degree of speculativeness measured as probability of executing |
| instruction's original basic block given relative to |
| the current scheduling point. */ |
| int usefulness; |
| |
| /* A priority of this expression. */ |
| int priority; |
| |
| /* A priority adjustment of this expression. */ |
| int priority_adj; |
| |
| /* Number of times the insn was scheduled. */ |
| int sched_times; |
| |
| /* A basic block index this was originated from. Zero when there is |
| more than one originator. */ |
| int orig_bb_index; |
| |
| /* Instruction should be of SPEC_DONE_DS type in order to be moved to this |
| point. */ |
| ds_t spec_done_ds; |
| |
| /* SPEC_TO_CHECK_DS hold speculation types that should be checked |
| (used only during move_op ()). */ |
| ds_t spec_to_check_ds; |
| |
| /* Cycle on which original insn was scheduled. Zero when it has not yet |
| been scheduled or more than one originator. */ |
| int orig_sched_cycle; |
| |
| /* This vector contains the history of insn's transformations. */ |
| VEC(expr_history_def, heap) *history_of_changes; |
| |
| /* True (1) when original target (register or memory) of this instruction |
| is available for scheduling, false otherwise. -1 means we're not sure; |
| please run find_used_regs to clarify. */ |
| signed char target_available; |
| |
| /* True when this expression needs a speculation check to be scheduled. |
| This is used during find_used_regs. */ |
| BOOL_BITFIELD needs_spec_check_p : 1; |
| |
| /* True when the expression was substituted. Used for statistical |
| purposes. */ |
| BOOL_BITFIELD was_substituted : 1; |
| |
| /* True when the expression was renamed. */ |
| BOOL_BITFIELD was_renamed : 1; |
| |
| /* True when expression can't be moved. */ |
| BOOL_BITFIELD cant_move : 1; |
| }; |
| |
| typedef struct _expr expr_def; |
| typedef expr_def *expr_t; |
| |
| #define EXPR_VINSN(EXPR) ((EXPR)->vinsn) |
| #define EXPR_INSN_RTX(EXPR) (VINSN_INSN_RTX (EXPR_VINSN (EXPR))) |
| #define EXPR_PATTERN(EXPR) (VINSN_PATTERN (EXPR_VINSN (EXPR))) |
| #define EXPR_LHS(EXPR) (VINSN_LHS (EXPR_VINSN (EXPR))) |
| #define EXPR_RHS(EXPR) (VINSN_RHS (EXPR_VINSN (EXPR))) |
| #define EXPR_TYPE(EXPR) (VINSN_TYPE (EXPR_VINSN (EXPR))) |
| #define EXPR_SEPARABLE_P(EXPR) (VINSN_SEPARABLE_P (EXPR_VINSN (EXPR))) |
| |
| #define EXPR_SPEC(EXPR) ((EXPR)->spec) |
| #define EXPR_USEFULNESS(EXPR) ((EXPR)->usefulness) |
| #define EXPR_PRIORITY(EXPR) ((EXPR)->priority) |
| #define EXPR_PRIORITY_ADJ(EXPR) ((EXPR)->priority_adj) |
| #define EXPR_SCHED_TIMES(EXPR) ((EXPR)->sched_times) |
| #define EXPR_ORIG_BB_INDEX(EXPR) ((EXPR)->orig_bb_index) |
| #define EXPR_ORIG_SCHED_CYCLE(EXPR) ((EXPR)->orig_sched_cycle) |
| #define EXPR_SPEC_DONE_DS(EXPR) ((EXPR)->spec_done_ds) |
| #define EXPR_SPEC_TO_CHECK_DS(EXPR) ((EXPR)->spec_to_check_ds) |
| #define EXPR_HISTORY_OF_CHANGES(EXPR) ((EXPR)->history_of_changes) |
| #define EXPR_TARGET_AVAILABLE(EXPR) ((EXPR)->target_available) |
| #define EXPR_NEEDS_SPEC_CHECK_P(EXPR) ((EXPR)->needs_spec_check_p) |
| #define EXPR_WAS_SUBSTITUTED(EXPR) ((EXPR)->was_substituted) |
| #define EXPR_WAS_RENAMED(EXPR) ((EXPR)->was_renamed) |
| #define EXPR_CANT_MOVE(EXPR) ((EXPR)->cant_move) |
| |
| #define EXPR_WAS_CHANGED(EXPR) (VEC_length (expr_history_def, \ |
| EXPR_HISTORY_OF_CHANGES (EXPR)) > 0) |
| |
| /* Insn definition for list of original insns in find_used_regs. */ |
| struct _def |
| { |
| insn_t orig_insn; |
| |
| /* FIXME: Get rid of CROSSES_CALL in each def, since if we're moving up |
| rhs from two different places, but only one of the code motion paths |
| crosses a call, we can't use any of the call_used_regs, no matter which |
| path or whether all paths crosses a call. Thus we should move CROSSES_CALL |
| to static params. */ |
| bool crosses_call; |
| }; |
| typedef struct _def *def_t; |
| |
| |
| /* Availability sets are sets of expressions we're scheduling. */ |
| typedef _list_t av_set_t; |
| #define _AV_SET_EXPR(L) (&(L)->u.expr) |
| #define _AV_SET_NEXT(L) (_LIST_NEXT (L)) |
| |
| |
| /* Boundary of the current fence group. */ |
| struct _bnd |
| { |
| /* The actual boundary instruction. */ |
| insn_t to; |
| |
| /* Its path to the fence. */ |
| ilist_t ptr; |
| |
| /* Availability set at the boundary. */ |
| av_set_t av; |
| |
| /* This set moved to the fence. */ |
| av_set_t av1; |
| |
| /* Deps context at this boundary. As long as we have one boundary per fence, |
| this is just a pointer to the same deps context as in the corresponding |
| fence. */ |
| deps_t dc; |
| }; |
| typedef struct _bnd *bnd_t; |
| #define BND_TO(B) ((B)->to) |
| |
| /* PTR stands not for pointer as you might think, but as a Path To Root of the |
| current instruction group from boundary B. */ |
| #define BND_PTR(B) ((B)->ptr) |
| #define BND_AV(B) ((B)->av) |
| #define BND_AV1(B) ((B)->av1) |
| #define BND_DC(B) ((B)->dc) |
| |
| /* List of boundaries. */ |
| typedef _list_t blist_t; |
| #define BLIST_BND(L) (&(L)->u.bnd) |
| #define BLIST_NEXT(L) (_LIST_NEXT (L)) |
| |
| |
| /* Fence information. A fence represents current scheduling point and also |
| blocks code motion through it when pipelining. */ |
| struct _fence |
| { |
| /* Insn before which we gather an instruction group.*/ |
| insn_t insn; |
| |
| /* Modeled state of the processor pipeline. */ |
| state_t state; |
| |
| /* Current cycle that is being scheduled on this fence. */ |
| int cycle; |
| |
| /* Number of insns that were scheduled on the current cycle. |
| This information has to be local to a fence. */ |
| int cycle_issued_insns; |
| |
| /* At the end of fill_insns () this field holds the list of the instructions |
| that are inner boundaries of the scheduled parallel group. */ |
| ilist_t bnds; |
| |
| /* Deps context at this fence. It is used to model dependencies at the |
| fence so that insn ticks can be properly evaluated. */ |
| deps_t dc; |
| |
| /* Target context at this fence. Used to save and load any local target |
