| /* Data flow functions for trees. |
| Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009 |
| Free Software Foundation, Inc. |
| Contributed by Diego Novillo <dnovillo@redhat.com> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "hashtab.h" |
| #include "pointer-set.h" |
| #include "tree.h" |
| #include "rtl.h" |
| #include "tm_p.h" |
| #include "hard-reg-set.h" |
| #include "basic-block.h" |
| #include "output.h" |
| #include "timevar.h" |
| #include "expr.h" |
| #include "ggc.h" |
| #include "langhooks.h" |
| #include "flags.h" |
| #include "function.h" |
| #include "diagnostic.h" |
| #include "tree-dump.h" |
| #include "gimple.h" |
| #include "tree-flow.h" |
| #include "tree-inline.h" |
| #include "tree-pass.h" |
| #include "convert.h" |
| #include "params.h" |
| #include "cgraph.h" |
| |
| /* Build and maintain data flow information for trees. */ |
| |
| /* Counters used to display DFA and SSA statistics. */ |
| struct dfa_stats_d |
| { |
| long num_var_anns; |
| long num_defs; |
| long num_uses; |
| long num_phis; |
| long num_phi_args; |
| size_t max_num_phi_args; |
| long num_vdefs; |
| long num_vuses; |
| }; |
| |
| |
| /* Local functions. */ |
| static void collect_dfa_stats (struct dfa_stats_d *); |
| static tree find_vars_r (tree *, int *, void *); |
| |
| |
| /*--------------------------------------------------------------------------- |
| Dataflow analysis (DFA) routines |
| ---------------------------------------------------------------------------*/ |
| /* Find all the variables referenced in the function. This function |
| builds the global arrays REFERENCED_VARS and CALL_CLOBBERED_VARS. |
| |
| Note that this function does not look for statement operands, it simply |
| determines what variables are referenced in the program and detects |
| various attributes for each variable used by alias analysis and the |
| optimizer. */ |
| |
| static unsigned int |
| find_referenced_vars (void) |
| { |
| basic_block bb; |
| gimple_stmt_iterator si; |
| |
| FOR_EACH_BB (bb) |
| { |
| for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) |
| { |
| size_t i; |
| gimple stmt = gsi_stmt (si); |
| for (i = 0; i < gimple_num_ops (stmt); i++) |
| walk_tree (gimple_op_ptr (stmt, i), find_vars_r, NULL, NULL); |
| } |
| |
| for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) |
| { |
| gimple phi = gsi_stmt (si); |
| size_t i, len = gimple_phi_num_args (phi); |
| |
| walk_tree (gimple_phi_result_ptr (phi), find_vars_r, NULL, NULL); |
| |
| for (i = 0; i < len; i++) |
| { |
| tree arg = gimple_phi_arg_def (phi, i); |
| walk_tree (&arg, find_vars_r, NULL, NULL); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| struct gimple_opt_pass pass_referenced_vars = |
| { |
| { |
| GIMPLE_PASS, |
| NULL, /* name */ |
| NULL, /* gate */ |
| find_referenced_vars, /* execute */ |
| NULL, /* sub */ |
| NULL, /* next */ |
| 0, /* static_pass_number */ |
| TV_FIND_REFERENCED_VARS, /* tv_id */ |
| PROP_gimple_leh | PROP_cfg, /* properties_required */ |
| PROP_referenced_vars, /* properties_provided */ |
| 0, /* properties_destroyed */ |
| TODO_dump_func, /* todo_flags_start */ |
| TODO_dump_func /* todo_flags_finish */ |
| } |
| }; |
| |
| |
| /*--------------------------------------------------------------------------- |
| Manage annotations |
| ---------------------------------------------------------------------------*/ |
| /* Create a new annotation for a _DECL node T. */ |
| |
| var_ann_t |
| create_var_ann (tree t) |
| { |
| var_ann_t ann; |
| |
| gcc_assert (t); |
| gcc_assert (DECL_P (t)); |
| gcc_assert (!t->base.ann || t->base.ann->common.type == VAR_ANN); |
| |
| ann = GGC_CNEW (struct var_ann_d); |
| ann->common.type = VAR_ANN; |
| t->base.ann = (tree_ann_t) ann; |
| |
| return ann; |
| } |
| |
| /* Create a new annotation for a FUNCTION_DECL node T. */ |
| |
| function_ann_t |
| create_function_ann (tree t) |
| { |
| function_ann_t ann; |
| |
| gcc_assert (t); |
| gcc_assert (TREE_CODE (t) == FUNCTION_DECL); |
| gcc_assert (!t->base.ann || t->base.ann->common.type == FUNCTION_ANN); |
| |
| ann = (function_ann_t) ggc_alloc (sizeof (*ann)); |
| memset ((void *) ann, 0, sizeof (*ann)); |
| |
| ann->common.type = FUNCTION_ANN; |
| |
| t->base.ann = (tree_ann_t) ann; |
| |
| return ann; |
| } |
| |
| /* Renumber all of the gimple stmt uids. */ |
| |
| void |
| renumber_gimple_stmt_uids (void) |
| { |
| basic_block bb; |
| |
