| /* Reassociation for trees. |
| Copyright (C) 2005, 2007, 2008, 2009 Free Software Foundation, Inc. |
| Contributed by Daniel Berlin <dan@dberlin.org> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "ggc.h" |
| #include "tree.h" |
| #include "basic-block.h" |
| #include "diagnostic.h" |
| #include "tree-inline.h" |
| #include "tree-flow.h" |
| #include "gimple.h" |
| #include "tree-dump.h" |
| #include "timevar.h" |
| #include "tree-iterator.h" |
| #include "tree-pass.h" |
| #include "alloc-pool.h" |
| #include "vec.h" |
| #include "langhooks.h" |
| #include "pointer-set.h" |
| #include "cfgloop.h" |
| #include "flags.h" |
| |
| /* This is a simple global reassociation pass. It is, in part, based |
| on the LLVM pass of the same name (They do some things more/less |
| than we do, in different orders, etc). |
| |
| It consists of five steps: |
| |
| 1. Breaking up subtract operations into addition + negate, where |
| it would promote the reassociation of adds. |
| |
| 2. Left linearization of the expression trees, so that (A+B)+(C+D) |
| becomes (((A+B)+C)+D), which is easier for us to rewrite later. |
| During linearization, we place the operands of the binary |
| expressions into a vector of operand_entry_t |
| |
| 3. Optimization of the operand lists, eliminating things like a + |
| -a, a & a, etc. |
| |
| 4. Rewrite the expression trees we linearized and optimized so |
| they are in proper rank order. |
| |
| 5. Repropagate negates, as nothing else will clean it up ATM. |
| |
| A bit of theory on #4, since nobody seems to write anything down |
| about why it makes sense to do it the way they do it: |
| |
| We could do this much nicer theoretically, but don't (for reasons |
| explained after how to do it theoretically nice :P). |
| |
| In order to promote the most redundancy elimination, you want |
| binary expressions whose operands are the same rank (or |
| preferably, the same value) exposed to the redundancy eliminator, |
| for possible elimination. |
| |
| So the way to do this if we really cared, is to build the new op |
| tree from the leaves to the roots, merging as you go, and putting the |
| new op on the end of the worklist, until you are left with one |
| thing on the worklist. |
| |
| IE if you have to rewrite the following set of operands (listed with |
| rank in parentheses), with opcode PLUS_EXPR: |
| |
| a (1), b (1), c (1), d (2), e (2) |
| |
| |
| We start with our merge worklist empty, and the ops list with all of |
| those on it. |
| |
| You want to first merge all leaves of the same rank, as much as |
| possible. |
| |
| So first build a binary op of |
| |
| mergetmp = a + b, and put "mergetmp" on the merge worklist. |
| |
| Because there is no three operand form of PLUS_EXPR, c is not going to |
| be exposed to redundancy elimination as a rank 1 operand. |
| |
| So you might as well throw it on the merge worklist (you could also |
| consider it to now be a rank two operand, and merge it with d and e, |
| but in this case, you then have evicted e from a binary op. So at |
| least in this situation, you can't win.) |
| |
| Then build a binary op of d + e |
| mergetmp2 = d + e |
| |
| and put mergetmp2 on the merge worklist. |
| |
| so merge worklist = {mergetmp, c, mergetmp2} |
| |
| Continue building binary ops of these operations until you have only |
| one operation left on the worklist. |
| |
| So we have |
| |
| build binary op |
| mergetmp3 = mergetmp + c |
| |
| worklist = {mergetmp2, mergetmp3} |
| |
| mergetmp4 = mergetmp2 + mergetmp3 |
| |
| worklist = {mergetmp4} |
| |
| because we have one operation left, we can now just set the original |
| statement equal to the result of that operation. |
| |
| This will at least expose a + b and d + e to redundancy elimination |
| as binary operations. |
| |
| For extra points, you can reuse the old statements to build the |
| mergetmps, since you shouldn't run out. |
| |
| So why don't we do this? |
| |
| Because it's expensive, and rarely will help. Most trees we are |