| scheduling information when changing fences. */ |
| tc_t tc; |
| |
| /* A vector of insns that are scheduled but not yet completed. */ |
| VEC (rtx,gc) *executing_insns; |
| |
| /* A vector indexed by UIDs that caches the earliest cycle on which |
| an insn can be scheduled on this fence. */ |
| int *ready_ticks; |
| |
| /* Its size. */ |
| int ready_ticks_size; |
| |
| /* Insn, which has been scheduled last on this fence. */ |
| rtx last_scheduled_insn; |
| |
| /* If non-NULL force the next scheduled insn to be SCHED_NEXT. */ |
| rtx sched_next; |
| |
| /* True if fill_insns processed this fence. */ |
| BOOL_BITFIELD processed_p : 1; |
| |
| /* True if fill_insns actually scheduled something on this fence. */ |
| BOOL_BITFIELD scheduled_p : 1; |
| |
| /* True when the next insn scheduled here would start a cycle. */ |
| BOOL_BITFIELD starts_cycle_p : 1; |
| |
| /* True when the next insn scheduled here would be scheduled after a stall. */ |
| BOOL_BITFIELD after_stall_p : 1; |
| }; |
| typedef struct _fence *fence_t; |
| |
| #define FENCE_INSN(F) ((F)->insn) |
| #define FENCE_STATE(F) ((F)->state) |
| #define FENCE_BNDS(F) ((F)->bnds) |
| #define FENCE_PROCESSED_P(F) ((F)->processed_p) |
| #define FENCE_SCHEDULED_P(F) ((F)->scheduled_p) |
| #define FENCE_ISSUED_INSNS(F) ((F)->cycle_issued_insns) |
| #define FENCE_CYCLE(F) ((F)->cycle) |
| #define FENCE_STARTS_CYCLE_P(F) ((F)->starts_cycle_p) |
| #define FENCE_AFTER_STALL_P(F) ((F)->after_stall_p) |
| #define FENCE_DC(F) ((F)->dc) |
| #define FENCE_TC(F) ((F)->tc) |
| #define FENCE_LAST_SCHEDULED_INSN(F) ((F)->last_scheduled_insn) |
| #define FENCE_EXECUTING_INSNS(F) ((F)->executing_insns) |
| #define FENCE_READY_TICKS(F) ((F)->ready_ticks) |
| #define FENCE_READY_TICKS_SIZE(F) ((F)->ready_ticks_size) |
| #define FENCE_SCHED_NEXT(F) ((F)->sched_next) |
| |
| /* List of fences. */ |
| typedef _list_t flist_t; |
| #define FLIST_FENCE(L) (&(L)->u.fence) |
| #define FLIST_NEXT(L) (_LIST_NEXT (L)) |
| |
| /* List of fences with pointer to the tail node. */ |
| struct flist_tail_def |
| { |
| flist_t head; |
| flist_t *tailp; |
| }; |
| |
| typedef struct flist_tail_def *flist_tail_t; |
| #define FLIST_TAIL_HEAD(L) ((L)->head) |
| #define FLIST_TAIL_TAILP(L) ((L)->tailp) |
| |
| /* List node information. A list node can be any of the types above. */ |
| struct _list_node |
| { |
| _list_t next; |
| |
| union |
| { |
| rtx x; |
| struct _bnd bnd; |
| expr_def expr; |
| struct _fence fence; |
| struct _def def; |
| void *data; |
| } u; |
| }; |
| |
| |
| /* _list_t functions. |
| All of _*list_* functions are used through accessor macros, thus |
| we can't move them in sel-sched-ir.c. */ |
| extern alloc_pool sched_lists_pool; |
| |
| static inline _list_t |
| _list_alloc (void) |
| { |
| return (_list_t) pool_alloc (sched_lists_pool); |
| } |
| |
| static inline void |
| _list_add (_list_t *lp) |
| { |
| _list_t l = _list_alloc (); |
| |
| _LIST_NEXT (l) = *lp; |
| *lp = l; |
| } |
| |
| static inline void |
| _list_remove_nofree (_list_t *lp) |
| { |
| _list_t n = *lp; |
| |
| *lp = _LIST_NEXT (n); |
| } |
| |
| static inline void |
| _list_remove (_list_t *lp) |
| { |
| _list_t n = *lp; |
| |
| *lp = _LIST_NEXT (n); |
| pool_free (sched_lists_pool, n); |
| } |
| |
| static inline void |
| _list_clear (_list_t *l) |
| { |
| while (*l) |
| _list_remove (l); |
| } |
| |
| |
| /* List iterator backend. */ |
| typedef struct |
| { |
| /* The list we're iterating. */ |
| _list_t *lp; |
| |
| /* True when this iterator supprts removing. */ |
| bool can_remove_p; |
| |
| /* True when we've actually removed something. */ |
| bool removed_p; |
| } _list_iterator; |
| |
| static inline void |
| _list_iter_start (_list_iterator *ip, _list_t *lp, bool can_remove_p) |
| { |
| ip->lp = lp; |
| ip->can_remove_p = can_remove_p; |
| ip->removed_p = false; |
| } |
| |
| static inline void |
| _list_iter_next (_list_iterator *ip) |
| { |
| if (!ip->removed_p) |
| ip->lp = &_LIST_NEXT (*ip->lp); |
| else |
| ip->removed_p = false; |
| } |
| |
| static inline void |
| _list_iter_remove (_list_iterator *ip) |
| { |
| gcc_assert (!ip->removed_p && ip->can_remove_p); |
| _list_remove (ip->lp); |
| ip->removed_p = true; |
| } |
| |
| static inline void |
| _list_iter_remove_nofree (_list_iterator *ip) |
| { |
| gcc_assert (!ip->removed_p && ip->can_remove_p); |
| _list_remove_nofree (ip->lp); |
| ip->removed_p = true; |
| } |
| |
| /* General macros to traverse a list. FOR_EACH_* interfaces are |
| implemented using these. */ |
| #define _FOR_EACH(TYPE, ELEM, I, L) \ |
| for (_list_iter_start (&(I), &(L), false); \ |
| _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \ |
| _list_iter_next (&(I))) |
| |
| #define _FOR_EACH_1(TYPE, ELEM, I, LP) \ |
| for (_list_iter_start (&(I), (LP), true); \ |
| _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \ |
| _list_iter_next (&(I))) |
| |
| |
| /* _xlist_t functions. */ |
| |
| static inline void |
| _xlist_add (_xlist_t *lp, rtx x) |
| { |
| _list_add (lp); |
| _XLIST_X (*lp) = x; |
| } |
| |
| #define _xlist_remove(LP) (_list_remove (LP)) |
| #define _xlist_clear(LP) (_list_clear (LP)) |
| |
| static inline bool |
| _xlist_is_in_p (_xlist_t l, rtx x) |
| { |
| while (l) |
| { |
| if (_XLIST_X (l) == x) |
| return true; |
| l = _XLIST_NEXT (l); |
| } |
| |
| return false; |
| } |
| |
| /* Used through _FOR_EACH. */ |
| static inline bool |
| _list_iter_cond_x (_xlist_t l, rtx *xp) |
| { |
| if (l) |
| { |
| *xp = _XLIST_X (l); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| #define _xlist_iter_remove(IP) (_list_iter_remove (IP)) |
| |
| typedef _list_iterator _xlist_iterator; |
| #define _FOR_EACH_X(X, I, L) _FOR_EACH (x, (X), (I), (L)) |
| #define _FOR_EACH_X_1(X, I, LP) _FOR_EACH_1 (x, (X), (I), (LP)) |
| |
| |
| /* ilist_t functions. Instruction lists are simply RTX lists. */ |
| |
| #define ilist_add(LP, INSN) (_xlist_add ((LP), (INSN))) |
| #define ilist_remove(LP) (_xlist_remove (LP)) |
