| /* Linear Loop transforms |
| Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009 |
| Free Software Foundation, Inc. |
| Contributed by Daniel Berlin <dberlin@dberlin.org>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "ggc.h" |
| #include "tree.h" |
| #include "target.h" |
| |
| #include "rtl.h" |
| #include "basic-block.h" |
| #include "diagnostic.h" |
| #include "obstack.h" |
| #include "tree-flow.h" |
| #include "tree-dump.h" |
| #include "timevar.h" |
| #include "cfgloop.h" |
| #include "expr.h" |
| #include "optabs.h" |
| #include "tree-chrec.h" |
| #include "tree-data-ref.h" |
| #include "tree-scalar-evolution.h" |
| #include "tree-pass.h" |
| #include "lambda.h" |
| |
| /* Linear loop transforms include any composition of interchange, |
| scaling, skewing, and reversal. They are used to change the |
| iteration order of loop nests in order to optimize data locality of |
| traversals, or remove dependences that prevent |
| parallelization/vectorization/etc. |
| |
| TODO: Determine reuse vectors/matrix and use it to determine optimal |
| transform matrix for locality purposes. |
| TODO: Completion of partial transforms. */ |
| |
| /* Gather statistics for loop interchange. LOOP is the loop being |
| considered. The first loop in the considered loop nest is |
| FIRST_LOOP, and consequently, the index of the considered loop is |
| obtained by LOOP->DEPTH - FIRST_LOOP->DEPTH |
| |
| Initializes: |
| - DEPENDENCE_STEPS the sum of all the data dependence distances |
| carried by loop LOOP, |
| |
| - NB_DEPS_NOT_CARRIED_BY_LOOP the number of dependence relations |
| for which the loop LOOP is not carrying any dependence, |
| |
| - ACCESS_STRIDES the sum of all the strides in LOOP. |
| |
| Example: for the following loop, |
| |
| | loop_1 runs 1335 times |
| | loop_2 runs 1335 times |
| | A[{{0, +, 1}_1, +, 1335}_2] |
| | B[{{0, +, 1}_1, +, 1335}_2] |
| | endloop_2 |
| | A[{0, +, 1336}_1] |
| | endloop_1 |
| |
| gather_interchange_stats (in loop_1) will return |
| DEPENDENCE_STEPS = 3002 |
| NB_DEPS_NOT_CARRIED_BY_LOOP = 5 |
| ACCESS_STRIDES = 10694 |
| |
| gather_interchange_stats (in loop_2) will return |
| DEPENDENCE_STEPS = 3000 |
| NB_DEPS_NOT_CARRIED_BY_LOOP = 7 |
| ACCESS_STRIDES = 8010 |
| */ |
| |
| static void |
| gather_interchange_stats (VEC (ddr_p, heap) *dependence_relations ATTRIBUTE_UNUSED, |
| VEC (data_reference_p, heap) *datarefs ATTRIBUTE_UNUSED, |
| struct loop *loop ATTRIBUTE_UNUSED, |
| struct loop *first_loop ATTRIBUTE_UNUSED, |
| unsigned int *dependence_steps ATTRIBUTE_UNUSED, |
| unsigned int *nb_deps_not_carried_by_loop ATTRIBUTE_UNUSED, |
| double_int *access_strides ATTRIBUTE_UNUSED) |
| { |
| unsigned int i, j; |
| struct data_dependence_relation *ddr; |
| struct data_reference *dr; |
| |
| *dependence_steps = 0; |
| *nb_deps_not_carried_by_loop = 0; |
| *access_strides = double_int_zero; |
| |
| for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++) |
| { |
| /* If we don't know anything about this dependence, or the distance |
| vector is NULL, or there is no dependence, then there is no reuse of |
| data. */ |
| if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know |
| || DDR_ARE_DEPENDENT (ddr) == chrec_known |