| set_gimple_stmt_max_uid (cfun, 0); |
| FOR_ALL_BB (bb) |
| { |
| gimple_stmt_iterator bsi; |
| for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) |
| { |
| gimple stmt = gsi_stmt (bsi); |
| gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun)); |
| } |
| } |
| } |
| |
| /* Create a new annotation for a tree T. */ |
| |
| tree_ann_common_t |
| create_tree_common_ann (tree t) |
| { |
| tree_ann_common_t ann; |
| |
| gcc_assert (t); |
| gcc_assert (!t->base.ann || t->base.ann->common.type == TREE_ANN_COMMON); |
| |
| ann = GGC_CNEW (struct tree_ann_common_d); |
| |
| ann->type = TREE_ANN_COMMON; |
| ann->rn = -1; |
| t->base.ann = (tree_ann_t) ann; |
| |
| return ann; |
| } |
| |
| /* Build a temporary. Make sure and register it to be renamed. */ |
| |
| tree |
| make_rename_temp (tree type, const char *prefix) |
| { |
| tree t = create_tmp_var (type, prefix); |
| |
| if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE |
| || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE) |
| DECL_GIMPLE_REG_P (t) = 1; |
| |
| if (gimple_referenced_vars (cfun)) |
| { |
| add_referenced_var (t); |
| mark_sym_for_renaming (t); |
| } |
| |
| return t; |
| } |
| |
| |
| |
| /*--------------------------------------------------------------------------- |
| Debugging functions |
| ---------------------------------------------------------------------------*/ |
| /* Dump the list of all the referenced variables in the current function to |
| FILE. */ |
| |
| void |
| dump_referenced_vars (FILE *file) |
| { |
| tree var; |
| referenced_var_iterator rvi; |
| |
| fprintf (file, "\nReferenced variables in %s: %u\n\n", |
| get_name (current_function_decl), (unsigned) num_referenced_vars); |
| |
| FOR_EACH_REFERENCED_VAR (var, rvi) |
| { |
| fprintf (file, "Variable: "); |
| dump_variable (file, var); |
| fprintf (file, "\n"); |
| } |
| } |
| |
| |
| /* Dump the list of all the referenced variables to stderr. */ |
| |
| void |
| debug_referenced_vars (void) |
| { |
| dump_referenced_vars (stderr); |
| } |
| |
| |
| /* Dump variable VAR and its may-aliases to FILE. */ |
| |
| void |
| dump_variable (FILE *file, tree var) |
| { |
| var_ann_t ann; |
| |
| if (TREE_CODE (var) == SSA_NAME) |
| { |
| if (POINTER_TYPE_P (TREE_TYPE (var))) |
| dump_points_to_info_for (file, var); |
| var = SSA_NAME_VAR (var); |
| } |
| |
| if (var == NULL_TREE) |
| { |
| fprintf (file, "<nil>"); |
| return; |
| } |
| |
| print_generic_expr (file, var, dump_flags); |
| |
| ann = var_ann (var); |
| |
| fprintf (file, ", UID D.%u", (unsigned) DECL_UID (var)); |
| |
| fprintf (file, ", "); |
| print_generic_expr (file, TREE_TYPE (var), dump_flags); |
| |
| if (ann && ann->symbol_mem_tag) |
| { |
| fprintf (file, ", symbol memory tag: "); |
| print_generic_expr (file, ann->symbol_mem_tag, dump_flags); |
| } |
| |
| if (TREE_ADDRESSABLE (var)) |
| fprintf (file, ", is addressable"); |
| |
| if (is_global_var (var)) |
| fprintf (file, ", is global"); |
| |
| if (TREE_THIS_VOLATILE (var)) |
| fprintf (file, ", is volatile"); |
| |
| dump_mem_sym_stats_for_var (file, var); |
| |
| if (is_call_clobbered (var)) |
| { |
| const char *s = ""; |
| var_ann_t va = var_ann (var); |
| unsigned int escape_mask = va->escape_mask; |
| |
| fprintf (file, ", call clobbered"); |
| fprintf (file, " ("); |
| if (escape_mask & ESCAPE_STORED_IN_GLOBAL) |
| { fprintf (file, "%sstored in global", s); s = ", "; } |
| if (escape_mask & ESCAPE_TO_ASM) |
| { fprintf (file, "%sgoes through ASM", s); s = ", "; } |
| if (escape_mask & ESCAPE_TO_CALL) |
| { fprintf (file, "%spassed to call", s); s = ", "; } |
| if (escape_mask & ESCAPE_BAD_CAST) |
| { fprintf (file, "%sbad cast", s); s = ", "; } |
| if (escape_mask & ESCAPE_TO_RETURN) |
| { fprintf (file, "%sreturned from func", s); s = ", "; } |
| if (escape_mask & ESCAPE_TO_PURE_CONST) |
| { fprintf (file, "%spassed to pure/const", s); s = ", "; } |
| if (escape_mask & ESCAPE_IS_GLOBAL) |
| { fprintf (file, "%sis global var", s); s = ", "; } |
| if (escape_mask & ESCAPE_IS_PARM) |
| { fprintf (file, "%sis incoming pointer", s); s = ", "; } |
| if (escape_mask & ESCAPE_UNKNOWN) |
| { fprintf (file, "%sunknown escape", s); s = ", "; } |
| fprintf (file, ")"); |
| } |
| |
| if (ann->noalias_state == NO_ALIAS) |
| fprintf (file, ", NO_ALIAS (does not alias other NO_ALIAS symbols)"); |
| else if (ann->noalias_state == NO_ALIAS_GLOBAL) |