| #define ilist_clear(LP) (_xlist_clear (LP)) |
| #define ilist_is_in_p(L, INSN) (_xlist_is_in_p ((L), (INSN))) |
| #define ilist_iter_remove(IP) (_xlist_iter_remove (IP)) |
| |
| typedef _xlist_iterator ilist_iterator; |
| #define FOR_EACH_INSN(INSN, I, L) _FOR_EACH_X (INSN, I, L) |
| #define FOR_EACH_INSN_1(INSN, I, LP) _FOR_EACH_X_1 (INSN, I, LP) |
| |
| |
| /* Av set iterators. */ |
| typedef _list_iterator av_set_iterator; |
| #define FOR_EACH_EXPR(EXPR, I, AV) _FOR_EACH (expr, (EXPR), (I), (AV)) |
| #define FOR_EACH_EXPR_1(EXPR, I, AV) _FOR_EACH_1 (expr, (EXPR), (I), (AV)) |
| |
| static bool |
| _list_iter_cond_expr (av_set_t av, expr_t *exprp) |
| { |
| if (av) |
| { |
| *exprp = _AV_SET_EXPR (av); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| /* Def list iterators. */ |
| typedef _list_t def_list_t; |
| typedef _list_iterator def_list_iterator; |
| |
| #define DEF_LIST_NEXT(L) (_LIST_NEXT (L)) |
| #define DEF_LIST_DEF(L) (&(L)->u.def) |
| |
| #define FOR_EACH_DEF(DEF, I, DEF_LIST) _FOR_EACH (def, (DEF), (I), (DEF_LIST)) |
| |
| static inline bool |
| _list_iter_cond_def (def_list_t def_list, def_t *def) |
| { |
| if (def_list) |
| { |
| *def = DEF_LIST_DEF (def_list); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| /* InstructionData. Contains information about insn pattern. */ |
| struct idata_def |
| { |
| /* Type of the insn. |
| o CALL_INSN - Call insn |
| o JUMP_INSN - Jump insn |
| o INSN - INSN that cannot be cloned |
| o USE - INSN that can be cloned |
| o SET - INSN that can be cloned and separable into lhs and rhs |
| o PC - simplejump. Insns that simply redirect control flow should not |
| have any dependencies. Sched-deps.c, though, might consider them as |
| producers or consumers of certain registers. To avoid that we handle |
| dependency for simple jumps ourselves. */ |
| int type; |
| |
| /* If insn is a SET, this is its left hand side. */ |
| rtx lhs; |
| |
| /* If insn is a SET, this is its right hand side. */ |
| rtx rhs; |
| |
| /* Registers that are set/used by this insn. This info is now gathered |
| via sched-deps.c. The downside of this is that we also use live info |
| from flow that is accumulated in the basic blocks. These two infos |
| can be slightly inconsistent, hence in the beginning we make a pass |
| through CFG and calculating the conservative solution for the info in |
| basic blocks. When this scheduler will be switched to use dataflow, |
| this can be unified as df gives us both per basic block and per |
| instruction info. Actually, we don't do that pass and just hope |
| for the best. */ |
| regset reg_sets; |
| |
| regset reg_clobbers; |
| |
| regset reg_uses; |
| }; |
| |
| #define IDATA_TYPE(ID) ((ID)->type) |
| #define IDATA_LHS(ID) ((ID)->lhs) |
| #define IDATA_RHS(ID) ((ID)->rhs) |
| #define IDATA_REG_SETS(ID) ((ID)->reg_sets) |
| #define IDATA_REG_USES(ID) ((ID)->reg_uses) |
| #define IDATA_REG_CLOBBERS(ID) ((ID)->reg_clobbers) |
| |
| /* Type to represent all needed info to emit an insn. |
| This is a virtual equivalent of the insn. |
| Every insn in the stream has an associated vinsn. This is used |
| to reduce memory consumption basing on the fact that many insns |
| don't change through the scheduler. |
| |
| vinsn can be either normal or unique. |
| * Normal vinsn is the one, that can be cloned multiple times and typically |
| corresponds to normal instruction. |
| |
| * Unique vinsn derivates from CALL, ASM, JUMP (for a while) and other |
| unusual stuff. Such a vinsn is described by its INSN field, which is a |
| reference to the original instruction. */ |
| struct vinsn_def |
| { |
| /* Associated insn. */ |
| rtx insn_rtx; |
| |
| /* Its description. */ |
| struct idata_def id; |
| |
| /* Hash of vinsn. It is computed either from pattern or from rhs using |
| hash_rtx. It is not placed in ID for faster compares. */ |
| unsigned hash; |
| |
| /* Hash of the insn_rtx pattern. */ |
| unsigned hash_rtx; |
| |
| /* Smart pointer counter. */ |
| int count; |
| |
| /* Cached cost of the vinsn. To access it please use vinsn_cost (). */ |
| int cost; |
| |
| /* Mark insns that may trap so we don't move them through jumps. */ |
| bool may_trap_p; |
| }; |
| |
| #define VINSN_INSN_RTX(VI) ((VI)->insn_rtx) |
| #define VINSN_PATTERN(VI) (PATTERN (VINSN_INSN_RTX (VI))) |
| |
| #define VINSN_ID(VI) (&((VI)->id)) |
| #define VINSN_HASH(VI) ((VI)->hash) |
| #define VINSN_HASH_RTX(VI) ((VI)->hash_rtx) |
| #define VINSN_TYPE(VI) (IDATA_TYPE (VINSN_ID (VI))) |
| #define VINSN_SEPARABLE_P(VI) (VINSN_TYPE (VI) == SET) |
| #define VINSN_CLONABLE_P(VI) (VINSN_SEPARABLE_P (VI) || VINSN_TYPE (VI) == USE) |
| #define VINSN_UNIQUE_P(VI) (!VINSN_CLONABLE_P (VI)) |
| #define VINSN_LHS(VI) (IDATA_LHS (VINSN_ID (VI))) |
| #define VINSN_RHS(VI) (IDATA_RHS (VINSN_ID (VI))) |
| #define VINSN_REG_SETS(VI) (IDATA_REG_SETS (VINSN_ID (VI))) |
| #define VINSN_REG_USES(VI) (IDATA_REG_USES (VINSN_ID (VI))) |
| #define VINSN_REG_CLOBBERS(VI) (IDATA_REG_CLOBBERS (VINSN_ID (VI))) |
| #define VINSN_COUNT(VI) ((VI)->count) |
| #define VINSN_MAY_TRAP_P(VI) ((VI)->may_trap_p) |
| |
| |
| /* An entry of the hashtable describing transformations happened when |
| moving up through an insn. */ |
| struct transformed_insns |
| { |
| /* Previous vinsn. Used to find the proper element. */ |
| vinsn_t vinsn_old; |
| |
| /* A new vinsn. */ |
| vinsn_t vinsn_new; |
| |
| /* Speculative status. */ |
| ds_t ds; |
| |
| /* Type of transformation happened. */ |
| enum local_trans_type type; |
| |
| /* Whether a conflict on the target register happened. */ |
| BOOL_BITFIELD was_target_conflict : 1; |
| |
| /* Whether a check was needed. */ |
| BOOL_BITFIELD needs_check : 1; |
| }; |
| |
| /* Indexed by INSN_LUID, the collection of all data associated with |
| a single instruction that is in the stream. */ |
| struct _sel_insn_data |
| { |
| /* The expression that contains vinsn for this insn and some |
| flow-sensitive data like priority. */ |
| expr_def expr; |