| reassociating have 3 or less ops. If they have 2 ops, they already |
| will be written into a nice single binary op. If you have 3 ops, a |
| single simple check suffices to tell you whether the first two are of the |
| same rank. If so, you know to order it |
| |
| mergetmp = op1 + op2 |
| newstmt = mergetmp + op3 |
| |
| instead of |
| mergetmp = op2 + op3 |
| newstmt = mergetmp + op1 |
| |
| If all three are of the same rank, you can't expose them all in a |
| single binary operator anyway, so the above is *still* the best you |
| can do. |
| |
| Thus, this is what we do. When we have three ops left, we check to see |
| what order to put them in, and call it a day. As a nod to vector sum |
| reduction, we check if any of the ops are really a phi node that is a |
| destructive update for the associating op, and keep the destructive |
| update together for vector sum reduction recognition. */ |
| |
| |
| /* Statistics */ |
| static struct |
| { |
| int linearized; |
| int constants_eliminated; |
| int ops_eliminated; |
| int rewritten; |
| } reassociate_stats; |
| |
| /* Operator, rank pair. */ |
| typedef struct operand_entry |
| { |
| unsigned int rank; |
| tree op; |
| } *operand_entry_t; |
| |
| static alloc_pool operand_entry_pool; |
| |
| |
| /* Starting rank number for a given basic block, so that we can rank |
| operations using unmovable instructions in that BB based on the bb |
| depth. */ |
| static long *bb_rank; |
| |
| /* Operand->rank hashtable. */ |
| static struct pointer_map_t *operand_rank; |
| |
| |
| /* Look up the operand rank structure for expression E. */ |
| |
| static inline long |
| find_operand_rank (tree e) |
| { |
| void **slot = pointer_map_contains (operand_rank, e); |
| return slot ? (long) *slot : -1; |
| } |
| |
| /* Insert {E,RANK} into the operand rank hashtable. */ |
| |
| static inline void |
| insert_operand_rank (tree e, long rank) |
| { |
| void **slot; |
| gcc_assert (rank > 0); |
| slot = pointer_map_insert (operand_rank, e); |
| gcc_assert (!*slot); |
| *slot = (void *) rank; |
| } |
| |
| /* Given an expression E, return the rank of the expression. */ |
| |
| static long |
| get_rank (tree e) |
| { |
| /* Constants have rank 0. */ |
| if (is_gimple_min_invariant (e)) |
| return 0; |
| |
| /* SSA_NAME's have the rank of the expression they are the result |
| of. |
| For globals and uninitialized values, the rank is 0. |
| For function arguments, use the pre-setup rank. |
| For PHI nodes, stores, asm statements, etc, we use the rank of |
| the BB. |
| For simple operations, the rank is the maximum rank of any of |
| its operands, or the bb_rank, whichever is less. |
| I make no claims that this is optimal, however, it gives good |
| results. */ |
| |
| if (TREE_CODE (e) == SSA_NAME) |
| { |
| gimple stmt; |
| long rank, maxrank; |
| int i, n; |
| |
| if (TREE_CODE (SSA_NAME_VAR (e)) == PARM_DECL |
| && SSA_NAME_IS_DEFAULT_DEF (e)) |
| return find_operand_rank (e); |
| |
| stmt = SSA_NAME_DEF_STMT (e); |
| if (gimple_bb (stmt) == NULL) |
| return 0; |
| |
| if (!is_gimple_assign (stmt) |
| || !ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS)) |
| return bb_rank[gimple_bb (stmt)->index]; |
| |
| /* If we already have a rank for this expression, use that. */ |
| rank = find_operand_rank (e); |
| if (rank != -1) |
| return rank; |
| |
| /* Otherwise, find the maximum rank for the operands, or the bb |
| rank, whichever is less. */ |
| rank = 0; |
| maxrank = bb_rank[gimple_bb(stmt)->index]; |
| if (gimple_assign_single_p (stmt)) |
| { |
| tree rhs = gimple_assign_rhs1 (stmt); |
| n = TREE_OPERAND_LENGTH (rhs); |
| if (n == 0) |
| rank = MAX (rank, get_rank (rhs)); |
| else |
| { |
| for (i = 0; |
| i < n && TREE_OPERAND (rhs, i) && rank != maxrank; i++) |
| rank = MAX(rank, get_rank (TREE_OPERAND (rhs, i))); |
| } |
| } |
| else |
| { |
| n = gimple_num_ops (stmt); |
| for (i = 1; i < n && rank != maxrank; i++) |
| { |
| gcc_assert (gimple_op (stmt, i)); |
| rank = MAX(rank, get_rank (gimple_op (stmt, i))); |
| } |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Rank for "); |
