| /* Loop autoparallelization. |
| Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc. |
| Contributed by Sebastian Pop <pop@cri.ensmp.fr> and |
| Zdenek Dvorak <dvorakz@suse.cz>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "tree.h" |
| #include "rtl.h" |
| #include "tree-flow.h" |
| #include "cfgloop.h" |
| #include "ggc.h" |
| #include "tree-data-ref.h" |
| #include "diagnostic.h" |
| #include "tree-pass.h" |
| #include "tree-scalar-evolution.h" |
| #include "hashtab.h" |
| #include "langhooks.h" |
| #include "tree-vectorizer.h" |
| |
| /* This pass tries to distribute iterations of loops into several threads. |
| The implementation is straightforward -- for each loop we test whether its |
| iterations are independent, and if it is the case (and some additional |
| conditions regarding profitability and correctness are satisfied), we |
| add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion |
| machinery do its job. |
| |
| The most of the complexity is in bringing the code into shape expected |
| by the omp expanders: |
| -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction |
| variable and that the exit test is at the start of the loop body |
| -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable |
| variables by accesses through pointers, and breaking up ssa chains |
| by storing the values incoming to the parallelized loop to a structure |
| passed to the new function as an argument (something similar is done |
| in omp gimplification, unfortunately only a small part of the code |
| can be shared). |
| |
| TODO: |
| -- if there are several parallelizable loops in a function, it may be |
| possible to generate the threads just once (using synchronization to |
| ensure that cross-loop dependences are obeyed). |
| -- handling of common scalar dependence patterns (accumulation, ...) |
| -- handling of non-innermost loops */ |
| |
| /* |
| Reduction handling: |
| currently we use vect_is_simple_reduction() to detect reduction patterns. |
| The code transformation will be introduced by an example. |
| |
| |
| parloop |
| { |
| int sum=1; |
| |
| for (i = 0; i < N; i++) |
| { |
| x[i] = i + 3; |
| sum+=x[i]; |
| } |
| } |
| |
| gimple-like code: |
| header_bb: |
| |
| # sum_29 = PHI <sum_11(5), 1(3)> |
| # i_28 = PHI <i_12(5), 0(3)> |
| D.1795_8 = i_28 + 3; |
| x[i_28] = D.1795_8; |
| sum_11 = D.1795_8 + sum_29; |
| i_12 = i_28 + 1; |
| if (N_6(D) > i_12) |
| goto header_bb; |
| |
| |
| exit_bb: |
| |
| # sum_21 = PHI <sum_11(4)> |
| printf (&"%d"[0], sum_21); |
| |
| |
| after reduction transformation (only relevant parts): |
| |
| parloop |
| { |
| |
| .... |
| |
| |
| # Storing the initial value given by the user. # |
| |
| .paral_data_store.32.sum.27 = 1; |
| |
| #pragma omp parallel num_threads(4) |
| |
| #pragma omp for schedule(static) |
| |
| # The neutral element corresponding to the particular |
| reduction's operation, e.g. 0 for PLUS_EXPR, |
| 1 for MULT_EXPR, etc. replaces the user's initial value. # |
| |
| # sum.27_29 = PHI <sum.27_11, 0> |
| |
| sum.27_11 = D.1827_8 + sum.27_29; |
| |
| GIMPLE_OMP_CONTINUE |
| |
| # Adding this reduction phi is done at create_phi_for_local_result() # |
| # sum.27_56 = PHI <sum.27_11, 0> |
| GIMPLE_OMP_RETURN |
| |
| # Creating the atomic operation is done at |
| create_call_for_reduction_1() # |
| |
| #pragma omp atomic_load |
| D.1839_59 = *&.paral_data_load.33_51->reduction.23; |
| D.1840_60 = sum.27_56 + D.1839_59; |
| #pragma omp atomic_store (D.1840_60); |
| |
| GIMPLE_OMP_RETURN |
| |
| # collecting the result after the join of the threads is done at |
| create_loads_for_reductions(). |
| The value computed by the threads is loaded from the |
| shared struct. # |
| |
| |
| .paral_data_load.33_52 = &.paral_data_store.32; |
| sum_37 = .paral_data_load.33_52->sum.27; |
| sum_43 = D.1795_41 + sum_37; |
| |
| exit bb: |
| # sum_21 = PHI <sum_43, sum_26> |
| printf (&"%d"[0], sum_21); |
| |
| ... |
| |
| } |
| |
| */ |
| |
| /* Minimal number of iterations of a loop that should be executed in each |
| thread. */ |
| #define MIN_PER_THREAD 100 |
| |
| /* Element of the hashtable, representing a |
| reduction in the current loop. */ |
| struct reduction_info |
| { |
| gimple reduc_stmt; /* reduction statement. */ |
| gimple reduc_phi; /* The phi node defining the reduction. */ |
| enum tree_code reduction_code;/* code for the reduction operation. */ |
| gimple keep_res; /* The PHI_RESULT of this phi is the resulting value |
| of the reduction variable when existing the loop. */ |
| tree initial_value; /* The initial value of the reduction var before entering the loop. */ |
| tree field; /* the name of the field in the parloop data structure intended for reduction. */ |
| tree init; /* reduction initialization value. */ |
| gimple new_phi; /* (helper field) Newly created phi node whose result |
| will be passed to the atomic operation. Represents |
| the local result each thread computed for the reduction |
| operation. */ |
| }; |
| |
| /* Equality and hash functions for hashtab code. */ |
| |
| static int |
| reduction_info_eq (const void *aa, const void *bb) |
| { |
| const struct reduction_info *a = (const struct reduction_info *) aa; |
| const struct reduction_info *b = (const struct reduction_info *) bb; |
| |
| return (a->reduc_phi == b->reduc_phi); |
| } |
| |
| static hashval_t |
| reduction_info_hash (const void *aa) |
| { |
| const struct reduction_info *a = (const struct reduction_info *) aa; |
| |
| return htab_hash_pointer (a->reduc_phi); |
| } |
| |
| static struct reduction_info * |
| reduction_phi (htab_t reduction_list, gimple phi) |
| { |
| struct reduction_info tmpred, *red; |
| |
| if (htab_elements (reduction_list) == 0) |
| return NULL; |
| |
| tmpred.reduc_phi = phi; |
| red = (struct reduction_info *) htab_find (reduction_list, &tmpred); |
| |
| return red; |
| } |
| |
| /* Element of hashtable of names to copy. */ |
| |
| struct name_to_copy_elt |
| { |
| unsigned version; /* The version of the name to copy. */ |
| tree new_name; /* The new name used in the copy. */ |
| tree field; /* The field of the structure used to pass the |
| value. */ |
| }; |
| |
| /* Equality and hash functions for hashtab code. */ |
| |
| static int |
| name_to_copy_elt_eq (const void *aa, const void *bb) |
| { |
| const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa; |
| const struct name_to_copy_elt *b = (const struct name_to_copy_elt *) bb; |
| |
| return a->version == b->version; |
| } |
| |
| static hashval_t |
| name_to_copy_elt_hash (const void *aa) |
| { |
| const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa; |
| |
| return (hashval_t) a->version; |
| } |
| |
| /* Returns true if the iterations of LOOP are independent on each other (that |
| is, if we can execute them in parallel), and if LOOP satisfies other |
| conditions that we need to be able to parallelize it. Description of number |
| of iterations is stored to NITER. Reduction analysis is done, if |
| reductions are found, they are inserted to the REDUCTION_LIST. */ |
| |
| static bool |
| loop_parallel_p (struct loop *loop, htab_t reduction_list, |
| struct tree_niter_desc *niter) |
| { |
| edge exit = single_dom_exit (loop); |
| VEC (ddr_p, heap) * dependence_relations; |
| VEC (data_reference_p, heap) *datarefs; |
| lambda_trans_matrix trans; |
| bool ret = false; |
| gimple_stmt_iterator gsi; |
| loop_vec_info simple_loop_info; |
| |
| /* Only consider innermost loops with just one exit. The innermost-loop |