| |
| /* If (WS_LEVEL == GLOBAL_LEVEL) then AV is empty. */ |
| int ws_level; |
| |
| /* A number that helps in defining a traversing order for a region. */ |
| int seqno; |
| |
| /* A liveness data computed above this insn. */ |
| regset live; |
| |
| /* An INSN_UID bit is set when deps analysis result is already known. */ |
| bitmap analyzed_deps; |
| |
| /* An INSN_UID bit is set when a hard dep was found, not set when |
| no dependence is found. This is meaningful only when the analyzed_deps |
| bitmap has its bit set. */ |
| bitmap found_deps; |
| |
| /* An INSN_UID bit is set when this is a bookkeeping insn generated from |
| a parent with this uid. */ |
| bitmap originators; |
| |
| /* A hashtable caching the result of insn transformations through this one. */ |
| htab_t transformed_insns; |
| |
| /* A context incapsulating this insn. */ |
| struct deps deps_context; |
| |
| /* This field is initialized at the beginning of scheduling and is used |
| to handle sched group instructions. If it is non-null, then it points |
| to the instruction, which should be forced to schedule next. Such |
| instructions are unique. */ |
| insn_t sched_next; |
| |
| /* Cycle at which insn was scheduled. It is greater than zero if insn was |
| scheduled. This is used for bundling. */ |
| int sched_cycle; |
| |
| /* Cycle at which insn's data will be fully ready. */ |
| int ready_cycle; |
| |
| /* Speculations that are being checked by this insn. */ |
| ds_t spec_checked_ds; |
| |
| /* Whether the live set valid or not. */ |
| BOOL_BITFIELD live_valid_p : 1; |
| /* Insn is an ASM. */ |
| BOOL_BITFIELD asm_p : 1; |
| |
| /* True when an insn is scheduled after we've determined that a stall is |
| required. |
| This is used when emulating the Haifa scheduler for bundling. */ |
| BOOL_BITFIELD after_stall_p : 1; |
| }; |
| |
| typedef struct _sel_insn_data sel_insn_data_def; |
| typedef sel_insn_data_def *sel_insn_data_t; |
| |
| DEF_VEC_O (sel_insn_data_def); |
| DEF_VEC_ALLOC_O (sel_insn_data_def, heap); |
| extern VEC (sel_insn_data_def, heap) *s_i_d; |
| |
| /* Accessor macros for s_i_d. */ |
| #define SID(INSN) (VEC_index (sel_insn_data_def, s_i_d, INSN_LUID (INSN))) |
| #define SID_BY_UID(UID) (VEC_index (sel_insn_data_def, s_i_d, LUID_BY_UID (UID))) |
| |
| extern sel_insn_data_def insn_sid (insn_t); |
| |
| #define INSN_ASM_P(INSN) (SID (INSN)->asm_p) |
| #define INSN_SCHED_NEXT(INSN) (SID (INSN)->sched_next) |
| #define INSN_ANALYZED_DEPS(INSN) (SID (INSN)->analyzed_deps) |
| #define INSN_FOUND_DEPS(INSN) (SID (INSN)->found_deps) |
| #define INSN_DEPS_CONTEXT(INSN) (SID (INSN)->deps_context) |
| #define INSN_ORIGINATORS(INSN) (SID (INSN)->originators) |
| #define INSN_ORIGINATORS_BY_UID(UID) (SID_BY_UID (UID)->originators) |
| #define INSN_TRANSFORMED_INSNS(INSN) (SID (INSN)->transformed_insns) |
| |
| #define INSN_EXPR(INSN) (&SID (INSN)->expr) |
| #define INSN_LIVE(INSN) (SID (INSN)->live) |
| #define INSN_LIVE_VALID_P(INSN) (SID (INSN)->live_valid_p) |
| #define INSN_VINSN(INSN) (EXPR_VINSN (INSN_EXPR (INSN))) |
| #define INSN_TYPE(INSN) (VINSN_TYPE (INSN_VINSN (INSN))) |
| #define INSN_SIMPLEJUMP_P(INSN) (INSN_TYPE (INSN) == PC) |
| #define INSN_LHS(INSN) (VINSN_LHS (INSN_VINSN (INSN))) |
| #define INSN_RHS(INSN) (VINSN_RHS (INSN_VINSN (INSN))) |
| #define INSN_REG_SETS(INSN) (VINSN_REG_SETS (INSN_VINSN (INSN))) |
| #define INSN_REG_CLOBBERS(INSN) (VINSN_REG_CLOBBERS (INSN_VINSN (INSN))) |
| #define INSN_REG_USES(INSN) (VINSN_REG_USES (INSN_VINSN (INSN))) |
| #define INSN_SCHED_TIMES(INSN) (EXPR_SCHED_TIMES (INSN_EXPR (INSN))) |
| #define INSN_SEQNO(INSN) (SID (INSN)->seqno) |
| #define INSN_AFTER_STALL_P(INSN) (SID (INSN)->after_stall_p) |
| #define INSN_SCHED_CYCLE(INSN) (SID (INSN)->sched_cycle) |
| #define INSN_READY_CYCLE(INSN) (SID (INSN)->ready_cycle) |
| #define INSN_SPEC_CHECKED_DS(INSN) (SID (INSN)->spec_checked_ds) |
| |
| /* A global level shows whether an insn is valid or not. */ |
| extern int global_level; |
| |
| #define INSN_WS_LEVEL(INSN) (SID (INSN)->ws_level) |
| |
| extern av_set_t get_av_set (insn_t); |
| extern int get_av_level (insn_t); |
| |
| #define AV_SET(INSN) (get_av_set (INSN)) |
| #define AV_LEVEL(INSN) (get_av_level (INSN)) |
| #define AV_SET_VALID_P(INSN) (AV_LEVEL (INSN) == global_level) |
| |
| /* A list of fences currently in the works. */ |
| extern flist_t fences; |
| |
| /* A NOP pattern used as a placeholder for real insns. */ |
| extern rtx nop_pattern; |
| |
| /* An insn that 'contained' in EXIT block. */ |
| extern rtx exit_insn; |
| |
| /* Provide a separate luid for the insn. */ |
| #define INSN_INIT_TODO_LUID (1) |
| |
| /* Initialize s_s_i_d. */ |
| #define INSN_INIT_TODO_SSID (2) |
| |
| /* Initialize data for simplejump. */ |
| #define INSN_INIT_TODO_SIMPLEJUMP (4) |
| |
| /* Return true if INSN is a local NOP. The nop is local in the sense that |
| it was emitted by the scheduler as a temporary insn and will soon be |
| deleted. These nops are identified by their pattern. */ |
| #define INSN_NOP_P(INSN) (PATTERN (INSN) == nop_pattern) |
| |
| /* Return true if INSN is linked into instruction stream. |
| NB: It is impossible for INSN to have one field null and the other not |
| null: gcc_assert ((PREV_INSN (INSN) == NULL_RTX) |
| == (NEXT_INSN (INSN) == NULL_RTX)) is valid. */ |
| #define INSN_IN_STREAM_P(INSN) (PREV_INSN (INSN) && NEXT_INSN (INSN)) |
| |
| /* Return true if INSN is in current fence. */ |
| #define IN_CURRENT_FENCE_P(INSN) (flist_lookup (fences, INSN) != NULL) |
| |
| /* Marks loop as being considered for pipelining. */ |
| #define MARK_LOOP_FOR_PIPELINING(LOOP) ((LOOP)->aux = (void *)(size_t)(1)) |
| #define LOOP_MARKED_FOR_PIPELINING_P(LOOP) ((size_t)((LOOP)->aux)) |
| |
| /* Saved loop preheader to transfer when scheduling the loop. */ |
| #define LOOP_PREHEADER_BLOCKS(LOOP) ((size_t)((LOOP)->aux) == 1 \ |
| ? NULL \ |
| : ((VEC(basic_block, heap) *) (LOOP)->aux)) |