| print_generic_expr (dump_file, e, 0); |
| fprintf (dump_file, " is %ld\n", (rank + 1)); |
| } |
| |
| /* Note the rank in the hashtable so we don't recompute it. */ |
| insert_operand_rank (e, (rank + 1)); |
| return (rank + 1); |
| } |
| |
| /* Globals, etc, are rank 0 */ |
| return 0; |
| } |
| |
| DEF_VEC_P(operand_entry_t); |
| DEF_VEC_ALLOC_P(operand_entry_t, heap); |
| |
| /* We want integer ones to end up last no matter what, since they are |
| the ones we can do the most with. */ |
| #define INTEGER_CONST_TYPE 1 << 3 |
| #define FLOAT_CONST_TYPE 1 << 2 |
| #define OTHER_CONST_TYPE 1 << 1 |
| |
| /* Classify an invariant tree into integer, float, or other, so that |
| we can sort them to be near other constants of the same type. */ |
| static inline int |
| constant_type (tree t) |
| { |
| if (INTEGRAL_TYPE_P (TREE_TYPE (t))) |
| return INTEGER_CONST_TYPE; |
| else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t))) |
| return FLOAT_CONST_TYPE; |
| else |
| return OTHER_CONST_TYPE; |
| } |
| |
| /* qsort comparison function to sort operand entries PA and PB by rank |
| so that the sorted array is ordered by rank in decreasing order. */ |
| static int |
| sort_by_operand_rank (const void *pa, const void *pb) |
| { |
| const operand_entry_t oea = *(const operand_entry_t *)pa; |
| const operand_entry_t oeb = *(const operand_entry_t *)pb; |
| |
| /* It's nicer for optimize_expression if constants that are likely |
| to fold when added/multiplied//whatever are put next to each |
| other. Since all constants have rank 0, order them by type. */ |
| if (oeb->rank == 0 && oea->rank == 0) |
| return constant_type (oeb->op) - constant_type (oea->op); |
| |
| /* Lastly, make sure the versions that are the same go next to each |
| other. We use SSA_NAME_VERSION because it's stable. */ |
| if ((oeb->rank - oea->rank == 0) |
| && TREE_CODE (oea->op) == SSA_NAME |
| && TREE_CODE (oeb->op) == SSA_NAME) |
| return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op); |
| |
| return oeb->rank - oea->rank; |
| } |
| |
| /* Add an operand entry to *OPS for the tree operand OP. */ |
| |
| static void |
| add_to_ops_vec (VEC(operand_entry_t, heap) **ops, tree op) |
| { |
| operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool); |
| |
| oe->op = op; |
| oe->rank = get_rank (op); |
| VEC_safe_push (operand_entry_t, heap, *ops, oe); |
| } |
| |
| /* Return true if STMT is reassociable operation containing a binary |
| operation with tree code CODE, and is inside LOOP. */ |
| |
| static bool |
| is_reassociable_op (gimple stmt, enum tree_code code, struct loop *loop) |
| { |
| basic_block bb = gimple_bb (stmt); |
| |
| if (gimple_bb (stmt) == NULL) |
| return false; |
| |
| if (!flow_bb_inside_loop_p (loop, bb)) |
| return false; |
| |
| if (is_gimple_assign (stmt) |
| && gimple_assign_rhs_code (stmt) == code |
| && has_single_use (gimple_assign_lhs (stmt))) |
| return true; |
| |
| return false; |
| } |
| |
| |
| /* Given NAME, if NAME is defined by a unary operation OPCODE, return the |
| operand of the negate operation. Otherwise, return NULL. */ |
| |
| static tree |
| get_unary_op (tree name, enum tree_code opcode) |
| { |
| gimple stmt = SSA_NAME_DEF_STMT (name); |
| |
| if (!is_gimple_assign (stmt)) |
| return NULL_TREE; |
| |
| if (gimple_assign_rhs_code (stmt) == opcode) |
| return gimple_assign_rhs1 (stmt); |
| return NULL_TREE; |
| } |
| |
| /* If CURR and LAST are a pair of ops that OPCODE allows us to |
| eliminate through equivalences, do so, remove them from OPS, and |
| return true. Otherwise, return false. */ |
| |
| static bool |
| eliminate_duplicate_pair (enum tree_code opcode, |
| VEC (operand_entry_t, heap) **ops, |
| bool *all_done, |
| unsigned int i, |
| operand_entry_t curr, |
| operand_entry_t last) |
| { |
| |
| /* If we have two of the same op, and the opcode is & |, min, or max, |
| we can eliminate one of them. |
| If we have two of the same op, and the opcode is ^, we can |
| eliminate both of them. */ |
| |