| restriction is not necessary, but it makes things simpler. */ |
| if (loop->inner || !exit) |
| return false; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "\nConsidering loop %d\n", loop->num); |
| |
| /* We need to know # of iterations, and there should be no uses of values |
| defined inside loop outside of it, unless the values are invariants of |
| the loop. */ |
| if (!number_of_iterations_exit (loop, exit, niter, false)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, " FAILED: number of iterations not known\n"); |
| return false; |
| } |
| |
| vect_dump = NULL; |
| simple_loop_info = vect_analyze_loop_form (loop); |
| |
| for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple phi = gsi_stmt (gsi); |
| gimple reduc_stmt = NULL; |
| |
| /* ??? TODO: Change this into a generic function that |
| recognizes reductions. */ |
| if (!is_gimple_reg (PHI_RESULT (phi))) |
| continue; |
| if (simple_loop_info) |
| reduc_stmt = vect_is_simple_reduction (simple_loop_info, phi); |
| |
| /* Create a reduction_info struct, initialize it and insert it to |
| the reduction list. */ |
| |
| if (reduc_stmt) |
| { |
| PTR *slot; |
| struct reduction_info *new_reduction; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, |
| "Detected reduction. reduction stmt is: \n"); |
| print_gimple_stmt (dump_file, reduc_stmt, 0, 0); |
| fprintf (dump_file, "\n"); |
| } |
| |
| new_reduction = XCNEW (struct reduction_info); |
| |
| new_reduction->reduc_stmt = reduc_stmt; |
| new_reduction->reduc_phi = phi; |
| new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt); |
| slot = htab_find_slot (reduction_list, new_reduction, INSERT); |
| *slot = new_reduction; |
| } |
| } |
| |
| /* Get rid of the information created by the vectorizer functions. */ |
| destroy_loop_vec_info (simple_loop_info, true); |
| |
| for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple phi = gsi_stmt (gsi); |
| struct reduction_info *red; |
| imm_use_iterator imm_iter; |
| use_operand_p use_p; |
| gimple reduc_phi; |
| tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit); |
| |
| if (is_gimple_reg (val)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "phi is "); |
| print_gimple_stmt (dump_file, phi, 0, 0); |
| fprintf (dump_file, "arg of phi to exit: value "); |
| print_generic_expr (dump_file, val, 0); |
| fprintf (dump_file, " used outside loop\n"); |
| fprintf (dump_file, |
| " checking if it a part of reduction pattern: \n"); |
| } |
| if (htab_elements (reduction_list) == 0) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| " FAILED: it is not a part of reduction.\n"); |
| return false; |
| } |
| reduc_phi = NULL; |
| FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val) |
| { |
| if (flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))) |
| { |
| reduc_phi = USE_STMT (use_p); |
| break; |
| } |
| } |
| red = reduction_phi (reduction_list, reduc_phi); |
| if (red == NULL) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| " FAILED: it is not a part of reduction.\n"); |
| return false; |
| } |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "reduction phi is "); |
| print_gimple_stmt (dump_file, red->reduc_phi, 0, 0); |
| fprintf (dump_file, "reduction stmt is "); |
| print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0); |
| } |
| |
| } |
| } |
| |
| /* The iterations of the loop may communicate only through bivs whose |
| iteration space can be distributed efficiently. */ |
| for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple phi = gsi_stmt (gsi); |
| tree def = PHI_RESULT (phi); |
| affine_iv iv; |
| |
| if (is_gimple_reg (def) && !simple_iv (loop, loop, def, &iv, true)) |
| { |
| struct reduction_info *red; |
| |
| red = reduction_phi (reduction_list, phi); |
| if (red == NULL) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| " FAILED: scalar dependency between iterations\n"); |
| return false; |
| } |
| } |
| } |
| |
| /* We need to version the loop to verify assumptions in runtime. */ |
| if (!can_duplicate_loop_p (loop)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, " FAILED: cannot be duplicated\n"); |
| return false; |
| } |
| |
| /* Check for problems with dependences. If the loop can be reversed, |
| the iterations are independent. */ |
| datarefs = VEC_alloc (data_reference_p, heap, 10); |
| dependence_relations = VEC_alloc (ddr_p, heap, 10 * 10); |
| compute_data_dependences_for_loop (loop, true, &datarefs, |
| &dependence_relations); |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| dump_data_dependence_relations (dump_file, dependence_relations); |
| |
| trans = lambda_trans_matrix_new (1, 1); |
| LTM_MATRIX (trans)[0][0] = -1; |
| |
| if (lambda_transform_legal_p (trans, 1, dependence_relations)) |
| { |
| ret = true; |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, " SUCCESS: may be parallelized\n"); |
| } |
| else if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| " FAILED: data dependencies exist across iterations\n"); |
| |
| free_dependence_relations (dependence_relations); |
| free_data_refs (datarefs); |
| |
| return ret; |
| } |
| |
| /* Return true when LOOP contains basic blocks marked with the |
| BB_IRREDUCIBLE_LOOP flag. */ |
| |
| static inline bool |
| loop_has_blocks_with_irreducible_flag (struct loop *loop) |
| { |
| unsigned i; |
| basic_block *bbs = get_loop_body_in_dom_order (loop); |
| bool res = true; |
| |
| for (i = 0; i < loop->num_nodes; i++) |
| if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP) |
| goto end; |
| |
| res = false; |
| end: |
| free (bbs); |
| return res; |
| } |
| |
| /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name. |
| The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls |
| to their addresses that can be reused. The address of OBJ is known to |
| be invariant in the whole function. */ |
| |
| static tree |
| take_address_of (tree obj, tree type, edge entry, htab_t decl_address) |
| { |
| int uid; |
| void **dslot; |
| struct int_tree_map ielt, *nielt; |
| tree *var_p, name, bvar, addr; |
| gimple stmt; |
| gimple_seq stmts; |
| |
| /* Since the address of OBJ is invariant, the trees may be shared. |
| Avoid rewriting unrelated parts of the code. */ |
| obj = unshare_expr (obj); |
| for (var_p = &obj; |
| handled_component_p (*var_p); |
| var_p = &TREE_OPERAND (*var_p, 0)) |
| continue; |
| uid = DECL_UID (*var_p); |
| |
| ielt.uid = uid; |
| dslot = htab_find_slot_with_hash (decl_address, &ielt, uid, INSERT); |
| if (!*dslot) |
| { |
| addr = build_addr (*var_p, current_function_decl); |
| bvar = create_tmp_var (TREE_TYPE (addr), get_name (*var_p)); |
| add_referenced_var (bvar); |
| stmt = gimple_build_assign (bvar, addr); |
| name = make_ssa_name (bvar, stmt); |
| gimple_assign_set_lhs (stmt, name); |
| gsi_insert_on_edge_immediate (entry, stmt); |
| |
| nielt = XNEW (struct int_tree_map); |
| nielt->uid = uid; |
| nielt->to = name; |
| *dslot = nielt; |
| } |
| else |
| name = ((struct int_tree_map *) *dslot)->to; |
| |
| if (var_p != &obj) |
| { |
| *var_p = build1 (INDIRECT_REF, TREE_TYPE (*var_p), name); |
| name = force_gimple_operand (build_addr (obj, current_function_decl), |
| &stmts, true, NULL_TREE); |
| if (!gimple_seq_empty_p (stmts)) |
| gsi_insert_seq_on_edge_immediate (entry, stmts); |
| } |
| |
| if (TREE_TYPE (name) != type) |
| { |
| name = force_gimple_operand (fold_convert (type, name), &stmts, true, |
| NULL_TREE); |
| if (!gimple_seq_empty_p (stmts)) |