| fprintf (file, ", NO_ALIAS_GLOBAL (does not alias other NO_ALIAS symbols" |
| " and global vars)"); |
| else if (ann->noalias_state == NO_ALIAS_ANYTHING) |
| fprintf (file, ", NO_ALIAS_ANYTHING (does not alias any other symbols)"); |
| |
| if (gimple_default_def (cfun, var)) |
| { |
| fprintf (file, ", default def: "); |
| print_generic_expr (file, gimple_default_def (cfun, var), dump_flags); |
| } |
| |
| if (MTAG_P (var) && may_aliases (var)) |
| { |
| fprintf (file, ", may aliases: "); |
| dump_may_aliases_for (file, var); |
| } |
| |
| if (!is_gimple_reg (var)) |
| { |
| if (memory_partition (var)) |
| { |
| fprintf (file, ", belongs to partition: "); |
| print_generic_expr (file, memory_partition (var), dump_flags); |
| } |
| |
| if (TREE_CODE (var) == MEMORY_PARTITION_TAG) |
| { |
| fprintf (file, ", partition symbols: "); |
| dump_decl_set (file, MPT_SYMBOLS (var)); |
| } |
| } |
| |
| fprintf (file, "\n"); |
| } |
| |
| |
| /* Dump variable VAR and its may-aliases to stderr. */ |
| |
| void |
| debug_variable (tree var) |
| { |
| dump_variable (stderr, var); |
| } |
| |
| |
| /* Dump various DFA statistics to FILE. */ |
| |
| void |
| dump_dfa_stats (FILE *file) |
| { |
| struct dfa_stats_d dfa_stats; |
| |
| unsigned long size, total = 0; |
| const char * const fmt_str = "%-30s%-13s%12s\n"; |
| const char * const fmt_str_1 = "%-30s%13lu%11lu%c\n"; |
| const char * const fmt_str_3 = "%-43s%11lu%c\n"; |
| const char *funcname |
| = lang_hooks.decl_printable_name (current_function_decl, 2); |
| |
| collect_dfa_stats (&dfa_stats); |
| |
| fprintf (file, "\nDFA Statistics for %s\n\n", funcname); |
| |
| fprintf (file, "---------------------------------------------------------\n"); |
| fprintf (file, fmt_str, "", " Number of ", "Memory"); |
| fprintf (file, fmt_str, "", " instances ", "used "); |
| fprintf (file, "---------------------------------------------------------\n"); |
| |
| size = num_referenced_vars * sizeof (tree); |
| total += size; |
| fprintf (file, fmt_str_1, "Referenced variables", (unsigned long)num_referenced_vars, |
| SCALE (size), LABEL (size)); |
| |
| size = dfa_stats.num_var_anns * sizeof (struct var_ann_d); |
| total += size; |
| fprintf (file, fmt_str_1, "Variables annotated", dfa_stats.num_var_anns, |
| SCALE (size), LABEL (size)); |
| |
| size = dfa_stats.num_uses * sizeof (tree *); |
| total += size; |
| fprintf (file, fmt_str_1, "USE operands", dfa_stats.num_uses, |
| SCALE (size), LABEL (size)); |
| |
| size = dfa_stats.num_defs * sizeof (tree *); |
| total += size; |
| fprintf (file, fmt_str_1, "DEF operands", dfa_stats.num_defs, |
| SCALE (size), LABEL (size)); |
| |
| size = dfa_stats.num_vuses * sizeof (tree *); |
| total += size; |
| fprintf (file, fmt_str_1, "VUSE operands", dfa_stats.num_vuses, |
| SCALE (size), LABEL (size)); |
| |
| size = dfa_stats.num_vdefs * sizeof (tree *); |
| total += size; |
| fprintf (file, fmt_str_1, "VDEF operands", dfa_stats.num_vdefs, |
| SCALE (size), LABEL (size)); |
| |
| size = dfa_stats.num_phis * sizeof (struct gimple_statement_phi); |
| total += size; |
| fprintf (file, fmt_str_1, "PHI nodes", dfa_stats.num_phis, |
| SCALE (size), LABEL (size)); |
| |
| size = dfa_stats.num_phi_args * sizeof (struct phi_arg_d); |
| total += size; |
| fprintf (file, fmt_str_1, "PHI arguments", dfa_stats.num_phi_args, |
| SCALE (size), LABEL (size)); |
| |
| fprintf (file, "---------------------------------------------------------\n"); |
| fprintf (file, fmt_str_3, "Total memory used by DFA/SSA data", SCALE (total), |
| LABEL (total)); |
| fprintf (file, "---------------------------------------------------------\n"); |
| fprintf (file, "\n"); |
| |
| if (dfa_stats.num_phis) |
| fprintf (file, "Average number of arguments per PHI node: %.1f (max: %ld)\n", |
| (float) dfa_stats.num_phi_args / (float) dfa_stats.num_phis, |
| (long) dfa_stats.max_num_phi_args); |
| |
| fprintf (file, "\n"); |
| } |
| |
| |
| /* Dump DFA statistics on stderr. */ |
| |
| void |
| debug_dfa_stats (void) |
| { |
| dump_dfa_stats (stderr); |
| } |
| |
| |
| /* Collect DFA statistics and store them in the structure pointed to by |
| DFA_STATS_P. */ |
| |
| static void |
| collect_dfa_stats (struct dfa_stats_d *dfa_stats_p ATTRIBUTE_UNUSED) |
| { |
| basic_block bb; |
| referenced_var_iterator vi; |
| tree var; |
| |
| gcc_assert (dfa_stats_p); |
| |
| memset ((void *)dfa_stats_p, 0, sizeof (struct dfa_stats_d)); |
| |