| if (last && last->op == curr->op) |
| { |
| switch (opcode) |
| { |
| case MAX_EXPR: |
| case MIN_EXPR: |
| case BIT_IOR_EXPR: |
| case BIT_AND_EXPR: |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Equivalence: "); |
| print_generic_expr (dump_file, curr->op, 0); |
| fprintf (dump_file, " [&|minmax] "); |
| print_generic_expr (dump_file, last->op, 0); |
| fprintf (dump_file, " -> "); |
| print_generic_stmt (dump_file, last->op, 0); |
| } |
| |
| VEC_ordered_remove (operand_entry_t, *ops, i); |
| reassociate_stats.ops_eliminated ++; |
| |
| return true; |
| |
| case BIT_XOR_EXPR: |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Equivalence: "); |
| print_generic_expr (dump_file, curr->op, 0); |
| fprintf (dump_file, " ^ "); |
| print_generic_expr (dump_file, last->op, 0); |
| fprintf (dump_file, " -> nothing\n"); |
| } |
| |
| reassociate_stats.ops_eliminated += 2; |
| |
| if (VEC_length (operand_entry_t, *ops) == 2) |
| { |
| VEC_free (operand_entry_t, heap, *ops); |
| *ops = NULL; |
| add_to_ops_vec (ops, fold_convert (TREE_TYPE (last->op), |
| integer_zero_node)); |
| *all_done = true; |
| } |
| else |
| { |
| VEC_ordered_remove (operand_entry_t, *ops, i-1); |
| VEC_ordered_remove (operand_entry_t, *ops, i-1); |
| } |
| |
| return true; |
| |
| default: |
| break; |
| } |
| } |
| return false; |
| } |
| |
| /* If OPCODE is PLUS_EXPR, CURR->OP is really a negate expression, |
| look in OPS for a corresponding positive operation to cancel it |
| out. If we find one, remove the other from OPS, replace |
| OPS[CURRINDEX] with 0, and return true. Otherwise, return |
| false. */ |
| |
| static bool |
| eliminate_plus_minus_pair (enum tree_code opcode, |
| VEC (operand_entry_t, heap) **ops, |
| unsigned int currindex, |
| operand_entry_t curr) |
| { |
| tree negateop; |
| unsigned int i; |
| operand_entry_t oe; |
| |
| if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME) |
| return false; |
| |
| negateop = get_unary_op (curr->op, NEGATE_EXPR); |
| if (negateop == NULL_TREE) |
| return false; |
| |
| /* Any non-negated version will have a rank that is one less than |
| the current rank. So once we hit those ranks, if we don't find |
| one, we can stop. */ |
| |
| for (i = currindex + 1; |
| VEC_iterate (operand_entry_t, *ops, i, oe) |
| && oe->rank >= curr->rank - 1 ; |
| i++) |
| { |
| if (oe->op == negateop) |
| { |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Equivalence: "); |
| print_generic_expr (dump_file, negateop, 0); |
| fprintf (dump_file, " + -"); |
| print_generic_expr (dump_file, oe->op, 0); |
| fprintf (dump_file, " -> 0\n"); |
| } |
| |
| VEC_ordered_remove (operand_entry_t, *ops, i); |
| add_to_ops_vec (ops, fold_convert(TREE_TYPE (oe->op), |
| integer_zero_node)); |
| VEC_ordered_remove (operand_entry_t, *ops, currindex); |
| reassociate_stats.ops_eliminated ++; |
| |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a |
| bitwise not expression, look in OPS for a corresponding operand to |
| cancel it out. If we find one, remove the other from OPS, replace |
| OPS[CURRINDEX] with 0, and return true. Otherwise, return |
| false. */ |
| |
| static bool |
| eliminate_not_pairs (enum tree_code opcode, |
| VEC (operand_entry_t, heap) **ops, |
| unsigned int currindex, |
| operand_entry_t curr) |
| { |
| tree notop; |
| unsigned int i; |
| operand_entry_t oe; |
| |
| if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR) |
| || TREE_CODE (curr->op) != SSA_NAME) |
| return false; |
| |
| notop = get_unary_op (curr->op, BIT_NOT_EXPR); |
| if (notop == NULL_TREE) |
| return false; |
| |
| /* Any non-not version will have a rank that is one less than |
| the current rank. So once we hit those ranks, if we don't find |
| one, we can stop. */ |
| |
| for (i = currindex + 1; |
| VEC_iterate (operand_entry_t, *ops, i, oe) |
| && oe->rank >= curr->rank - 1; |
| i++) |
| { |
| if (oe->op == notop) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Equivalence: "); |
| print_generic_expr (dump_file, notop, 0); |
| if (opcode == BIT_AND_EXPR) |