| gsi_insert_seq_on_edge_immediate (entry, stmts); |
| } |
| |
| return name; |
| } |
| |
| /* Callback for htab_traverse. Create the initialization statement |
| for reduction described in SLOT, and place it at the preheader of |
| the loop described in DATA. */ |
| |
| static int |
| initialize_reductions (void **slot, void *data) |
| { |
| tree init, c; |
| tree bvar, type, arg; |
| edge e; |
| |
| struct reduction_info *const reduc = (struct reduction_info *) *slot; |
| struct loop *loop = (struct loop *) data; |
| |
| /* Create initialization in preheader: |
| reduction_variable = initialization value of reduction. */ |
| |
| /* In the phi node at the header, replace the argument coming |
| from the preheader with the reduction initialization value. */ |
| |
| /* Create a new variable to initialize the reduction. */ |
| type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi)); |
| bvar = create_tmp_var (type, "reduction"); |
| add_referenced_var (bvar); |
| |
| c = build_omp_clause (OMP_CLAUSE_REDUCTION); |
| OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code; |
| OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt)); |
| |
| init = omp_reduction_init (c, TREE_TYPE (bvar)); |
| reduc->init = init; |
| |
| /* Replace the argument representing the initialization value |
| with the initialization value for the reduction (neutral |
| element for the particular operation, e.g. 0 for PLUS_EXPR, |
| 1 for MULT_EXPR, etc). |
| Keep the old value in a new variable "reduction_initial", |
| that will be taken in consideration after the parallel |
| computing is done. */ |
| |
| e = loop_preheader_edge (loop); |
| arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e); |
| /* Create new variable to hold the initial value. */ |
| |
| SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE |
| (reduc->reduc_phi, loop_preheader_edge (loop)), init); |
| reduc->initial_value = arg; |
| return 1; |
| } |
| |
| struct elv_data |
| { |
| struct walk_stmt_info info; |
| edge entry; |
| htab_t decl_address; |
| bool changed; |
| }; |
| |
| /* Eliminates references to local variables in *TP out of the single |
| entry single exit region starting at DTA->ENTRY. |
| DECL_ADDRESS contains addresses of the references that had their |
| address taken already. If the expression is changed, CHANGED is |
| set to true. Callback for walk_tree. */ |
| |
| static tree |
| eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data) |
| { |
| struct elv_data *const dta = (struct elv_data *) data; |
| tree t = *tp, var, addr, addr_type, type, obj; |
| |
| if (DECL_P (t)) |
| { |
| *walk_subtrees = 0; |
| |
| if (!SSA_VAR_P (t) || DECL_EXTERNAL (t)) |
| return NULL_TREE; |
| |
| type = TREE_TYPE (t); |
| addr_type = build_pointer_type (type); |
| addr = take_address_of (t, addr_type, dta->entry, dta->decl_address); |
| *tp = build1 (INDIRECT_REF, TREE_TYPE (*tp), addr); |
| |
| dta->changed = true; |
| return NULL_TREE; |
| } |
| |
| if (TREE_CODE (t) == ADDR_EXPR) |
| { |
| /* ADDR_EXPR may appear in two contexts: |
| -- as a gimple operand, when the address taken is a function invariant |
| -- as gimple rhs, when the resulting address in not a function |
| invariant |
| We do not need to do anything special in the latter case (the base of |
| the memory reference whose address is taken may be replaced in the |
| DECL_P case). The former case is more complicated, as we need to |
| ensure that the new address is still a gimple operand. Thus, it |
| is not sufficient to replace just the base of the memory reference -- |
| we need to move the whole computation of the address out of the |
| loop. */ |
| if (!is_gimple_val (t)) |
| return NULL_TREE; |
| |
| *walk_subtrees = 0; |
| obj = TREE_OPERAND (t, 0); |
| var = get_base_address (obj); |
| if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var)) |
| return NULL_TREE; |
| |
| addr_type = TREE_TYPE (t); |
| addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address); |
| *tp = addr; |
| |
| dta->changed = true; |
| return NULL_TREE; |
| } |
| |
| if (!EXPR_P (t)) |
| *walk_subtrees = 0; |
| |
| return NULL_TREE; |
| } |
| |
| /* Moves the references to local variables in STMT out of the single |
| entry single exit region starting at ENTRY. DECL_ADDRESS contains |
| addresses of the references that had their address taken |
| already. */ |
| |
| static void |
| eliminate_local_variables_stmt (edge entry, gimple stmt, |
| htab_t decl_address) |
| { |
| struct elv_data dta; |
| |
| memset (&dta.info, '\0', sizeof (dta.info)); |
| dta.entry = entry; |
| dta.decl_address = decl_address; |
| dta.changed = false; |
| |
| walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info); |
| |
| if (dta.changed) |
| update_stmt (stmt); |
| } |
| |
| /* Eliminates the references to local variables from the single entry |
| single exit region between the ENTRY and EXIT edges. |
| |
| This includes: |
| 1) Taking address of a local variable -- these are moved out of the |
| region (and temporary variable is created to hold the address if |
| necessary). |
| |
| 2) Dereferencing a local variable -- these are replaced with indirect |
| references. */ |
| |
| static void |
| eliminate_local_variables (edge entry, edge exit) |
| { |
| basic_block bb; |
| VEC (basic_block, heap) *body = VEC_alloc (basic_block, heap, 3); |
| unsigned i; |
| gimple_stmt_iterator gsi; |
| htab_t decl_address = htab_create (10, int_tree_map_hash, int_tree_map_eq, |
| free); |
| basic_block entry_bb = entry->src; |
| basic_block exit_bb = exit->dest; |
| |
| gather_blocks_in_sese_region (entry_bb, exit_bb, &body); |
| |
| for (i = 0; VEC_iterate (basic_block, body, i, bb); i++) |
| if (bb != entry_bb && bb != exit_bb) |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| eliminate_local_variables_stmt (entry, gsi_stmt (gsi), |
| decl_address); |
| |
| htab_delete (decl_address); |
| VEC_free (basic_block, heap, body); |
| } |
| |
| /* Returns true if expression EXPR is not defined between ENTRY and |
| EXIT, i.e. if all its operands are defined outside of the region. */ |
| |
| static bool |
| expr_invariant_in_region_p (edge entry, edge exit, tree expr) |
| { |
| basic_block entry_bb = entry->src; |
| basic_block exit_bb = exit->dest; |
| basic_block def_bb; |
| |
| if (is_gimple_min_invariant (expr)) |
| return true; |
| |
| if (TREE_CODE (expr) == SSA_NAME) |
| { |
| def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr)); |
| if (def_bb |
| && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb) |
| && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb)) |
| return false; |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* If COPY_NAME_P is true, creates and returns a duplicate of NAME. |
| The copies are stored to NAME_COPIES, if NAME was already duplicated, |
| its duplicate stored in NAME_COPIES is returned. |
| |
| Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also |
| duplicated, storing the copies in DECL_COPIES. */ |
| |
| static tree |
| separate_decls_in_region_name (tree name, |
| htab_t name_copies, htab_t decl_copies, |
| bool copy_name_p) |
| { |
| tree copy, var, var_copy; |
| unsigned idx, uid, nuid; |
| struct int_tree_map ielt, *nielt; |
| struct name_to_copy_elt elt, *nelt; |
| void **slot, **dslot; |
| |
| if (TREE_CODE (name) != SSA_NAME) |
| return name; |
| |
| idx = SSA_NAME_VERSION (name); |
| elt.version = idx; |
| slot = htab_find_slot_with_hash (name_copies, &elt, idx, |