| #define SET_LOOP_PREHEADER_BLOCKS(LOOP,BLOCKS) ((LOOP)->aux \ |
| = (BLOCKS != NULL \ |
| ? BLOCKS \ |
| : (LOOP)->aux)) |
| |
| extern bitmap blocks_to_reschedule; |
| |
| |
| /* A variable to track which part of rtx we are scanning in |
| sched-deps.c: sched_analyze_insn (). */ |
| enum deps_where_def |
| { |
| DEPS_IN_INSN, |
| DEPS_IN_LHS, |
| DEPS_IN_RHS, |
| DEPS_IN_NOWHERE |
| }; |
| typedef enum deps_where_def deps_where_t; |
| |
| |
| /* Per basic block data for the whole CFG. */ |
| typedef struct |
| { |
| /* For each bb header this field contains a set of live registers. |
| For all other insns this field has a NULL. |
| We also need to know LV sets for the instructions, that are immediatly |
| after the border of the region. */ |
| regset lv_set; |
| |
| /* Status of LV_SET. |
| true - block has usable LV_SET. |
| false - block's LV_SET should be recomputed. */ |
| bool lv_set_valid_p; |
| } sel_global_bb_info_def; |
| |
| typedef sel_global_bb_info_def *sel_global_bb_info_t; |
| |
| DEF_VEC_O (sel_global_bb_info_def); |
| DEF_VEC_ALLOC_O (sel_global_bb_info_def, heap); |
| |
| /* Per basic block data. This array is indexed by basic block index. */ |
| extern VEC (sel_global_bb_info_def, heap) *sel_global_bb_info; |
| |
| extern void sel_extend_global_bb_info (void); |
| extern void sel_finish_global_bb_info (void); |
| |
| /* Get data for BB. */ |
| #define SEL_GLOBAL_BB_INFO(BB) \ |
| (VEC_index (sel_global_bb_info_def, sel_global_bb_info, (BB)->index)) |
| |
| /* Access macros. */ |
| #define BB_LV_SET(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set) |
| #define BB_LV_SET_VALID_P(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set_valid_p) |
| |
| /* Per basic block data for the region. */ |
| typedef struct |
| { |
| /* This insn stream is constructed in such a way that it should be |
| traversed by PREV_INSN field - (*not* NEXT_INSN). */ |
| rtx note_list; |
| |
| /* Cached availability set at the beginning of a block. |
| See also AV_LEVEL () for conditions when this av_set can be used. */ |
| av_set_t av_set; |
| |
| /* If (AV_LEVEL == GLOBAL_LEVEL) then AV is valid. */ |
| int av_level; |
| } sel_region_bb_info_def; |
| |
| typedef sel_region_bb_info_def *sel_region_bb_info_t; |
| |
| DEF_VEC_O (sel_region_bb_info_def); |
| DEF_VEC_ALLOC_O (sel_region_bb_info_def, heap); |
| |
| /* Per basic block data. This array is indexed by basic block index. */ |
| extern VEC (sel_region_bb_info_def, heap) *sel_region_bb_info; |
| |
| /* Get data for BB. */ |
| #define SEL_REGION_BB_INFO(BB) (VEC_index (sel_region_bb_info_def, \ |
| sel_region_bb_info, (BB)->index)) |
| |
| /* Get BB's note_list. |
| A note_list is a list of various notes that was scattered across BB |
| before scheduling, and will be appended at the beginning of BB after |
| scheduling is finished. */ |
| #define BB_NOTE_LIST(BB) (SEL_REGION_BB_INFO (BB)->note_list) |
| |
| #define BB_AV_SET(BB) (SEL_REGION_BB_INFO (BB)->av_set) |
| #define BB_AV_LEVEL(BB) (SEL_REGION_BB_INFO (BB)->av_level) |
| #define BB_AV_SET_VALID_P(BB) (BB_AV_LEVEL (BB) == global_level) |
| |
| /* Used in bb_in_ebb_p. */ |
| extern bitmap_head *forced_ebb_heads; |
| |
| /* The loop nest being pipelined. */ |
| extern struct loop *current_loop_nest; |
| |
| /* Saves pipelined blocks. Bitmap is indexed by bb->index. */ |
| extern sbitmap bbs_pipelined; |
| |
| /* Various flags. */ |
| extern bool enable_moveup_set_path_p; |
| extern bool pipelining_p; |
| extern bool bookkeeping_p; |
| extern int max_insns_to_rename; |
| extern bool preheader_removed; |
| |
| /* Software lookahead window size. |
| According to the results in Nakatani and Ebcioglu [1993], window size of 16 |
| is enough to extract most ILP in integer code. */ |
| #define MAX_WS (PARAM_VALUE (PARAM_SELSCHED_MAX_LOOKAHEAD)) |
| |
| extern regset sel_all_regs; |
| |
| |
| /* Successor iterator backend. */ |
| typedef struct |
| { |
| /* True if we're at BB end. */ |
| bool bb_end; |
| |
| /* An edge on which we're iterating. */ |
| edge e1; |
| |
| /* The previous edge saved after skipping empty blocks. */ |
| edge e2; |
| |
| /* Edge iterator used when there are successors in other basic blocks. */ |
| edge_iterator ei; |
| |
| /* Successor block we're traversing. */ |
| basic_block bb; |
| |
| /* Flags that are passed to the iterator. We return only successors |
| that comply to these flags. */ |
| short flags; |
| |
| /* When flags include SUCCS_ALL, this will be set to the exact type |
| of the sucessor we're traversing now. */ |
| short current_flags; |
| |
| /* If skip to loop exits, save here information about loop exits. */ |
| int current_exit; |
| VEC (edge, heap) *loop_exits; |
| } succ_iterator; |
| |
| /* A structure returning all successor's information. */ |
| struct succs_info |
| { |
| /* Flags that these succcessors were computed with. */ |
| short flags; |
| |
| /* Successors that correspond to the flags. */ |
| insn_vec_t succs_ok; |
| |
| /* Their probabilities. As of now, we don't need this for other |
| successors. */ |
| VEC(int,heap) *probs_ok; |
| |
| /* Other successors. */ |
| insn_vec_t succs_other; |
| |
| /* Probability of all successors. */ |
| int all_prob; |
| |
| /* The number of all successors. */ |
| int all_succs_n; |
| |
| /* The number of good successors. */ |
| int succs_ok_n; |
| }; |
| |
| /* Some needed definitions. */ |
| extern basic_block after_recovery; |
| |
| extern insn_t sel_bb_head (basic_block); |
| extern bool sel_bb_empty_p (basic_block); |
| extern bool in_current_region_p (basic_block); |
| |
| /* True when BB is a header of the inner loop. */ |
| static inline bool |
| inner_loop_header_p (basic_block bb) |
| { |
| struct loop *inner_loop; |
| |
| if (!current_loop_nest) |
| return false; |
| |
| if (bb == EXIT_BLOCK_PTR) |
| return false; |
| |
| inner_loop = bb->loop_father; |
| if (inner_loop == current_loop_nest) |
| return false; |
| |
| /* If successor belongs to another loop. */ |