| || DDR_NUM_DIST_VECTS (ddr) == 0) |
| continue; |
| |
| for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++) |
| { |
| int dist = DDR_DIST_VECT (ddr, j)[loop_depth (loop) - loop_depth (first_loop)]; |
| |
| if (dist == 0) |
| (*nb_deps_not_carried_by_loop) += 1; |
| |
| else if (dist < 0) |
| (*dependence_steps) += -dist; |
| |
| else |
| (*dependence_steps) += dist; |
| } |
| } |
| |
| /* Compute the access strides. */ |
| for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++) |
| { |
| unsigned int it; |
| tree ref = DR_REF (dr); |
| gimple stmt = DR_STMT (dr); |
| struct loop *stmt_loop = loop_containing_stmt (stmt); |
| struct loop *inner_loop = first_loop->inner; |
| |
| if (inner_loop != stmt_loop |
| && !flow_loop_nested_p (inner_loop, stmt_loop)) |
| continue; |
| |
| for (it = 0; it < DR_NUM_DIMENSIONS (dr); |
| it++, ref = TREE_OPERAND (ref, 0)) |
| { |
| int num = am_vector_index_for_loop (DR_ACCESS_MATRIX (dr), loop->num); |
| int istride = AM_GET_ACCESS_MATRIX_ELEMENT (DR_ACCESS_MATRIX (dr), it, num); |
| tree array_size = TYPE_SIZE (TREE_TYPE (ref)); |
| double_int dstride; |
| |
| if (array_size == NULL_TREE |
| || TREE_CODE (array_size) != INTEGER_CST) |
| continue; |
| |
| dstride = double_int_mul (tree_to_double_int (array_size), |
| shwi_to_double_int (istride)); |
| (*access_strides) = double_int_add (*access_strides, dstride); |
| } |
| } |
| } |
| |
| /* Attempt to apply interchange transformations to TRANS to maximize the |
| spatial and temporal locality of the loop. |
| Returns the new transform matrix. The smaller the reuse vector |
| distances in the inner loops, the fewer the cache misses. |
| FIRST_LOOP is the loop->num of the first loop in the analyzed loop |
| nest. */ |
| |
| |
| static lambda_trans_matrix |
| try_interchange_loops (lambda_trans_matrix trans, |
| unsigned int depth, |
| VEC (ddr_p, heap) *dependence_relations, |
| VEC (data_reference_p, heap) *datarefs, |
| struct loop *first_loop) |
| { |
| bool res; |
| struct loop *loop_i; |
| struct loop *loop_j; |
| unsigned int dependence_steps_i, dependence_steps_j; |
| double_int access_strides_i, access_strides_j; |
| double_int small, large, nb_iter; |
| double_int l1_cache_size, l2_cache_size; |
| int cmp; |
| unsigned int nb_deps_not_carried_by_i, nb_deps_not_carried_by_j; |
| struct data_dependence_relation *ddr; |
| |
| if (VEC_length (ddr_p, dependence_relations) == 0) |
| return trans; |
| |
| /* When there is an unknown relation in the dependence_relations, we |
| know that it is no worth looking at this loop nest: give up. */ |
| ddr = VEC_index (ddr_p, dependence_relations, 0); |
| if (ddr == NULL || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know) |
| return trans; |
| |
| l1_cache_size = uhwi_to_double_int (L1_CACHE_SIZE * 1024); |
| l2_cache_size = uhwi_to_double_int (L2_CACHE_SIZE * 1024); |
| |
| /* LOOP_I is always the outer loop. */ |
| for (loop_j = first_loop->inner; |
| loop_j; |
| loop_j = loop_j->inner) |
| for (loop_i = first_loop; |
| loop_depth (loop_i) < loop_depth (loop_j); |
| loop_i = loop_i->inner) |
| { |
| gather_interchange_stats (dependence_relations, datarefs, |
| loop_i, first_loop, |
| &dependence_steps_i, |