| copy_name_p ? INSERT : NO_INSERT); |
| if (slot && *slot) |
| return ((struct name_to_copy_elt *) *slot)->new_name; |
| |
| var = SSA_NAME_VAR (name); |
| uid = DECL_UID (var); |
| ielt.uid = uid; |
| dslot = htab_find_slot_with_hash (decl_copies, &ielt, uid, INSERT); |
| if (!*dslot) |
| { |
| var_copy = create_tmp_var (TREE_TYPE (var), get_name (var)); |
| DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var); |
| add_referenced_var (var_copy); |
| nielt = XNEW (struct int_tree_map); |
| nielt->uid = uid; |
| nielt->to = var_copy; |
| *dslot = nielt; |
| |
| /* Ensure that when we meet this decl next time, we won't duplicate |
| it again. */ |
| nuid = DECL_UID (var_copy); |
| ielt.uid = nuid; |
| dslot = htab_find_slot_with_hash (decl_copies, &ielt, nuid, INSERT); |
| gcc_assert (!*dslot); |
| nielt = XNEW (struct int_tree_map); |
| nielt->uid = nuid; |
| nielt->to = var_copy; |
| *dslot = nielt; |
| } |
| else |
| var_copy = ((struct int_tree_map *) *dslot)->to; |
| |
| if (copy_name_p) |
| { |
| copy = duplicate_ssa_name (name, NULL); |
| nelt = XNEW (struct name_to_copy_elt); |
| nelt->version = idx; |
| nelt->new_name = copy; |
| nelt->field = NULL_TREE; |
| *slot = nelt; |
| } |
| else |
| { |
| gcc_assert (!slot); |
| copy = name; |
| } |
| |
| SSA_NAME_VAR (copy) = var_copy; |
| return copy; |
| } |
| |
| /* Finds the ssa names used in STMT that are defined outside the |
| region between ENTRY and EXIT and replaces such ssa names with |
| their duplicates. The duplicates are stored to NAME_COPIES. Base |
| decls of all ssa names used in STMT (including those defined in |
| LOOP) are replaced with the new temporary variables; the |
| replacement decls are stored in DECL_COPIES. */ |
| |
| static void |
| separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt, |
| htab_t name_copies, htab_t decl_copies) |
| { |
| use_operand_p use; |
| def_operand_p def; |
| ssa_op_iter oi; |
| tree name, copy; |
| bool copy_name_p; |
| |
| mark_virtual_ops_for_renaming (stmt); |
| |
| FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF) |
| { |
| name = DEF_FROM_PTR (def); |
| gcc_assert (TREE_CODE (name) == SSA_NAME); |
| copy = separate_decls_in_region_name (name, name_copies, decl_copies, |
| false); |
| gcc_assert (copy == name); |
| } |
| |
| FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE) |
| { |
| name = USE_FROM_PTR (use); |
| if (TREE_CODE (name) != SSA_NAME) |
| continue; |
| |
| copy_name_p = expr_invariant_in_region_p (entry, exit, name); |
| copy = separate_decls_in_region_name (name, name_copies, decl_copies, |
| copy_name_p); |
| SET_USE (use, copy); |
| } |
| } |
| |
| /* Callback for htab_traverse. Adds a field corresponding to the reduction |
| specified in SLOT. The type is passed in DATA. */ |
| |
| static int |
| add_field_for_reduction (void **slot, void *data) |
| { |
| |
| struct reduction_info *const red = (struct reduction_info *) *slot; |
| tree const type = (tree) data; |
| tree var = SSA_NAME_VAR (gimple_assign_lhs (red->reduc_stmt)); |
| tree field = build_decl (FIELD_DECL, DECL_NAME (var), TREE_TYPE (var)); |
| |
| insert_field_into_struct (type, field); |
| |
| red->field = field; |
| |
| return 1; |
| } |
| |
| /* Callback for htab_traverse. Adds a field corresponding to a ssa name |
| described in SLOT. The type is passed in DATA. */ |
| |
| static int |
| add_field_for_name (void **slot, void *data) |
| { |
| struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot; |
| tree type = (tree) data; |
| tree name = ssa_name (elt->version); |
| tree var = SSA_NAME_VAR (name); |
| tree field = build_decl (FIELD_DECL, DECL_NAME (var), TREE_TYPE (var)); |
| |
| insert_field_into_struct (type, field); |
| elt->field = field; |
| |
| return 1; |
| } |
| |
| /* Callback for htab_traverse. A local result is the intermediate result |
| computed by a single |
| thread, or the initial value in case no iteration was executed. |
| This function creates a phi node reflecting these values. |
| The phi's result will be stored in NEW_PHI field of the |
| reduction's data structure. */ |
| |
| static int |
| create_phi_for_local_result (void **slot, void *data) |
| { |
| struct reduction_info *const reduc = (struct reduction_info *) *slot; |
| const struct loop *const loop = (const struct loop *) data; |
| edge e; |
| gimple new_phi; |
| basic_block store_bb; |
| tree local_res; |
| |
| /* STORE_BB is the block where the phi |
| should be stored. It is the destination of the loop exit. |
| (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */ |
| store_bb = FALLTHRU_EDGE (loop->latch)->dest; |
| |
| /* STORE_BB has two predecessors. One coming from the loop |
| (the reduction's result is computed at the loop), |
| and another coming from a block preceding the loop, |
| when no iterations |
| are executed (the initial value should be taken). */ |
| if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch)) |
| e = EDGE_PRED (store_bb, 1); |
| else |
| e = EDGE_PRED (store_bb, 0); |
| local_res |
| = make_ssa_name (SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt)), |
| NULL); |
| new_phi = create_phi_node (local_res, store_bb); |
| SSA_NAME_DEF_STMT (local_res) = new_phi; |
| add_phi_arg (new_phi, reduc->init, e); |
| add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt), |
| FALLTHRU_EDGE (loop->latch)); |
| reduc->new_phi = new_phi; |
| |
| return 1; |
| } |
| |
| struct clsn_data |
| { |
| tree store; |
| tree load; |
| |
| basic_block store_bb; |
| basic_block load_bb; |
| }; |
| |
| /* Callback for htab_traverse. Create an atomic instruction for the |
| reduction described in SLOT. |
| DATA annotates the place in memory the atomic operation relates to, |
| and the basic block it needs to be generated in. */ |
| |
| static int |
| create_call_for_reduction_1 (void **slot, void *data) |
| { |
| struct reduction_info *const reduc = (struct reduction_info *) *slot; |
| struct clsn_data *const clsn_data = (struct clsn_data *) data; |
| gimple_stmt_iterator gsi; |
| tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi)); |
| tree struct_type = TREE_TYPE (TREE_TYPE (clsn_data->load)); |
| tree load_struct; |
| basic_block bb; |
| basic_block new_bb; |
| edge e; |
| tree t, addr, addr_type, ref, x; |
| tree tmp_load, name; |
| gimple load; |
| |
| load_struct = fold_build1 (INDIRECT_REF, struct_type, clsn_data->load); |
| t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE); |
| addr_type = build_pointer_type (type); |
| |
| addr = build_addr (t, current_function_decl); |
| |
| /* Create phi node. */ |
| bb = clsn_data->load_bb; |
| |
| e = split_block (bb, t); |
| new_bb = e->dest; |
| |
| tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)), NULL); |
| add_referenced_var (tmp_load); |
| tmp_load = make_ssa_name (tmp_load, NULL); |
| load = gimple_build_omp_atomic_load (tmp_load, addr); |
| SSA_NAME_DEF_STMT (tmp_load) = load; |
| gsi = gsi_start_bb (new_bb); |
| gsi_insert_after (&gsi, load, GSI_NEW_STMT); |
| |
| e = split_block (new_bb, load); |
| new_bb = e->dest; |
| gsi = gsi_start_bb (new_bb); |
| ref = tmp_load; |
| x = fold_build2 (reduc->reduction_code, |
| TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref, |
| PHI_RESULT (reduc->new_phi)); |
| |
| name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true, |
| GSI_CONTINUE_LINKING); |
| |
| gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT); |
| return 1; |
| } |
| |
| /* Create the atomic operation at the join point of the threads. |