| if (bb == inner_loop->header |
| && flow_bb_inside_loop_p (current_loop_nest, bb)) |
| { |
| /* Could be '=' here because of wrong loop depths. */ |
| gcc_assert (loop_depth (inner_loop) >= loop_depth (current_loop_nest)); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Return exit edges of LOOP, filtering out edges with the same dest bb. */ |
| static inline VEC (edge, heap) * |
| get_loop_exit_edges_unique_dests (const struct loop *loop) |
| { |
| VEC (edge, heap) *edges = NULL; |
| struct loop_exit *exit; |
| |
| gcc_assert (loop->latch != EXIT_BLOCK_PTR |
| && current_loops->state & LOOPS_HAVE_RECORDED_EXITS); |
| |
| for (exit = loop->exits->next; exit->e; exit = exit->next) |
| { |
| int i; |
| edge e; |
| bool was_dest = false; |
| |
| for (i = 0; VEC_iterate (edge, edges, i, e); i++) |
| if (e->dest == exit->e->dest) |
| { |
| was_dest = true; |
| break; |
| } |
| |
| if (!was_dest) |
| VEC_safe_push (edge, heap, edges, exit->e); |
| } |
| return edges; |
| } |
| |
| /* Collect all loop exits recursively, skipping empty BBs between them. |
| E.g. if BB is a loop header which has several loop exits, |
| traverse all of them and if any of them turns out to be another loop header |
| (after skipping empty BBs), add its loop exits to the resulting vector |
| as well. */ |
| static inline VEC(edge, heap) * |
| get_all_loop_exits (basic_block bb) |
| { |
| VEC(edge, heap) *exits = NULL; |
| |
| /* If bb is empty, and we're skipping to loop exits, then |
| consider bb as a possible gate to the inner loop now. */ |
| while (sel_bb_empty_p (bb) |
| && in_current_region_p (bb)) |
| { |
| bb = single_succ (bb); |
| |
| /* This empty block could only lead outside the region. */ |
| gcc_assert (! in_current_region_p (bb)); |
| } |
| |
| /* And now check whether we should skip over inner loop. */ |
| if (inner_loop_header_p (bb)) |
| { |
| struct loop *this_loop; |
| struct loop *pred_loop = NULL; |
| int i; |
| edge e; |
| |
| for (this_loop = bb->loop_father; |
| this_loop && this_loop != current_loop_nest; |
| this_loop = loop_outer (this_loop)) |
| pred_loop = this_loop; |
| |
| this_loop = pred_loop; |
| gcc_assert (this_loop != NULL); |
| |
| exits = get_loop_exit_edges_unique_dests (this_loop); |
| |
| /* Traverse all loop headers. */ |
| for (i = 0; VEC_iterate (edge, exits, i, e); i++) |
| if (in_current_region_p (e->dest)) |
| { |
| VEC(edge, heap) *next_exits = get_all_loop_exits (e->dest); |
| |
| if (next_exits) |
| { |
| int j; |
| edge ne; |
| |
| /* Add all loop exits for the current edge into the |
| resulting vector. */ |
| for (j = 0; VEC_iterate (edge, next_exits, j, ne); j++) |
| VEC_safe_push (edge, heap, exits, ne); |
| |
| /* Remove the original edge. */ |
| VEC_ordered_remove (edge, exits, i); |
| |
| /* Decrease the loop counter so we won't skip anything. */ |
| i--; |
| continue; |
| } |
| } |
| } |
| |
| return exits; |
| } |
| |
| /* Flags to pass to compute_succs_info and FOR_EACH_SUCC. |
| Any successor will fall into exactly one category. */ |
| |
| /* Include normal successors. */ |
| #define SUCCS_NORMAL (1) |
| |
| /* Include back-edge successors. */ |
| #define SUCCS_BACK (2) |
| |
| /* Include successors that are outside of the current region. */ |
| #define SUCCS_OUT (4) |
| |
| /* When pipelining of the outer loops is enabled, skip innermost loops |
| to their exits. */ |
| #define SUCCS_SKIP_TO_LOOP_EXITS (8) |
| |
| /* Include all successors. */ |
| #define SUCCS_ALL (SUCCS_NORMAL | SUCCS_BACK | SUCCS_OUT) |
| |
| /* We need to return a succ_iterator to avoid 'unitialized' warning |
| during bootstrap. */ |
| static inline succ_iterator |
| _succ_iter_start (insn_t *succp, insn_t insn, int flags) |
| { |
| succ_iterator i; |
| |
| basic_block bb = BLOCK_FOR_INSN (insn); |
| |
| gcc_assert (INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn)); |
| |
| i.flags = flags; |
| |
| /* Avoid 'uninitialized' warning. */ |
| *succp = NULL; |
| i.e1 = NULL; |
| i.e2 = NULL; |
| i.bb = bb; |
| i.current_flags = 0; |
| i.current_exit = -1; |
| i.loop_exits = NULL; |
| |
| if (bb != EXIT_BLOCK_PTR && BB_END (bb) != insn) |
| { |
| i.bb_end = false; |
| |
| /* Avoid 'uninitialized' warning. */ |
| i.ei.index = 0; |
| i.ei.container = NULL; |
| } |
| else |
| { |
| i.ei = ei_start (bb->succs); |
| i.bb_end = true; |
| } |
| |
| return i; |
| } |
| |
| static inline bool |
| _succ_iter_cond (succ_iterator *ip, rtx *succp, rtx insn, |
| bool check (edge, succ_iterator *)) |
| { |
| if (!ip->bb_end) |
| { |
| /* When we're in a middle of a basic block, return |
| the next insn immediately, but only when SUCCS_NORMAL is set. */ |
| if (*succp != NULL || (ip->flags & SUCCS_NORMAL) == 0) |
| return false; |
| |
| *succp = NEXT_INSN (insn); |
| ip->current_flags = SUCCS_NORMAL; |
| return true; |
| } |
| else |
| { |
| while (1) |
| { |
| edge e_tmp = NULL; |
| |
| /* First, try loop exits, if we have them. */ |
| if (ip->loop_exits) |
| { |
| do |
| { |
| VEC_iterate (edge, ip->loop_exits, |
| ip->current_exit, e_tmp); |
| ip->current_exit++; |
| } |
| while (e_tmp && !check (e_tmp, ip)); |
| |
| if (!e_tmp) |
| VEC_free (edge, heap, ip->loop_exits); |
| } |
| |
| /* If we have found a successor, then great. */ |
| if (e_tmp) |
| { |
| ip->e1 = e_tmp; |
| break; |
| } |
| |
| /* If not, then try the next edge. */ |
| while (ei_cond (ip->ei, &(ip->e1))) |
| { |
| basic_block bb = ip->e1->dest; |
| |
| /* Consider bb as a possible loop header. */ |
| if ((ip->flags & SUCCS_SKIP_TO_LOOP_EXITS) |
| && flag_sel_sched_pipelining_outer_loops |
| && (!in_current_region_p (bb) |
| || BLOCK_TO_BB (ip->bb->index) |
| < BLOCK_TO_BB (bb->index))) |
| { |
| /* Get all loop exits recursively. */ |
| ip->loop_exits = get_all_loop_exits (bb); |
| |
| if (ip->loop_exits) |
| { |
| ip->current_exit = 0; |
| /* Move the iterator now, because we won't do |
| succ_iter_next until loop exits will end. */ |
| ei_next (&(ip->ei)); |
| break; |
| } |
| } |
| |