| /* Count all the variable annotations. */ |
| FOR_EACH_REFERENCED_VAR (var, vi) |
| if (var_ann (var)) |
| dfa_stats_p->num_var_anns++; |
| |
| /* Walk all the statements in the function counting references. */ |
| FOR_EACH_BB (bb) |
| { |
| gimple_stmt_iterator si; |
| |
| for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) |
| { |
| gimple phi = gsi_stmt (si); |
| dfa_stats_p->num_phis++; |
| dfa_stats_p->num_phi_args += gimple_phi_num_args (phi); |
| if (gimple_phi_num_args (phi) > dfa_stats_p->max_num_phi_args) |
| dfa_stats_p->max_num_phi_args = gimple_phi_num_args (phi); |
| } |
| |
| for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) |
| { |
| gimple stmt = gsi_stmt (si); |
| dfa_stats_p->num_defs += NUM_SSA_OPERANDS (stmt, SSA_OP_DEF); |
| dfa_stats_p->num_uses += NUM_SSA_OPERANDS (stmt, SSA_OP_USE); |
| dfa_stats_p->num_vdefs += NUM_SSA_OPERANDS (stmt, SSA_OP_VDEF); |
| dfa_stats_p->num_vuses += NUM_SSA_OPERANDS (stmt, SSA_OP_VUSE); |
| } |
| } |
| } |
| |
| |
| /*--------------------------------------------------------------------------- |
| Miscellaneous helpers |
| ---------------------------------------------------------------------------*/ |
| /* Callback for walk_tree. Used to collect variables referenced in |
| the function. */ |
| |
| static tree |
| find_vars_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED) |
| { |
| /* If we are reading the lto info back in, we need to rescan the |
| referenced vars. */ |
| if (TREE_CODE (*tp) == SSA_NAME) |
| add_referenced_var (SSA_NAME_VAR (*tp)); |
| |
| /* If T is a regular variable that the optimizers are interested |
| in, add it to the list of variables. */ |
| else if (SSA_VAR_P (*tp)) |
| add_referenced_var (*tp); |
| |
| /* Type, _DECL and constant nodes have no interesting children. |
| Ignore them. */ |
| else if (IS_TYPE_OR_DECL_P (*tp) || CONSTANT_CLASS_P (*tp)) |
| *walk_subtrees = 0; |
| |
| return NULL_TREE; |
| } |
| |
| /* Lookup UID in the referenced_vars hashtable and return the associated |
| variable. */ |
| |
| tree |
| referenced_var_lookup (unsigned int uid) |
| { |
| tree h; |
| struct tree_decl_minimal in; |
| in.uid = uid; |
| h = (tree) htab_find_with_hash (gimple_referenced_vars (cfun), &in, uid); |
| gcc_assert (h || uid == 0); |
| return h; |
| } |
| |
| /* Check if TO is in the referenced_vars hash table and insert it if not. |
| Return true if it required insertion. */ |
| |
| bool |
| referenced_var_check_and_insert (tree to) |
| { |
| tree h, *loc; |
| struct tree_decl_minimal in; |
| unsigned int uid = DECL_UID (to); |
| |
| in.uid = uid; |
| h = (tree) htab_find_with_hash (gimple_referenced_vars (cfun), &in, uid); |
| if (h) |
| { |
| /* DECL_UID has already been entered in the table. Verify that it is |
| the same entry as TO. See PR 27793. */ |
| gcc_assert (h == to); |
| return false; |
| } |
| |
| loc = (tree *) htab_find_slot_with_hash (gimple_referenced_vars (cfun), |
| &in, uid, INSERT); |
| *loc = to; |
| return true; |
| } |
| |
| /* Lookup VAR UID in the default_defs hashtable and return the associated |
| variable. */ |
| |
| tree |
| gimple_default_def (struct function *fn, tree var) |
| { |
| struct tree_decl_minimal ind; |
| struct tree_ssa_name in; |
| gcc_assert (SSA_VAR_P (var)); |
| in.var = (tree)&ind; |
| ind.uid = DECL_UID (var); |
| return (tree) htab_find_with_hash (DEFAULT_DEFS (fn), &in, DECL_UID (var)); |
| } |
| |
| /* Insert the pair VAR's UID, DEF into the default_defs hashtable. */ |
| |
| void |
| set_default_def (tree var, tree def) |
| { |
| struct tree_decl_minimal ind; |
| struct tree_ssa_name in; |
| void **loc; |
| |
| gcc_assert (SSA_VAR_P (var)); |
| in.var = (tree)&ind; |
| ind.uid = DECL_UID (var); |
| if (!def) |
| { |
| loc = htab_find_slot_with_hash (DEFAULT_DEFS (cfun), &in, |
| DECL_UID (var), INSERT); |
| gcc_assert (*loc); |
| htab_remove_elt (DEFAULT_DEFS (cfun), *loc); |
| return; |
| } |
| gcc_assert (TREE_CODE (def) == SSA_NAME && SSA_NAME_VAR (def) == var); |
| loc = htab_find_slot_with_hash (DEFAULT_DEFS (cfun), &in, |
| DECL_UID (var), INSERT); |
| |
| /* Default definition might be changed by tail call optimization. */ |
| if (*loc) |
| SSA_NAME_IS_DEFAULT_DEF (*(tree *) loc) = false; |
| *(tree *) loc = def; |
| |
| /* Mark DEF as the default definition for VAR. */ |
| SSA_NAME_IS_DEFAULT_DEF (def) = true; |
| } |
| |
| /* Add VAR to the list of referenced variables if it isn't already there. */ |