| REDUCTION_LIST describes the reductions in the LOOP. |
| LD_ST_DATA describes the shared data structure where |
| shared data is stored in and loaded from. */ |
| static void |
| create_call_for_reduction (struct loop *loop, htab_t reduction_list, |
| struct clsn_data *ld_st_data) |
| { |
| htab_traverse (reduction_list, create_phi_for_local_result, loop); |
| /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */ |
| ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest; |
| htab_traverse (reduction_list, create_call_for_reduction_1, ld_st_data); |
| } |
| |
| /* Callback for htab_traverse. Loads the final reduction value at the |
| join point of all threads, and inserts it in the right place. */ |
| |
| static int |
| create_loads_for_reductions (void **slot, void *data) |
| { |
| struct reduction_info *const red = (struct reduction_info *) *slot; |
| struct clsn_data *const clsn_data = (struct clsn_data *) data; |
| gimple stmt; |
| gimple_stmt_iterator gsi; |
| tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt)); |
| tree struct_type = TREE_TYPE (TREE_TYPE (clsn_data->load)); |
| tree load_struct; |
| tree name; |
| tree x; |
| |
| gsi = gsi_after_labels (clsn_data->load_bb); |
| load_struct = fold_build1 (INDIRECT_REF, struct_type, clsn_data->load); |
| load_struct = build3 (COMPONENT_REF, type, load_struct, red->field, |
| NULL_TREE); |
| |
| x = load_struct; |
| name = PHI_RESULT (red->keep_res); |
| stmt = gimple_build_assign (name, x); |
| SSA_NAME_DEF_STMT (name) = stmt; |
| |
| gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); |
| |
| for (gsi = gsi_start_phis (gimple_bb (red->keep_res)); |
| !gsi_end_p (gsi); gsi_next (&gsi)) |
| if (gsi_stmt (gsi) == red->keep_res) |
| { |
| remove_phi_node (&gsi, false); |
| return 1; |
| } |
| gcc_unreachable (); |
| } |
| |
| /* Load the reduction result that was stored in LD_ST_DATA. |
| REDUCTION_LIST describes the list of reductions that the |
| loads should be generated for. */ |
| static void |
| create_final_loads_for_reduction (htab_t reduction_list, |
| struct clsn_data *ld_st_data) |
| { |
| gimple_stmt_iterator gsi; |
| tree t; |
| gimple stmt; |
| |
| gsi = gsi_after_labels (ld_st_data->load_bb); |
| t = build_fold_addr_expr (ld_st_data->store); |
| stmt = gimple_build_assign (ld_st_data->load, t); |
| |
| gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); |
| SSA_NAME_DEF_STMT (ld_st_data->load) = stmt; |
| |
| htab_traverse (reduction_list, create_loads_for_reductions, ld_st_data); |
| |
| } |
| |
| /* Callback for htab_traverse. Store the neutral value for the |
| particular reduction's operation, e.g. 0 for PLUS_EXPR, |
| 1 for MULT_EXPR, etc. into the reduction field. |
| The reduction is specified in SLOT. The store information is |
| passed in DATA. */ |
| |
| static int |
| create_stores_for_reduction (void **slot, void *data) |
| { |
| struct reduction_info *const red = (struct reduction_info *) *slot; |
| struct clsn_data *const clsn_data = (struct clsn_data *) data; |
| tree t; |
| gimple stmt; |
| gimple_stmt_iterator gsi; |
| tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt)); |
| |
| gsi = gsi_last_bb (clsn_data->store_bb); |
| t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE); |
| stmt = gimple_build_assign (t, red->initial_value); |
| mark_virtual_ops_for_renaming (stmt); |
| gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); |
| |
| return 1; |
| } |
| |
| /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and |
| store to a field of STORE in STORE_BB for the ssa name and its duplicate |
| specified in SLOT. */ |
| |
| static int |
| create_loads_and_stores_for_name (void **slot, void *data) |
| { |
| struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot; |
| struct clsn_data *const clsn_data = (struct clsn_data *) data; |
| tree t; |
| gimple stmt; |
| gimple_stmt_iterator gsi; |
| tree type = TREE_TYPE (elt->new_name); |
| tree struct_type = TREE_TYPE (TREE_TYPE (clsn_data->load)); |
| tree load_struct; |
| |
| gsi = gsi_last_bb (clsn_data->store_bb); |
| t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE); |
| stmt = gimple_build_assign (t, ssa_name (elt->version)); |
| mark_virtual_ops_for_renaming (stmt); |
| gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); |
| |
| gsi = gsi_last_bb (clsn_data->load_bb); |
| load_struct = fold_build1 (INDIRECT_REF, struct_type, clsn_data->load); |
| t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE); |
| stmt = gimple_build_assign (elt->new_name, t); |
| SSA_NAME_DEF_STMT (elt->new_name) = stmt; |
| gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); |
| |
| return 1; |
| } |
| |
| /* Moves all the variables used in LOOP and defined outside of it (including |
| the initial values of loop phi nodes, and *PER_THREAD if it is a ssa |
| name) to a structure created for this purpose. The code |
| |
| while (1) |
| { |
| use (a); |
| use (b); |
| } |
| |
| is transformed this way: |
| |
| bb0: |
| old.a = a; |
| old.b = b; |
| |
| bb1: |
| a' = new->a; |
| b' = new->b; |
| while (1) |
| { |
| use (a'); |
| use (b'); |
| } |
| |
| `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The |
| pointer `new' is intentionally not initialized (the loop will be split to a |
| separate function later, and `new' will be initialized from its arguments). |
| LD_ST_DATA holds information about the shared data structure used to pass |
| information among the threads. It is initialized here, and |
| gen_parallel_loop will pass it to create_call_for_reduction that |
| needs this information. REDUCTION_LIST describes the reductions |
| in LOOP. */ |
| |
| static void |
| separate_decls_in_region (edge entry, edge exit, htab_t reduction_list, |
| tree *arg_struct, tree *new_arg_struct, |
| struct clsn_data *ld_st_data) |
| |
| { |
| basic_block bb1 = split_edge (entry); |
| basic_block bb0 = single_pred (bb1); |
| htab_t name_copies = htab_create (10, name_to_copy_elt_hash, |
| name_to_copy_elt_eq, free); |
| htab_t decl_copies = htab_create (10, int_tree_map_hash, int_tree_map_eq, |
| free); |
| unsigned i; |
| tree type, type_name, nvar; |
| gimple_stmt_iterator gsi; |
| struct clsn_data clsn_data; |
| VEC (basic_block, heap) *body = VEC_alloc (basic_block, heap, 3); |
| basic_block bb; |
| basic_block entry_bb = bb1; |
| basic_block exit_bb = exit->dest; |
| |
| entry = single_succ_edge (entry_bb); |
| gather_blocks_in_sese_region (entry_bb, exit_bb, &body); |
| |
| for (i = 0; VEC_iterate (basic_block, body, i, bb); i++) |
| { |
| if (bb != entry_bb && bb != exit_bb) |
| { |
| for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi), |
| name_copies, decl_copies); |
| |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi), |
| name_copies, decl_copies); |
| } |
| } |
| |
| VEC_free (basic_block, heap, body); |
| |
| if (htab_elements (name_copies) == 0 && reduction_list == 0) |
| { |
| /* It may happen that there is nothing to copy (if there are only |
| loop carried and external variables in the loop). */ |
| *arg_struct = NULL; |
| *new_arg_struct = NULL; |
| } |
| else |
| { |
| /* Create the type for the structure to store the ssa names to. */ |
| type = lang_hooks.types.make_type (RECORD_TYPE); |
| type_name = build_decl (TYPE_DECL, create_tmp_var_name (".paral_data"), |
| type); |
| TYPE_NAME (type) = type_name; |
| |
| htab_traverse (name_copies, add_field_for_name, type); |
| if (reduction_list && htab_elements (reduction_list) > 0) |