| /* bb is not a loop header, check as usual. */ |
| if (check (ip->e1, ip)) |
| break; |
| |
| ei_next (&(ip->ei)); |
| } |
| |
| /* If loop_exits are non null, we have found an inner loop; |
| do one more iteration to fetch an edge from these exits. */ |
| if (ip->loop_exits) |
| continue; |
| |
| /* Otherwise, we've found an edge in a usual way. Break now. */ |
| break; |
| } |
| |
| if (ip->e1) |
| { |
| basic_block bb = ip->e2->dest; |
| |
| if (bb == EXIT_BLOCK_PTR || bb == after_recovery) |
| *succp = exit_insn; |
| else |
| { |
| *succp = sel_bb_head (bb); |
| |
| gcc_assert (ip->flags != SUCCS_NORMAL |
| || *succp == NEXT_INSN (bb_note (bb))); |
| gcc_assert (BLOCK_FOR_INSN (*succp) == bb); |
| } |
| |
| return true; |
| } |
| else |
| return false; |
| } |
| } |
| |
| static inline void |
| _succ_iter_next (succ_iterator *ip) |
| { |
| gcc_assert (!ip->e2 || ip->e1); |
| |
| if (ip->bb_end && ip->e1 && !ip->loop_exits) |
| ei_next (&(ip->ei)); |
| } |
| |
| /* Returns true when E1 is an eligible successor edge, possibly skipping |
| empty blocks. When E2P is not null, the resulting edge is written there. |
| FLAGS are used to specify whether back edges and out-of-region edges |
| should be considered. */ |
| static inline bool |
| _eligible_successor_edge_p (edge e1, succ_iterator *ip) |
| { |
| edge e2 = e1; |
| basic_block bb; |
| int flags = ip->flags; |
| bool src_outside_rgn = !in_current_region_p (e1->src); |
| |
| gcc_assert (flags != 0); |
| |
| if (src_outside_rgn) |
| { |
| /* Any successor of the block that is outside current region is |
| ineligible, except when we're skipping to loop exits. */ |
| gcc_assert (flags & (SUCCS_OUT | SUCCS_SKIP_TO_LOOP_EXITS)); |
| |
| if (flags & SUCCS_OUT) |
| return false; |
| } |
| |
| bb = e2->dest; |
| |
| /* Skip empty blocks, but be careful not to leave the region. */ |
| while (1) |
| { |
| if (!sel_bb_empty_p (bb)) |
| break; |
| |
| if (!in_current_region_p (bb) |
| && !(flags & SUCCS_OUT)) |
| return false; |
| |
| e2 = EDGE_SUCC (bb, 0); |
| bb = e2->dest; |
| |
| /* This couldn't happen inside a region. */ |
| gcc_assert (! in_current_region_p (bb) |
| || (flags & SUCCS_OUT)); |
| } |
| |
| /* Save the second edge for later checks. */ |
| ip->e2 = e2; |
| |
| if (in_current_region_p (bb)) |
| { |
| /* BLOCK_TO_BB sets topological order of the region here. |
| It is important to use real predecessor here, which is ip->bb, |
| as we may well have e1->src outside current region, |
| when skipping to loop exits. */ |
| bool succeeds_in_top_order = (BLOCK_TO_BB (ip->bb->index) |
| < BLOCK_TO_BB (bb->index)); |
| |
| /* This is true for the all cases except the last one. */ |
| ip->current_flags = SUCCS_NORMAL; |
| |
| /* We are advancing forward in the region, as usual. */ |
| if (succeeds_in_top_order) |
| { |
| /* We are skipping to loop exits here. */ |
| gcc_assert (!src_outside_rgn |
| || flag_sel_sched_pipelining_outer_loops); |
| return !!(flags & SUCCS_NORMAL); |
| } |
| |
| /* This is a back edge. During pipelining we ignore back edges, |
| but only when it leads to the same loop. It can lead to the header |
| of the outer loop, which will also be the preheader of |
| the current loop. */ |
| if (pipelining_p |
| && e1->src->loop_father == bb->loop_father) |
| return !!(flags & SUCCS_NORMAL); |
| |
| /* A back edge should be requested explicitly. */ |
| ip->current_flags = SUCCS_BACK; |
| return !!(flags & SUCCS_BACK); |
| } |
| |
| ip->current_flags = SUCCS_OUT; |
| return !!(flags & SUCCS_OUT); |
| } |
| |
| #define FOR_EACH_SUCC_1(SUCC, ITER, INSN, FLAGS) \ |
| for ((ITER) = _succ_iter_start (&(SUCC), (INSN), (FLAGS)); \ |
| _succ_iter_cond (&(ITER), &(SUCC), (INSN), _eligible_successor_edge_p); \ |
| _succ_iter_next (&(ITER))) |
| |
| #define FOR_EACH_SUCC(SUCC, ITER, INSN) \ |
| FOR_EACH_SUCC_1 (SUCC, ITER, INSN, SUCCS_NORMAL) |
| |
| /* Return the current edge along which a successor was built. */ |
| #define SUCC_ITER_EDGE(ITER) ((ITER)->e1) |
| |
| /* Return the next block of BB not running into inconsistencies. */ |
| static inline basic_block |
| bb_next_bb (basic_block bb) |
| { |
| switch (EDGE_COUNT (bb->succs)) |
| { |
| case 0: |
| return bb->next_bb; |
| |
| case 1: |
| return single_succ (bb); |
| |
| case 2: |
| return FALLTHRU_EDGE (bb)->dest; |
| |
| default: |
| return bb->next_bb; |
| } |
| |
| gcc_unreachable (); |
| } |
| |
| |
| |
| /* Functions that are used in sel-sched.c. */ |
| |
| /* List functions. */ |
| extern ilist_t ilist_copy (ilist_t); |
| extern ilist_t ilist_invert (ilist_t); |
| extern void blist_add (blist_t *, insn_t, ilist_t, deps_t); |
| extern void blist_remove (blist_t *); |
| extern void flist_tail_init (flist_tail_t); |
| |
| extern fence_t flist_lookup (flist_t, insn_t); |
| extern void flist_clear (flist_t *); |
| extern void def_list_add (def_list_t *, insn_t, bool); |
| |
| /* Target context functions. */ |
| extern tc_t create_target_context (bool); |
| extern void set_target_context (tc_t); |
| extern void reset_target_context (tc_t, bool); |
| |
| /* Deps context functions. */ |
| extern void advance_deps_context (deps_t, insn_t); |
| |
| /* Fences functions. */ |
| extern void init_fences (insn_t); |
| extern void add_clean_fence_to_fences (flist_tail_t, insn_t, fence_t); |
| extern void add_dirty_fence_to_fences (flist_tail_t, insn_t, fence_t); |
| extern void move_fence_to_fences (flist_t, flist_tail_t); |
| |
| /* Pool functions. */ |
| extern regset get_regset_from_pool (void); |
| extern regset get_clear_regset_from_pool (void); |
| extern void return_regset_to_pool (regset); |
| extern void free_regset_pool (void); |
| |
| extern insn_t get_nop_from_pool (insn_t); |
| extern void return_nop_to_pool (insn_t); |
| extern void free_nop_pool (void); |
| |
| /* Vinsns functions. */ |
| extern bool vinsn_separable_p (vinsn_t); |
| extern bool vinsn_cond_branch_p (vinsn_t); |
| extern void recompute_vinsn_lhs_rhs (vinsn_t); |
| extern int sel_vinsn_cost (vinsn_t); |