| |
| bool |
| add_referenced_var (tree var) |
| { |
| var_ann_t v_ann; |
| |
| v_ann = get_var_ann (var); |
| gcc_assert (DECL_P (var)); |
| |
| /* Insert VAR into the referenced_vars has table if it isn't present. */ |
| if (referenced_var_check_and_insert (var)) |
| { |
| /* This is the first time we found this variable, annotate it with |
| attributes that are intrinsic to the variable. */ |
| |
| /* Tag's don't have DECL_INITIAL. */ |
| if (MTAG_P (var)) |
| return true; |
| |
| /* Scan DECL_INITIAL for pointer variables as they may contain |
| address arithmetic referencing the address of other |
| variables. |
| Even non-constant initializers need to be walked, because |
| IPA passes might prove that their are invariant later on. */ |
| if (DECL_INITIAL (var) |
| /* Initializers of external variables are not useful to the |
| optimizers. */ |
| && !DECL_EXTERNAL (var)) |
| walk_tree (&DECL_INITIAL (var), find_vars_r, NULL, 0); |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Remove VAR from the list. */ |
| |
| void |
| remove_referenced_var (tree var) |
| { |
| var_ann_t v_ann; |
| struct tree_decl_minimal in; |
| void **loc; |
| unsigned int uid = DECL_UID (var); |
| |
| clear_call_clobbered (var); |
| bitmap_clear_bit (gimple_call_used_vars (cfun), uid); |
| if ((v_ann = var_ann (var))) |
| { |
| /* Preserve var_anns of globals, but clear their alias info. */ |
| if (MTAG_P (var) |
| || (!TREE_STATIC (var) && !DECL_EXTERNAL (var))) |
| { |
| ggc_free (v_ann); |
| var->base.ann = NULL; |
| } |
| else |
| { |
| v_ann->mpt = NULL_TREE; |
| v_ann->symbol_mem_tag = NULL_TREE; |
| } |
| } |
| gcc_assert (DECL_P (var)); |
| in.uid = uid; |
| loc = htab_find_slot_with_hash (gimple_referenced_vars (cfun), &in, uid, |
| NO_INSERT); |
| htab_clear_slot (gimple_referenced_vars (cfun), loc); |
| } |
| |
| |
| /* Return the virtual variable associated to the non-scalar variable VAR. */ |
| |
| tree |
| get_virtual_var (tree var) |
| { |
| STRIP_NOPS (var); |
| |
| if (TREE_CODE (var) == SSA_NAME) |
| var = SSA_NAME_VAR (var); |
| |
| while (TREE_CODE (var) == REALPART_EXPR || TREE_CODE (var) == IMAGPART_EXPR |
| || handled_component_p (var)) |
| var = TREE_OPERAND (var, 0); |
| |
| /* Treating GIMPLE registers as virtual variables makes no sense. |
| Also complain if we couldn't extract a _DECL out of the original |
| expression. */ |
| gcc_assert (SSA_VAR_P (var)); |
| gcc_assert (!is_gimple_reg (var)); |
| |
| return var; |
| } |
| |
| /* Mark all the naked symbols in STMT for SSA renaming. |
| |
| NOTE: This function should only be used for brand new statements. |
| If the caller is modifying an existing statement, it should use the |
| combination push_stmt_changes/pop_stmt_changes. */ |
| |
| void |
| mark_symbols_for_renaming (gimple stmt) |
| { |
| tree op; |
| ssa_op_iter iter; |
| |
| update_stmt (stmt); |
| |
| /* Mark all the operands for renaming. */ |
| FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_ALL_OPERANDS) |
| if (DECL_P (op)) |
| mark_sym_for_renaming (op); |
| } |
| |
| |
| /* Find all variables within the gimplified statement that were not |
| previously visible to the function and add them to the referenced |
| variables list. */ |
| |
| static tree |
| find_new_referenced_vars_1 (tree *tp, int *walk_subtrees, |
| void *data ATTRIBUTE_UNUSED) |
| { |
| tree t = *tp; |
| |
| if (TREE_CODE (t) == VAR_DECL && !var_ann (t)) |
| { |
| add_referenced_var (t); |
| mark_sym_for_renaming (t); |
| } |
| |
| if (IS_TYPE_OR_DECL_P (t)) |
| *walk_subtrees = 0; |
| |
| return NULL; |
| } |
| |
| |
| /* Find any new referenced variables in STMT. */ |
| |
| void |
| find_new_referenced_vars (gimple stmt) |
| { |
| walk_gimple_op (stmt, find_new_referenced_vars_1, NULL); |
| } |
| |
| |
| /* If EXP is a handled component reference for a structure, return the |
| base variable. The access range is delimited by bit positions *POFFSET and |
| *POFFSET + *PMAX_SIZE. The access size is *PSIZE bits. If either |
| *PSIZE or *PMAX_SIZE is -1, they could not be determined. If *PSIZE |
| and *PMAX_SIZE are equal, the access is non-variable. */ |
| |
| tree |
| get_ref_base_and_extent (tree exp, HOST_WIDE_INT *poffset, |
| HOST_WIDE_INT *psize, |
| HOST_WIDE_INT *pmax_size) |
| { |
| HOST_WIDE_INT bitsize = -1; |
| HOST_WIDE_INT maxsize = -1; |
| tree size_tree = NULL_TREE; |
| HOST_WIDE_INT bit_offset = 0; |