| { |
| /* Create the fields for reductions. */ |
| htab_traverse (reduction_list, add_field_for_reduction, |
| type); |
| } |
| layout_type (type); |
| |
| /* Create the loads and stores. */ |
| *arg_struct = create_tmp_var (type, ".paral_data_store"); |
| add_referenced_var (*arg_struct); |
| nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load"); |
| add_referenced_var (nvar); |
| *new_arg_struct = make_ssa_name (nvar, NULL); |
| |
| ld_st_data->store = *arg_struct; |
| ld_st_data->load = *new_arg_struct; |
| ld_st_data->store_bb = bb0; |
| ld_st_data->load_bb = bb1; |
| |
| htab_traverse (name_copies, create_loads_and_stores_for_name, |
| ld_st_data); |
| |
| /* Load the calculation from memory (after the join of the threads). */ |
| |
| if (reduction_list && htab_elements (reduction_list) > 0) |
| { |
| htab_traverse (reduction_list, create_stores_for_reduction, |
| ld_st_data); |
| clsn_data.load = make_ssa_name (nvar, NULL); |
| clsn_data.load_bb = exit->dest; |
| clsn_data.store = ld_st_data->store; |
| create_final_loads_for_reduction (reduction_list, &clsn_data); |
| } |
| } |
| |
| htab_delete (decl_copies); |
| htab_delete (name_copies); |
| } |
| |
| /* Bitmap containing uids of functions created by parallelization. We cannot |
| allocate it from the default obstack, as it must live across compilation |
| of several functions; we make it gc allocated instead. */ |
| |
| static GTY(()) bitmap parallelized_functions; |
| |
| /* Returns true if FN was created by create_loop_fn. */ |
| |
| static bool |
| parallelized_function_p (tree fn) |
| { |
| if (!parallelized_functions || !DECL_ARTIFICIAL (fn)) |
| return false; |
| |
| return bitmap_bit_p (parallelized_functions, DECL_UID (fn)); |
| } |
| |
| /* Creates and returns an empty function that will receive the body of |
| a parallelized loop. */ |
| |
| static tree |
| create_loop_fn (void) |
| { |
| char buf[100]; |
| char *tname; |
| tree decl, type, name, t; |
| struct function *act_cfun = cfun; |
| static unsigned loopfn_num; |
| |
| snprintf (buf, 100, "%s.$loopfn", current_function_name ()); |
| ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++); |
| clean_symbol_name (tname); |
| name = get_identifier (tname); |
| type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); |
| |
| decl = build_decl (FUNCTION_DECL, name, type); |
| if (!parallelized_functions) |
| parallelized_functions = BITMAP_GGC_ALLOC (); |
| bitmap_set_bit (parallelized_functions, DECL_UID (decl)); |
| |
| TREE_STATIC (decl) = 1; |
| TREE_USED (decl) = 1; |
| DECL_ARTIFICIAL (decl) = 1; |
| DECL_IGNORED_P (decl) = 0; |
| TREE_PUBLIC (decl) = 0; |
| DECL_UNINLINABLE (decl) = 1; |
| DECL_EXTERNAL (decl) = 0; |
| DECL_CONTEXT (decl) = NULL_TREE; |
| DECL_INITIAL (decl) = make_node (BLOCK); |
| |
| t = build_decl (RESULT_DECL, NULL_TREE, void_type_node); |
| DECL_ARTIFICIAL (t) = 1; |
| DECL_IGNORED_P (t) = 1; |
| DECL_RESULT (decl) = t; |
| |
| t = build_decl (PARM_DECL, get_identifier (".paral_data_param"), |
| ptr_type_node); |
| DECL_ARTIFICIAL (t) = 1; |
| DECL_ARG_TYPE (t) = ptr_type_node; |
| DECL_CONTEXT (t) = decl; |
| TREE_USED (t) = 1; |
| DECL_ARGUMENTS (decl) = t; |
| |
| allocate_struct_function (decl, false); |
| |
| /* The call to allocate_struct_function clobbers CFUN, so we need to restore |
| it. */ |
| set_cfun (act_cfun); |
| |
| return decl; |
| } |
| |
| /* Bases all the induction variables in LOOP on a single induction |
| variable (unsigned with base 0 and step 1), whose final value is |
| compared with *NIT. When the IV type precision has to be larger |
| than *NIT type precision, *NIT is converted to the larger type, the |
| conversion code is inserted before the loop, and *NIT is updated to |
| the new definition. The induction variable is incremented in the |
| loop latch. REDUCTION_LIST describes the reductions in LOOP. |
| Return the induction variable that was created. */ |
| |
| tree |
| canonicalize_loop_ivs (struct loop *loop, htab_t reduction_list, tree *nit) |
| { |
| unsigned precision = TYPE_PRECISION (TREE_TYPE (*nit)); |
| unsigned original_precision = precision; |
| tree res, type, var_before, val, atype, mtype; |
| gimple_stmt_iterator gsi, psi; |
| gimple phi, stmt; |
| bool ok; |
| affine_iv iv; |
| edge exit = single_dom_exit (loop); |
| struct reduction_info *red; |
| gimple_seq stmts; |
| |
| for (psi = gsi_start_phis (loop->header); |
| !gsi_end_p (psi); gsi_next (&psi)) |
| { |
| phi = gsi_stmt (psi); |
| res = PHI_RESULT (phi); |
| |
| if (is_gimple_reg (res) && TYPE_PRECISION (TREE_TYPE (res)) > precision) |
| precision = TYPE_PRECISION (TREE_TYPE (res)); |
| } |
| |
| type = lang_hooks.types.type_for_size (precision, 1); |
| |
| if (original_precision != precision) |
| { |
| *nit = fold_convert (type, *nit); |
| *nit = force_gimple_operand (*nit, &stmts, true, NULL_TREE); |
| if (stmts) |
| gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts); |
| } |
| |
| gsi = gsi_last_bb (loop->latch); |
| create_iv (build_int_cst_type (type, 0), build_int_cst (type, 1), NULL_TREE, |
| loop, &gsi, true, &var_before, NULL); |
| |
| gsi = gsi_after_labels (loop->header); |
| for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); ) |
| { |
| phi = gsi_stmt (psi); |
| res = PHI_RESULT (phi); |
| |
| if (!is_gimple_reg (res) || res == var_before) |
| { |
| gsi_next (&psi); |
| continue; |
| } |
| |
| ok = simple_iv (loop, loop, res, &iv, true); |
| |
| if (reduction_list) |
| red = reduction_phi (reduction_list, phi); |
| else |
| red = NULL; |
| |
| /* We preserve the reduction phi nodes. */ |
| if (!ok && red) |
| { |
| gsi_next (&psi); |
| continue; |
| } |
| else |
| gcc_assert (ok); |
| remove_phi_node (&psi, false); |
| |
| atype = TREE_TYPE (res); |
| mtype = POINTER_TYPE_P (atype) ? sizetype : atype; |
| val = fold_build2 (MULT_EXPR, mtype, unshare_expr (iv.step), |
| fold_convert (mtype, var_before)); |
| val = fold_build2 (POINTER_TYPE_P (atype) |
| ? POINTER_PLUS_EXPR : PLUS_EXPR, |
| atype, unshare_expr (iv.base), val); |
| val = force_gimple_operand_gsi (&gsi, val, false, NULL_TREE, true, |
| GSI_SAME_STMT); |
| stmt = gimple_build_assign (res, val); |
| gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); |
| SSA_NAME_DEF_STMT (res) = stmt; |
| } |
| |
| stmt = last_stmt (exit->src); |
| /* Make the loop exit if the control condition is not satisfied. */ |
| if (exit->flags & EDGE_TRUE_VALUE) |
| { |
| edge te, fe; |
| |
| extract_true_false_edges_from_block (exit->src, &te, &fe); |
| te->flags = EDGE_FALSE_VALUE; |
| fe->flags = EDGE_TRUE_VALUE; |
| } |
| gimple_cond_set_code (stmt, LT_EXPR); |
| gimple_cond_set_lhs (stmt, var_before); |
| gimple_cond_set_rhs (stmt, *nit); |
| update_stmt (stmt); |
| |
| return var_before; |
| } |
| |
| /* Moves the exit condition of LOOP to the beginning of its header, and |
| duplicates the part of the last iteration that gets disabled to the |
| exit of the loop. NIT is the number of iterations of the loop |
| (used to initialize the variables in the duplicated part). |
| |
| TODO: the common case is that latch of the loop is empty and immediately |
| follows the loop exit. In this case, it would be better not to copy the |
| body of the loop, but only move the entry of the loop directly before the |
| exit check and increase the number of iterations of the loop by one. |
| This may need some additional preconditioning in case NIT = ~0. |
| REDUCTION_LIST describes the reductions in LOOP. */ |