| &nb_deps_not_carried_by_i, |
| &access_strides_i); |
| gather_interchange_stats (dependence_relations, datarefs, |
| loop_j, first_loop, |
| &dependence_steps_j, |
| &nb_deps_not_carried_by_j, |
| &access_strides_j); |
| |
| /* Heuristics for loop interchange profitability: |
| |
| 0. Don't transform if the smallest stride is larger than |
| the L2 cache, or if the largest stride multiplied by the |
| number of iterations is smaller than the L1 cache. |
| |
| 1. (spatial locality) Inner loops should have smallest |
| dependence steps. |
| |
| 2. (spatial locality) Inner loops should contain more |
| dependence relations not carried by the loop. |
| |
| 3. (temporal locality) Inner loops should have smallest |
| array access strides. |
| */ |
| |
| cmp = double_int_ucmp (access_strides_i, access_strides_j); |
| small = cmp < 0 ? access_strides_i : access_strides_j; |
| large = cmp < 0 ? access_strides_j : access_strides_i; |
| |
| if (double_int_ucmp (small, l2_cache_size) > 0) |
| continue; |
| |
| res = cmp < 0 ? |
| estimated_loop_iterations (loop_j, false, &nb_iter): |
| estimated_loop_iterations (loop_i, false, &nb_iter); |
| large = double_int_mul (large, nb_iter); |
| |
| if (res && double_int_ucmp (large, l1_cache_size) < 0) |
| continue; |
| |
| if (dependence_steps_i < dependence_steps_j |
| || nb_deps_not_carried_by_i > nb_deps_not_carried_by_j |
| || cmp < 0) |
| { |
| lambda_matrix_row_exchange (LTM_MATRIX (trans), |
| loop_depth (loop_i) - loop_depth (first_loop), |
| loop_depth (loop_j) - loop_depth (first_loop)); |
| /* Validate the resulting matrix. When the transformation |
| is not valid, reverse to the previous transformation. */ |
| if (!lambda_transform_legal_p (trans, depth, dependence_relations)) |
| lambda_matrix_row_exchange (LTM_MATRIX (trans), |
| loop_depth (loop_i) - loop_depth (first_loop), |
| loop_depth (loop_j) - loop_depth (first_loop)); |
| } |
| } |
| |
| return trans; |
| } |
| |
| /* Return the number of nested loops in LOOP_NEST, or 0 if the loops |
| are not perfectly nested. */ |
| |
| unsigned int |
| perfect_loop_nest_depth (struct loop *loop_nest) |
| { |
| struct loop *temp; |
| unsigned int depth = 1; |
| |
| /* If it's not a loop nest, we don't want it. We also don't handle |
| sibling loops properly, which are loops of the following form: |
| |
| | for (i = 0; i < 50; i++) |
| | { |
| | for (j = 0; j < 50; j++) |
| | { |
| | ... |
| | } |
| | for (j = 0; j < 50; j++) |
| | { |
| | ... |
| | } |
| | } |
| */ |
| |
| if (!loop_nest->inner || !single_exit (loop_nest)) |
| return 0; |
| |
| for (temp = loop_nest->inner; temp; temp = temp->inner) |
| { |
| /* If we have a sibling loop or multiple exit edges, jump ship. */ |
| if (temp->next || !single_exit (temp)) |
| return 0; |
| |
| depth++; |
| } |
| |
| return depth; |
| } |
| |
| /* Perform a set of linear transforms on loops. */ |
| |
| void |
| linear_transform_loops (void) |
| { |
| bool modified = false; |
| loop_iterator li; |
| VEC(tree,heap) *oldivs = NULL; |
| VEC(tree,heap) *invariants = NULL; |
| VEC(tree,heap) *lambda_parameters = NULL; |
| VEC(gimple,heap) *remove_ivs = VEC_alloc (gimple, heap, 3); |
| struct loop *loop_nest; |