| bool seen_variable_array_ref = false; |
| |
| gcc_assert (!SSA_VAR_P (exp)); |
| |
| /* First get the final access size from just the outermost expression. */ |
| if (TREE_CODE (exp) == COMPONENT_REF) |
| size_tree = DECL_SIZE (TREE_OPERAND (exp, 1)); |
| else if (TREE_CODE (exp) == BIT_FIELD_REF) |
| size_tree = TREE_OPERAND (exp, 1); |
| else |
| { |
| enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp)); |
| if (mode == BLKmode) |
| size_tree = TYPE_SIZE (TREE_TYPE (exp)); |
| else |
| bitsize = GET_MODE_BITSIZE (mode); |
| } |
| if (size_tree != NULL_TREE) |
| { |
| if (! host_integerp (size_tree, 1)) |
| bitsize = -1; |
| else |
| bitsize = TREE_INT_CST_LOW (size_tree); |
| } |
| |
| /* Initially, maxsize is the same as the accessed element size. |
| In the following it will only grow (or become -1). */ |
| maxsize = bitsize; |
| |
| /* Compute cumulative bit-offset for nested component-refs and array-refs, |
| and find the ultimate containing object. */ |
| while (1) |
| { |
| switch (TREE_CODE (exp)) |
| { |
| case BIT_FIELD_REF: |
| bit_offset += tree_low_cst (TREE_OPERAND (exp, 2), 0); |
| break; |
| |
| case COMPONENT_REF: |
| { |
| tree field = TREE_OPERAND (exp, 1); |
| tree this_offset = component_ref_field_offset (exp); |
| |
| if (this_offset && TREE_CODE (this_offset) == INTEGER_CST) |
| { |
| HOST_WIDE_INT hthis_offset = tree_low_cst (this_offset, 0); |
| |
| hthis_offset *= BITS_PER_UNIT; |
| bit_offset += hthis_offset; |
| bit_offset += tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0); |
| } |
| else |
| { |
| tree csize = TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0))); |
| /* We need to adjust maxsize to the whole structure bitsize. |
| But we can subtract any constant offset seen so far, |
| because that would get us out of the structure otherwise. */ |
| if (maxsize != -1 && csize && host_integerp (csize, 1)) |
| maxsize = TREE_INT_CST_LOW (csize) - bit_offset; |
| else |
| maxsize = -1; |
| } |
| } |
| break; |
| |
| case ARRAY_REF: |
| case ARRAY_RANGE_REF: |
| { |
| tree index = TREE_OPERAND (exp, 1); |
| tree low_bound = array_ref_low_bound (exp); |
| tree unit_size = array_ref_element_size (exp); |
| |
| /* If the resulting bit-offset is constant, track it. */ |
| if (host_integerp (index, 0) |
| && host_integerp (low_bound, 0) |
| && host_integerp (unit_size, 1)) |
| { |
| HOST_WIDE_INT hindex = tree_low_cst (index, 0); |
| |
| hindex -= tree_low_cst (low_bound, 0); |
| hindex *= tree_low_cst (unit_size, 1); |
| hindex *= BITS_PER_UNIT; |
| bit_offset += hindex; |
| |
| /* An array ref with a constant index up in the structure |
| hierarchy will constrain the size of any variable array ref |
| lower in the access hierarchy. */ |
| seen_variable_array_ref = false; |
| } |
| else |
| { |
| tree asize = TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0))); |
| /* We need to adjust maxsize to the whole array bitsize. |
| But we can subtract any constant offset seen so far, |
| because that would get us outside of the array otherwise. */ |
| if (maxsize != -1 && asize && host_integerp (asize, 1)) |
| maxsize = TREE_INT_CST_LOW (asize) - bit_offset; |
| else |
| maxsize = -1; |
| |
| /* Remember that we have seen an array ref with a variable |
| index. */ |
| seen_variable_array_ref = true; |
| } |
| } |
| break; |
| |
| case REALPART_EXPR: |
| break; |
| |
| case IMAGPART_EXPR: |
| bit_offset += bitsize; |
| break; |
| |
| case VIEW_CONVERT_EXPR: |
| /* ??? We probably should give up here and bail out. */ |
| break; |
| |
| default: |
| goto done; |
| } |
| |
| exp = TREE_OPERAND (exp, 0); |
| } |
| done: |
| |
| /* We need to deal with variable arrays ending structures such as |
| struct { int length; int a[1]; } x; x.a[d] |
| struct { struct { int a; int b; } a[1]; } x; x.a[d].a |
| struct { struct { int a[1]; } a[1]; } x; x.a[0][d], x.a[d][0] |
| where we do not know maxsize for variable index accesses to |
| the array. The simplest way to conservatively deal with this |
| is to punt in the case that offset + maxsize reaches the |
| base type boundary. */ |
| if (seen_variable_array_ref |
| && maxsize != -1 |
| && host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1) |
| && bit_offset + maxsize |
| == (signed)TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))) |
| maxsize = -1; |
| |
| /* ??? Due to negative offsets in ARRAY_REF we can end up with |