| extern insn_t sel_gen_insn_from_rtx_after (rtx, expr_t, int, insn_t); |
| extern insn_t sel_gen_recovery_insn_from_rtx_after (rtx, expr_t, int, insn_t); |
| extern insn_t sel_gen_insn_from_expr_after (expr_t, vinsn_t, int, insn_t); |
| extern insn_t sel_move_insn (expr_t, int, insn_t); |
| extern void vinsn_attach (vinsn_t); |
| extern void vinsn_detach (vinsn_t); |
| extern vinsn_t vinsn_copy (vinsn_t, bool); |
| extern bool vinsn_equal_p (vinsn_t, vinsn_t); |
| |
| /* EXPR functions. */ |
| extern void copy_expr (expr_t, expr_t); |
| extern void copy_expr_onside (expr_t, expr_t); |
| extern void merge_expr_data (expr_t, expr_t, insn_t); |
| extern void merge_expr (expr_t, expr_t, insn_t); |
| extern void clear_expr (expr_t); |
| extern unsigned expr_dest_regno (expr_t); |
| extern rtx expr_dest_reg (expr_t); |
| extern int find_in_history_vect (VEC(expr_history_def, heap) *, |
| rtx, vinsn_t, bool); |
| extern void insert_in_history_vect (VEC(expr_history_def, heap) **, |
| unsigned, enum local_trans_type, |
| vinsn_t, vinsn_t, ds_t); |
| extern void mark_unavailable_targets (av_set_t, av_set_t, regset); |
| extern int speculate_expr (expr_t, ds_t); |
| |
| /* Av set functions. */ |
| extern void av_set_add (av_set_t *, expr_t); |
| extern void av_set_iter_remove (av_set_iterator *); |
| extern expr_t av_set_lookup (av_set_t, vinsn_t); |
| extern expr_t merge_with_other_exprs (av_set_t *, av_set_iterator *, expr_t); |
| extern bool av_set_is_in_p (av_set_t, vinsn_t); |
| extern av_set_t av_set_copy (av_set_t); |
| extern void av_set_union_and_clear (av_set_t *, av_set_t *, insn_t); |
| extern void av_set_union_and_live (av_set_t *, av_set_t *, regset, regset, insn_t); |
| extern void av_set_clear (av_set_t *); |
| extern void av_set_leave_one_nonspec (av_set_t *); |
| extern expr_t av_set_element (av_set_t, int); |
| extern void av_set_substract_cond_branches (av_set_t *); |
| extern void av_set_split_usefulness (av_set_t, int, int); |
| extern void av_set_intersect (av_set_t *, av_set_t); |
| |
| extern void sel_save_haifa_priorities (void); |
| |
| extern void sel_init_global_and_expr (bb_vec_t); |
| extern void sel_finish_global_and_expr (void); |
| |
| extern regset compute_live (insn_t); |
| |
| /* Dependence analysis functions. */ |
| extern void sel_clear_has_dependence (void); |
| extern ds_t has_dependence_p (expr_t, insn_t, ds_t **); |
| |
| extern int tick_check_p (expr_t, deps_t, fence_t); |
| |
| /* Functions to work with insns. */ |
| extern bool lhs_of_insn_equals_to_dest_p (insn_t, rtx); |
| extern bool insn_eligible_for_subst_p (insn_t); |
| extern void get_dest_and_mode (rtx, rtx *, enum machine_mode *); |
| |
| extern bool bookkeeping_can_be_created_if_moved_through_p (insn_t); |
| extern bool sel_remove_insn (insn_t, bool, bool); |
| extern bool bb_header_p (insn_t); |
| extern void sel_init_invalid_data_sets (insn_t); |
| extern bool insn_at_boundary_p (insn_t); |
| extern bool jump_leads_only_to_bb_p (insn_t, basic_block); |
| |
| /* Basic block and CFG functions. */ |
| |
| extern insn_t sel_bb_head (basic_block); |
| extern bool sel_bb_head_p (insn_t); |
| extern insn_t sel_bb_end (basic_block); |
| extern bool sel_bb_end_p (insn_t); |
| extern bool sel_bb_empty_p (basic_block); |
| |
| extern bool in_current_region_p (basic_block); |
| extern basic_block fallthru_bb_of_jump (rtx); |
| |
| extern void sel_init_bbs (bb_vec_t, basic_block); |
| extern void sel_finish_bbs (void); |
| |
| extern struct succs_info * compute_succs_info (insn_t, short); |
| extern void free_succs_info (struct succs_info *); |
| extern bool sel_insn_has_single_succ_p (insn_t, int); |
| extern bool sel_num_cfg_preds_gt_1 (insn_t); |
| extern int get_seqno_by_preds (rtx); |
| |
| extern bool bb_ends_ebb_p (basic_block); |
| extern bool in_same_ebb_p (insn_t, insn_t); |
| |
| extern bool tidy_control_flow (basic_block, bool); |
| extern void free_bb_note_pool (void); |
| |
| extern void sel_remove_empty_bb (basic_block, bool, bool); |
| extern bool maybe_tidy_empty_bb (basic_block bb); |
| extern basic_block sel_split_edge (edge); |
| extern basic_block sel_create_recovery_block (insn_t); |
| extern void sel_merge_blocks (basic_block, basic_block); |
| extern void sel_redirect_edge_and_branch (edge, basic_block); |
| extern void sel_redirect_edge_and_branch_force (edge, basic_block); |
| extern void sel_init_pipelining (void); |
| extern void sel_finish_pipelining (void); |
| extern void sel_sched_region (int); |
| extern void sel_find_rgns (void); |
| extern loop_p get_loop_nest_for_rgn (unsigned int); |
| extern bool considered_for_pipelining_p (struct loop *); |
| extern void make_region_from_loop_preheader (VEC(basic_block, heap) **); |
| extern void sel_add_loop_preheaders (void); |
| extern bool sel_is_loop_preheader_p (basic_block); |
| extern void clear_outdated_rtx_info (basic_block); |
| extern void free_data_sets (basic_block); |
| extern void exchange_data_sets (basic_block, basic_block); |
| extern void copy_data_sets (basic_block, basic_block); |
| |
| extern void sel_register_cfg_hooks (void); |
| extern void sel_unregister_cfg_hooks (void); |
| |
| /* Expression transformation routines. */ |
| extern rtx create_insn_rtx_from_pattern (rtx, rtx); |
| extern vinsn_t create_vinsn_from_insn_rtx (rtx, bool); |
| extern rtx create_copy_of_insn_rtx (rtx); |
| extern void change_vinsn_in_expr (expr_t, vinsn_t); |
| |
| /* Various initialization functions. */ |
| extern void init_lv_sets (void); |
| extern void free_lv_sets (void); |
| extern void setup_nop_and_exit_insns (void); |
| extern void free_nop_and_exit_insns (void); |
| extern void setup_nop_vinsn (void); |
| extern void free_nop_vinsn (void); |
| extern void sel_set_sched_flags (void); |
| extern void sel_setup_sched_infos (void); |
| extern void alloc_sched_pools (void); |
| extern void free_sched_pools (void); |
| |
| #endif /* GCC_SEL_SCHED_IR_H */ |
| |
| |
| |
| |
| |
| |
| |
| |