| gimple oldiv_stmt; |
| unsigned i; |
| |
| FOR_EACH_LOOP (li, loop_nest, 0) |
| { |
| unsigned int depth = 0; |
| VEC (ddr_p, heap) *dependence_relations; |
| VEC (data_reference_p, heap) *datarefs; |
| |
| lambda_loopnest before, after; |
| lambda_trans_matrix trans; |
| struct obstack lambda_obstack; |
| struct loop *loop; |
| VEC(loop_p,heap) *nest; |
| |
| depth = perfect_loop_nest_depth (loop_nest); |
| if (depth == 0) |
| continue; |
| |
| nest = VEC_alloc (loop_p, heap, 3); |
| for (loop = loop_nest; loop; loop = loop->inner) |
| VEC_safe_push (loop_p, heap, nest, loop); |
| |
| gcc_obstack_init (&lambda_obstack); |
| VEC_truncate (tree, oldivs, 0); |
| VEC_truncate (tree, invariants, 0); |
| VEC_truncate (tree, lambda_parameters, 0); |
| |
| datarefs = VEC_alloc (data_reference_p, heap, 10); |
| dependence_relations = VEC_alloc (ddr_p, heap, 10 * 10); |
| if (!compute_data_dependences_for_loop (loop_nest, true, &datarefs, |
| &dependence_relations)) |
| goto free_and_continue; |
| |
| lambda_collect_parameters (datarefs, &lambda_parameters); |
| if (!lambda_compute_access_matrices (datarefs, lambda_parameters, nest)) |
| goto free_and_continue; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| dump_ddrs (dump_file, dependence_relations); |
| |
| /* Build the transformation matrix. */ |
| trans = lambda_trans_matrix_new (depth, depth); |
| lambda_matrix_id (LTM_MATRIX (trans), depth); |
| trans = try_interchange_loops (trans, depth, dependence_relations, |
| datarefs, loop_nest); |
| |
| if (lambda_trans_matrix_id_p (trans)) |
| { |
| if (dump_file) |
| fprintf (dump_file, "Won't transform loop. Optimal transform is the identity transform\n"); |
| goto free_and_continue; |
| } |
| |
| /* Check whether the transformation is legal. */ |
| if (!lambda_transform_legal_p (trans, depth, dependence_relations)) |
| { |
| if (dump_file) |
| fprintf (dump_file, "Can't transform loop, transform is illegal:\n"); |
| goto free_and_continue; |
| } |
| |
| before = gcc_loopnest_to_lambda_loopnest (loop_nest, &oldivs, |
| &invariants, &lambda_obstack); |
| |
| if (!before) |
| goto free_and_continue; |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "Before:\n"); |
| print_lambda_loopnest (dump_file, before, 'i'); |
| } |
| |
| after = lambda_loopnest_transform (before, trans, &lambda_obstack); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "After:\n"); |
| print_lambda_loopnest (dump_file, after, 'u'); |
| } |
| |
| lambda_loopnest_to_gcc_loopnest (loop_nest, oldivs, invariants, |
| &remove_ivs, |
| after, trans, &lambda_obstack); |
| modified = true; |
| |
| if (dump_file) |
| fprintf (dump_file, "Successfully transformed loop.\n"); |
| |
| free_and_continue: |
| obstack_free (&lambda_obstack, NULL); |
| free_dependence_relations (dependence_relations); |
| free_data_refs (datarefs); |
| VEC_free (loop_p, heap, nest); |
| } |
| |
| for (i = 0; VEC_iterate (gimple, remove_ivs, i, oldiv_stmt); i++) |
| remove_iv (oldiv_stmt); |
| |
| VEC_free (tree, heap, oldivs); |
| VEC_free (tree, heap, invariants); |
| VEC_free (gimple, heap, remove_ivs); |
| scev_reset (); |
| |
| if (modified) |
| rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa_full_phi); |
| } |