| negative bit_offset here. We might want to store a zero offset |
| in this case. */ |
| *poffset = bit_offset; |
| *psize = bitsize; |
| *pmax_size = maxsize; |
| |
| return exp; |
| } |
| |
| /* Returns true if STMT references an SSA_NAME that has |
| SSA_NAME_OCCURS_IN_ABNORMAL_PHI set, otherwise false. */ |
| |
| bool |
| stmt_references_abnormal_ssa_name (gimple stmt) |
| { |
| ssa_op_iter oi; |
| use_operand_p use_p; |
| |
| FOR_EACH_SSA_USE_OPERAND (use_p, stmt, oi, SSA_OP_USE) |
| { |
| if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (use_p))) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Return true, if the two memory references REF1 and REF2 may alias. */ |
| |
| bool |
| refs_may_alias_p (tree ref1, tree ref2) |
| { |
| tree base1, base2; |
| HOST_WIDE_INT offset1 = 0, offset2 = 0; |
| HOST_WIDE_INT size1 = -1, size2 = -1; |
| HOST_WIDE_INT max_size1 = -1, max_size2 = -1; |
| bool strict_aliasing_applies; |
| |
| gcc_assert ((SSA_VAR_P (ref1) |
| || handled_component_p (ref1) |
| || INDIRECT_REF_P (ref1) |
| || TREE_CODE (ref1) == TARGET_MEM_REF) |
| && (SSA_VAR_P (ref2) |
| || handled_component_p (ref2) |
| || INDIRECT_REF_P (ref2) |
| || TREE_CODE (ref2) == TARGET_MEM_REF)); |
| |
| /* Defer to TBAA if possible. */ |
| if (flag_strict_aliasing |
| && !alias_sets_conflict_p (get_alias_set (ref1), get_alias_set (ref2))) |
| return false; |
| |
| /* Decompose the references into their base objects and the access. */ |
| base1 = ref1; |
| if (handled_component_p (ref1)) |
| base1 = get_ref_base_and_extent (ref1, &offset1, &size1, &max_size1); |
| base2 = ref2; |
| if (handled_component_p (ref2)) |
| base2 = get_ref_base_and_extent (ref2, &offset2, &size2, &max_size2); |
| |
| /* If both references are based on different variables, they cannot alias. |
| If both references are based on the same variable, they cannot alias if |
| the accesses do not overlap. */ |
| if (SSA_VAR_P (base1) |
| && SSA_VAR_P (base2)) |
| { |
| if (!operand_equal_p (base1, base2, 0)) |
| return false; |
| return ranges_overlap_p (offset1, max_size1, offset2, max_size2); |
| } |
| |
| /* If one base is a ref-all pointer weird things are allowed. */ |
| strict_aliasing_applies = (flag_strict_aliasing |
| && (!INDIRECT_REF_P (base1) |
| || get_alias_set (base1) != 0) |
| && (!INDIRECT_REF_P (base2) |
| || get_alias_set (base2) != 0)); |
| |
| /* If strict aliasing applies the only way to access a scalar variable |
| is through a pointer dereference or through a union (gcc extension). */ |
| if (strict_aliasing_applies |
| && ((SSA_VAR_P (ref2) |
| && !AGGREGATE_TYPE_P (TREE_TYPE (ref2)) |
| && !INDIRECT_REF_P (ref1) |
| && TREE_CODE (TREE_TYPE (base1)) != UNION_TYPE) |
| || (SSA_VAR_P (ref1) |
| && !AGGREGATE_TYPE_P (TREE_TYPE (ref1)) |
| && !INDIRECT_REF_P (ref2) |
| && TREE_CODE (TREE_TYPE (base2)) != UNION_TYPE))) |
| return false; |
| |
| /* If both references are through the same type, or if strict aliasing |
| doesn't apply they are through two same pointers, they do not alias |
| if the accesses do not overlap. */ |
| if ((strict_aliasing_applies |
| && (TYPE_MAIN_VARIANT (TREE_TYPE (base1)) |
| == TYPE_MAIN_VARIANT (TREE_TYPE (base2)))) |
| || (TREE_CODE (base1) == INDIRECT_REF |
| && TREE_CODE (base2) == INDIRECT_REF |
| && operand_equal_p (TREE_OPERAND (base1, 0), |
| TREE_OPERAND (base2, 0), 0))) |
| return ranges_overlap_p (offset1, max_size1, offset2, max_size2); |
| |
| /* If both are component references through pointers try to find a |
| common base and apply offset based disambiguation. This handles |
| for example |
| struct A { int i; int j; } *q; |
| struct B { struct A a; int k; } *p; |
| disambiguating q->i and p->a.j. */ |
| if (strict_aliasing_applies |
| && (TREE_CODE (base1) == INDIRECT_REF |
| || TREE_CODE (base2) == INDIRECT_REF) |
| && handled_component_p (ref1) |
| && handled_component_p (ref2)) |
| { |
| tree *refp; |
| /* Now search for the type of base1 in the access path of ref2. This |
| would be a common base for doing offset based disambiguation on. */ |
| refp = &ref2; |
| while (handled_component_p (*refp) |
| /* Note that the following is only conservative if there are |
| never copies of types appearing as sub-structures. */ |
| && (TYPE_MAIN_VARIANT (TREE_TYPE (*refp)) |
| != TYPE_MAIN_VARIANT (TREE_TYPE (base1)))) |
| refp = &TREE_OPERAND (*refp, 0); |
| if (TYPE_MAIN_VARIANT (TREE_TYPE (*refp)) |