| |
| static void |
| transform_to_exit_first_loop (struct loop *loop, htab_t reduction_list, tree nit) |
| { |
| basic_block *bbs, *nbbs, ex_bb, orig_header; |
| unsigned n; |
| bool ok; |
| edge exit = single_dom_exit (loop), hpred; |
| tree control, control_name, res, t; |
| gimple phi, nphi, cond_stmt, stmt; |
| gimple_stmt_iterator gsi; |
| |
| split_block_after_labels (loop->header); |
| orig_header = single_succ (loop->header); |
| hpred = single_succ_edge (loop->header); |
| |
| cond_stmt = last_stmt (exit->src); |
| control = gimple_cond_lhs (cond_stmt); |
| gcc_assert (gimple_cond_rhs (cond_stmt) == nit); |
| |
| /* Make sure that we have phi nodes on exit for all loop header phis |
| (create_parallel_loop requires that). */ |
| for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| phi = gsi_stmt (gsi); |
| res = PHI_RESULT (phi); |
| t = make_ssa_name (SSA_NAME_VAR (res), phi); |
| SET_PHI_RESULT (phi, t); |
| |
| nphi = create_phi_node (res, orig_header); |
| SSA_NAME_DEF_STMT (res) = nphi; |
| add_phi_arg (nphi, t, hpred); |
| |
| if (res == control) |
| { |
| gimple_cond_set_lhs (cond_stmt, t); |
| update_stmt (cond_stmt); |
| control = t; |
| } |
| } |
| |
| bbs = get_loop_body_in_dom_order (loop); |
| for (n = 0; bbs[n] != exit->src; n++) |
| continue; |
| nbbs = XNEWVEC (basic_block, n); |
| ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit, |
| bbs + 1, n, nbbs); |
| gcc_assert (ok); |
| free (bbs); |
| ex_bb = nbbs[0]; |
| free (nbbs); |
| |
| /* Other than reductions, the only gimple reg that should be copied |
| out of the loop is the control variable. */ |
| |
| control_name = NULL_TREE; |
| for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); ) |
| { |
| phi = gsi_stmt (gsi); |
| res = PHI_RESULT (phi); |
| if (!is_gimple_reg (res)) |
| { |
| gsi_next (&gsi); |
| continue; |
| } |
| |
| /* Check if it is a part of reduction. If it is, |
| keep the phi at the reduction's keep_res field. The |
| PHI_RESULT of this phi is the resulting value of the reduction |
| variable when exiting the loop. */ |
| |
| exit = single_dom_exit (loop); |
| |
| if (htab_elements (reduction_list) > 0) |
| { |
| struct reduction_info *red; |
| |
| tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit); |
| |
| red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val)); |
| if (red) |
| { |
| red->keep_res = phi; |
| gsi_next (&gsi); |
| continue; |
| } |
| } |
| gcc_assert (control_name == NULL_TREE |
| && SSA_NAME_VAR (res) == SSA_NAME_VAR (control)); |
| control_name = res; |
| remove_phi_node (&gsi, false); |
| } |
| gcc_assert (control_name != NULL_TREE); |
| |
| /* Initialize the control variable to NIT. */ |
| gsi = gsi_after_labels (ex_bb); |
| nit = force_gimple_operand_gsi (&gsi, |
| fold_convert (TREE_TYPE (control_name), nit), |
| false, NULL_TREE, false, GSI_SAME_STMT); |
| stmt = gimple_build_assign (control_name, nit); |
| gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); |
| SSA_NAME_DEF_STMT (control_name) = stmt; |
| } |
| |
| /* Create the parallel constructs for LOOP as described in gen_parallel_loop. |
| LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL. |
| NEW_DATA is the variable that should be initialized from the argument |
| of LOOP_FN. N_THREADS is the requested number of threads. Returns the |
| basic block containing GIMPLE_OMP_PARALLEL tree. */ |
| |
| static basic_block |
| create_parallel_loop (struct loop *loop, tree loop_fn, tree data, |
| tree new_data, unsigned n_threads) |
| { |
| gimple_stmt_iterator gsi; |
| basic_block bb, paral_bb, for_bb, ex_bb; |
| tree t, param, res; |
| gimple stmt, for_stmt, phi, cond_stmt; |
| tree cvar, cvar_init, initvar, cvar_next, cvar_base, type; |
| edge exit, nexit, guard, end, e; |
| |
| /* Prepare the GIMPLE_OMP_PARALLEL statement. */ |
| bb = loop_preheader_edge (loop)->src; |
| paral_bb = single_pred (bb); |
| gsi = gsi_last_bb (paral_bb); |
| |
| t = build_omp_clause (OMP_CLAUSE_NUM_THREADS); |
| OMP_CLAUSE_NUM_THREADS_EXPR (t) |
| = build_int_cst (integer_type_node, n_threads); |
| stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data); |
| |
| gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); |
| |
| /* Initialize NEW_DATA. */ |
| if (data) |
| { |
| gsi = gsi_after_labels (bb); |
| |
| param = make_ssa_name (DECL_ARGUMENTS (loop_fn), NULL); |
| stmt = gimple_build_assign (param, build_fold_addr_expr (data)); |
| gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); |
| SSA_NAME_DEF_STMT (param) = stmt; |
| |
| stmt = gimple_build_assign (new_data, |
| fold_convert (TREE_TYPE (new_data), param)); |
| gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); |
| SSA_NAME_DEF_STMT (new_data) = stmt; |
| } |
| |
| /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */ |
| bb = split_loop_exit_edge (single_dom_exit (loop)); |
| gsi = gsi_last_bb (bb); |
| gsi_insert_after (&gsi, gimple_build_omp_return (false), GSI_NEW_STMT); |
| |
| /* Extract data for GIMPLE_OMP_FOR. */ |
| gcc_assert (loop->header == single_dom_exit (loop)->src); |
| cond_stmt = last_stmt (loop->header); |
| |
| cvar = gimple_cond_lhs (cond_stmt); |
| cvar_base = SSA_NAME_VAR (cvar); |
| phi = SSA_NAME_DEF_STMT (cvar); |
| cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop)); |
| initvar = make_ssa_name (cvar_base, NULL); |
| SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)), |
| initvar); |
| cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop)); |
| |
| gsi = gsi_last_bb (loop->latch); |
| gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next)); |
| gsi_remove (&gsi, true); |
| |
| /* Prepare cfg. */ |
| for_bb = split_edge (loop_preheader_edge (loop)); |
| ex_bb = split_loop_exit_edge (single_dom_exit (loop)); |
| extract_true_false_edges_from_block (loop->header, &nexit, &exit); |
| gcc_assert (exit == single_dom_exit (loop)); |
| |
| guard = make_edge (for_bb, ex_bb, 0); |
| single_succ_edge (loop->latch)->flags = 0; |
| end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU); |
| for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| phi = gsi_stmt (gsi); |
| res = PHI_RESULT (phi); |
| stmt = SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit)); |
| add_phi_arg (phi, |
| PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop)), |
| guard); |
| add_phi_arg (phi, PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop)), |
| end); |
| } |
| e = redirect_edge_and_branch (exit, nexit->dest); |
| PENDING_STMT (e) = NULL; |
| |
| /* Emit GIMPLE_OMP_FOR. */ |
| gimple_cond_set_lhs (cond_stmt, cvar_base); |
| type = TREE_TYPE (cvar); |
| t = build_omp_clause (OMP_CLAUSE_SCHEDULE); |
| OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC; |
| |
| for_stmt = gimple_build_omp_for (NULL, t, 1, NULL); |
| gimple_omp_for_set_index (for_stmt, 0, initvar); |
| gimple_omp_for_set_initial (for_stmt, 0, cvar_init); |
| gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt)); |
| gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt)); |
| gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type, |
| cvar_base, |
| build_int_cst (type, 1))); |
| |
| gsi = gsi_last_bb (for_bb); |
| gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT); |
| SSA_NAME_DEF_STMT (initvar) = for_stmt; |
| |
| /* Emit GIMPLE_OMP_CONTINUE. */ |
| gsi = gsi_last_bb (loop->latch); |
| stmt = gimple_build_omp_continue (cvar_next, cvar); |
| gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); |
| SSA_NAME_DEF_STMT (cvar_next) = stmt; |