| == TYPE_MAIN_VARIANT (TREE_TYPE (base1))) |
| { |
| HOST_WIDE_INT offadj, sztmp, msztmp; |
| get_ref_base_and_extent (*refp, &offadj, &sztmp, &msztmp); |
| offset2 -= offadj; |
| return ranges_overlap_p (offset1, max_size1, offset2, max_size2); |
| } |
| /* The other way around. */ |
| refp = &ref1; |
| while (handled_component_p (*refp) |
| && (TYPE_MAIN_VARIANT (TREE_TYPE (*refp)) |
| != TYPE_MAIN_VARIANT (TREE_TYPE (base2)))) |
| refp = &TREE_OPERAND (*refp, 0); |
| if (TYPE_MAIN_VARIANT (TREE_TYPE (*refp)) |
| == TYPE_MAIN_VARIANT (TREE_TYPE (base2))) |
| { |
| HOST_WIDE_INT offadj, sztmp, msztmp; |
| get_ref_base_and_extent (*refp, &offadj, &sztmp, &msztmp); |
| offset1 -= offadj; |
| return ranges_overlap_p (offset1, max_size1, offset2, max_size2); |
| } |
| /* If we can be sure to catch all equivalent types in the search |
| for the common base then we could return false here. In that |
| case we would be able to disambiguate q->i and p->k. */ |
| } |
| |
| return true; |
| } |
| |
| /* Given a stmt STMT that references memory, return the single stmt |
| that is reached by following the VUSE -> VDEF link. Returns |
| NULL_TREE, if there is no single stmt that defines all VUSEs of |
| STMT. |
| Note that for a stmt with a single virtual operand this may return |
| a PHI node as well. Note that if all VUSEs are default definitions |
| this function will return an empty statement. */ |
| |
| gimple |
| get_single_def_stmt (gimple stmt) |
| { |
| gimple def_stmt = NULL; |
| tree use; |
| ssa_op_iter iter; |
| |
| FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_VIRTUAL_USES) |
| { |
| gimple tmp = SSA_NAME_DEF_STMT (use); |
| |
| /* ??? This is too simplistic for multiple virtual operands |
| reaching different PHI nodes of the same basic blocks or for |
| reaching all default definitions. */ |
| if (def_stmt |
| && def_stmt != tmp |
| && !(gimple_nop_p (def_stmt) |
| && gimple_nop_p (tmp))) |
| return NULL; |
| |
| def_stmt = tmp; |
| } |
| |
| return def_stmt; |
| } |
| |
| /* Given a PHI node of virtual operands, tries to eliminate cyclic |
| reached definitions if they do not alias REF and returns the |
| defining statement of the single virtual operand that flows in |
| from a non-backedge. Returns NULL_TREE if such statement within |
| the above conditions cannot be found. */ |
| |
| gimple |
| get_single_def_stmt_from_phi (tree ref, gimple phi) |
| { |
| tree def_arg = NULL_TREE; |
| unsigned i; |
| |
| /* Find the single PHI argument that is not flowing in from a |
| back edge and verify that the loop-carried definitions do |
| not alias the reference we look for. */ |
| for (i = 0; i < gimple_phi_num_args (phi); ++i) |
| { |
| tree arg = PHI_ARG_DEF (phi, i); |
| gimple def_stmt; |
| |
| if (!(gimple_phi_arg_edge (phi, i)->flags & EDGE_DFS_BACK)) |
| { |
| /* Multiple non-back edges? Do not try to handle this. */ |
| if (def_arg) |
| return NULL; |
| def_arg = arg; |
| continue; |
| } |
| |
| /* Follow the definitions back to the original PHI node. Bail |
| out once a definition is found that may alias REF. */ |
| def_stmt = SSA_NAME_DEF_STMT (arg); |
| do |
| { |
| if (!is_gimple_assign (def_stmt) |
| || refs_may_alias_p (ref, gimple_assign_lhs (def_stmt))) |
| return NULL; |
| /* ??? This will only work, reaching the PHI node again if |
| there is a single virtual operand on def_stmt. */ |
| def_stmt = get_single_def_stmt (def_stmt); |
| if (!def_stmt) |
| return NULL; |
| } |
| while (def_stmt != phi); |
| } |
| |
| return SSA_NAME_DEF_STMT (def_arg); |
| } |
| |
| /* Return the single reference statement defining all virtual uses |
| on STMT or NULL_TREE, if there are multiple defining statements. |
| Take into account only definitions that alias REF if following |
| back-edges when looking through a loop PHI node. */ |
| |
| gimple |
| get_single_def_stmt_with_phi (tree ref, gimple stmt) |
| { |
| switch (NUM_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_USES)) |
| { |
| case 0: |
| gcc_unreachable (); |
| |
| case 1: |
| { |
| gimple def_stmt = SSA_NAME_DEF_STMT (SINGLE_SSA_TREE_OPERAND |
| (stmt, SSA_OP_VIRTUAL_USES)); |
| /* We can handle lookups over PHI nodes only for a single |
| virtual operand. */ |
| if (gimple_code (def_stmt) == GIMPLE_PHI) |
| return get_single_def_stmt_from_phi (ref, def_stmt); |
| return def_stmt; |
| } |
| |
| default: |
| return get_single_def_stmt (stmt); |
| } |
| } |