| |
| /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */ |
| gsi = gsi_last_bb (ex_bb); |
| gsi_insert_after (&gsi, gimple_build_omp_return (true), GSI_NEW_STMT); |
| |
| return paral_bb; |
| } |
| |
| /* Generates code to execute the iterations of LOOP in N_THREADS threads in |
| parallel. NITER describes number of iterations of LOOP. |
| REDUCTION_LIST describes the reductions existent in the LOOP. */ |
| |
| static void |
| gen_parallel_loop (struct loop *loop, htab_t reduction_list, |
| unsigned n_threads, struct tree_niter_desc *niter) |
| { |
| struct loop *nloop; |
| loop_iterator li; |
| tree many_iterations_cond, type, nit; |
| tree arg_struct, new_arg_struct; |
| gimple_seq stmts; |
| basic_block parallel_head; |
| edge entry, exit; |
| struct clsn_data clsn_data; |
| unsigned prob; |
| |
| /* From |
| |
| --------------------------------------------------------------------- |
| loop |
| { |
| IV = phi (INIT, IV + STEP) |
| BODY1; |
| if (COND) |
| break; |
| BODY2; |
| } |
| --------------------------------------------------------------------- |
| |
| with # of iterations NITER (possibly with MAY_BE_ZERO assumption), |
| we generate the following code: |
| |
| --------------------------------------------------------------------- |
| |
| if (MAY_BE_ZERO |
| || NITER < MIN_PER_THREAD * N_THREADS) |
| goto original; |
| |
| BODY1; |
| store all local loop-invariant variables used in body of the loop to DATA. |
| GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA); |
| load the variables from DATA. |
| GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static)) |
| BODY2; |
| BODY1; |
| GIMPLE_OMP_CONTINUE; |
| GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR |
| GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL |
| goto end; |
| |
| original: |
| loop |
| { |
| IV = phi (INIT, IV + STEP) |
| BODY1; |
| if (COND) |
| break; |
| BODY2; |
| } |
| |
| end: |
| |
| */ |
| |
| /* Create two versions of the loop -- in the old one, we know that the |
| number of iterations is large enough, and we will transform it into the |
| loop that will be split to loop_fn, the new one will be used for the |
| remaining iterations. */ |
| |
| type = TREE_TYPE (niter->niter); |
| nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true, |
| NULL_TREE); |
| if (stmts) |
| gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts); |
| |
| many_iterations_cond = |
| fold_build2 (GE_EXPR, boolean_type_node, |
| nit, build_int_cst (type, MIN_PER_THREAD * n_threads)); |
| many_iterations_cond |
| = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, |
| invert_truthvalue (unshare_expr (niter->may_be_zero)), |
| many_iterations_cond); |
| many_iterations_cond |
| = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE); |
| if (stmts) |
| gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts); |
| if (!is_gimple_condexpr (many_iterations_cond)) |
| { |
| many_iterations_cond |
| = force_gimple_operand (many_iterations_cond, &stmts, |
| true, NULL_TREE); |
| if (stmts) |
| gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts); |
| } |
| |
| initialize_original_copy_tables (); |
| |
| /* We assume that the loop usually iterates a lot. */ |
| prob = 4 * REG_BR_PROB_BASE / 5; |
| nloop = loop_version (loop, many_iterations_cond, NULL, |
| prob, prob, REG_BR_PROB_BASE - prob, true); |
| update_ssa (TODO_update_ssa); |
| free_original_copy_tables (); |
| |
| /* Base all the induction variables in LOOP on a single control one. */ |
| canonicalize_loop_ivs (loop, reduction_list, &nit); |
| |
| /* Ensure that the exit condition is the first statement in the loop. */ |
| transform_to_exit_first_loop (loop, reduction_list, nit); |
| |
| /* Generate initializations for reductions. */ |
| if (htab_elements (reduction_list) > 0) |
| htab_traverse (reduction_list, initialize_reductions, loop); |
| |
| /* Eliminate the references to local variables from the loop. */ |
| gcc_assert (single_exit (loop)); |
| entry = loop_preheader_edge (loop); |
| exit = single_dom_exit (loop); |
| |
| eliminate_local_variables (entry, exit); |
| /* In the old loop, move all variables non-local to the loop to a structure |
| and back, and create separate decls for the variables used in loop. */ |
| separate_decls_in_region (entry, exit, reduction_list, &arg_struct, |
| &new_arg_struct, &clsn_data); |
| |
| /* Create the parallel constructs. */ |
| parallel_head = create_parallel_loop (loop, create_loop_fn (), arg_struct, |
| new_arg_struct, n_threads); |
| if (htab_elements (reduction_list) > 0) |
| create_call_for_reduction (loop, reduction_list, &clsn_data); |
| |
| scev_reset (); |
| |
| /* Cancel the loop (it is simpler to do it here rather than to teach the |
| expander to do it). */ |
| cancel_loop_tree (loop); |
| |
| /* Free loop bound estimations that could contain references to |
| removed statements. */ |
| FOR_EACH_LOOP (li, loop, 0) |
| free_numbers_of_iterations_estimates_loop (loop); |
| |
| /* Expand the parallel constructs. We do it directly here instead of running |
| a separate expand_omp pass, since it is more efficient, and less likely to |
| cause troubles with further analyses not being able to deal with the |
| OMP trees. */ |
| |
| omp_expand_local (parallel_head); |
| } |
| |
| /* Returns true when LOOP contains vector phi nodes. */ |
| |
| static bool |
| loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED) |
| { |
| unsigned i; |
| basic_block *bbs = get_loop_body_in_dom_order (loop); |
| gimple_stmt_iterator gsi; |
| bool res = true; |
| |
| for (i = 0; i < loop->num_nodes; i++) |
| for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi)) |
| if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi_stmt (gsi)))) == VECTOR_TYPE) |
| goto end; |
| |
| res = false; |
| end: |
| free (bbs); |
| return res; |
| } |
| |
| /* Detect parallel loops and generate parallel code using libgomp |
| primitives. Returns true if some loop was parallelized, false |
| otherwise. */ |
| |
| bool |
| parallelize_loops (void) |
| { |
| unsigned n_threads = flag_tree_parallelize_loops; |
| bool changed = false; |
| struct loop *loop; |
| struct tree_niter_desc niter_desc; |
| loop_iterator li; |
| htab_t reduction_list; |
| |
| /* Do not parallelize loops in the functions created by parallelization. */ |
| if (parallelized_function_p (cfun->decl)) |
| return false; |
| |
| reduction_list = htab_create (10, reduction_info_hash, |
| reduction_info_eq, free); |
| init_stmt_vec_info_vec (); |
| |
| FOR_EACH_LOOP (li, loop, 0) |
| { |
| htab_empty (reduction_list); |
| if (/* Do not bother with loops in cold areas. */ |
| optimize_loop_nest_for_size_p (loop) |
| /* Or loops that roll too little. */ |
| || expected_loop_iterations (loop) <= n_threads |
| /* And of course, the loop must be parallelizable. */ |
| || !can_duplicate_loop_p (loop) |
| || loop_has_blocks_with_irreducible_flag (loop) |
| /* FIXME: the check for vector phi nodes could be removed. */ |
| || loop_has_vector_phi_nodes (loop) |
| || !loop_parallel_p (loop, reduction_list, &niter_desc)) |
| continue; |
| |
| changed = true; |
| gen_parallel_loop (loop, reduction_list, n_threads, &niter_desc); |
| verify_flow_info (); |
| verify_dominators (CDI_DOMINATORS); |
| verify_loop_structure (); |
| verify_loop_closed_ssa (); |
| } |
| |
| free_stmt_vec_info_vec (); |
| htab_delete (reduction_list); |
| return changed; |
| } |
| |
| #include "gt-tree-parloops.h" |