| fprintf (dump_file, " & ~"); |
| else if (opcode == BIT_IOR_EXPR) |
| fprintf (dump_file, " | ~"); |
| print_generic_expr (dump_file, oe->op, 0); |
| if (opcode == BIT_AND_EXPR) |
| fprintf (dump_file, " -> 0\n"); |
| else if (opcode == BIT_IOR_EXPR) |
| fprintf (dump_file, " -> -1\n"); |
| } |
| |
| if (opcode == BIT_AND_EXPR) |
| oe->op = fold_convert (TREE_TYPE (oe->op), integer_zero_node); |
| else if (opcode == BIT_IOR_EXPR) |
| oe->op = build_low_bits_mask (TREE_TYPE (oe->op), |
| TYPE_PRECISION (TREE_TYPE (oe->op))); |
| |
| reassociate_stats.ops_eliminated |
| += VEC_length (operand_entry_t, *ops) - 1; |
| VEC_free (operand_entry_t, heap, *ops); |
| *ops = NULL; |
| VEC_safe_push (operand_entry_t, heap, *ops, oe); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /* Use constant value that may be present in OPS to try to eliminate |
| operands. Note that this function is only really used when we've |
| eliminated ops for other reasons, or merged constants. Across |
| single statements, fold already does all of this, plus more. There |
| is little point in duplicating logic, so I've only included the |
| identities that I could ever construct testcases to trigger. */ |
| |
| static void |
| eliminate_using_constants (enum tree_code opcode, |
| VEC(operand_entry_t, heap) **ops) |
| { |
| operand_entry_t oelast = VEC_last (operand_entry_t, *ops); |
| tree type = TREE_TYPE (oelast->op); |
| |
| if (oelast->rank == 0 |
| && (INTEGRAL_TYPE_P (type) || FLOAT_TYPE_P (type))) |
| { |
| switch (opcode) |
| { |
| case BIT_AND_EXPR: |
| if (integer_zerop (oelast->op)) |
| { |
| if (VEC_length (operand_entry_t, *ops) != 1) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "Found & 0, removing all other ops\n"); |
| |
| reassociate_stats.ops_eliminated |
| += VEC_length (operand_entry_t, *ops) - 1; |
| |
| VEC_free (operand_entry_t, heap, *ops); |
| *ops = NULL; |
| VEC_safe_push (operand_entry_t, heap, *ops, oelast); |
| return; |
| } |
| } |
| else if (integer_all_onesp (oelast->op)) |
| { |
| if (VEC_length (operand_entry_t, *ops) != 1) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "Found & -1, removing\n"); |
| VEC_pop (operand_entry_t, *ops); |
| reassociate_stats.ops_eliminated++; |
| } |
| } |
| break; |
| case BIT_IOR_EXPR: |
| if (integer_all_onesp (oelast->op)) |
| { |
| if (VEC_length (operand_entry_t, *ops) != 1) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "Found | -1, removing all other ops\n"); |
| |
| reassociate_stats.ops_eliminated |
| += VEC_length (operand_entry_t, *ops) - 1; |
| |
| VEC_free (operand_entry_t, heap, *ops); |
| *ops = NULL; |
| VEC_safe_push (operand_entry_t, heap, *ops, oelast); |
| return; |
| } |
| } |
| else if (integer_zerop (oelast->op)) |
| { |
| if (VEC_length (operand_entry_t, *ops) != 1) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "Found | 0, removing\n"); |
| VEC_pop (operand_entry_t, *ops); |
| reassociate_stats.ops_eliminated++; |
| } |
| } |
| break; |
| case MULT_EXPR: |
| if (integer_zerop (oelast->op) |
| || (FLOAT_TYPE_P (type) |
| && !HONOR_NANS (TYPE_MODE (type)) |
| && !HONOR_SIGNED_ZEROS (TYPE_MODE (type)) |
| && real_zerop (oelast->op))) |
| { |
| if (VEC_length (operand_entry_t, *ops) != 1) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "Found * 0, removing all other ops\n"); |
| |
| reassociate_stats.ops_eliminated |
| += VEC_length (operand_entry_t, *ops) - 1; |
| VEC_free (operand_entry_t, heap, *ops); |
| *ops = NULL; |
| VEC_safe_push (operand_entry_t, heap, *ops, oelast); |
| return; |
| } |
| } |
| else if (integer_onep (oelast->op) |
| || (FLOAT_TYPE_P (type) |
| && !HONOR_SNANS (TYPE_MODE (type)) |
| && real_onep (oelast->op))) |
| { |
| if (VEC_length (operand_entry_t, *ops) != 1) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "Found * 1, removing\n"); |
| VEC_pop (operand_entry_t, *ops); |
| reassociate_stats.ops_eliminated++; |
| return; |
| } |
| } |
| break; |
| case BIT_XOR_EXPR: |
| case PLUS_EXPR: |
| case MINUS_EXPR: |
| if (integer_zerop (oelast->op) |
| || (FLOAT_TYPE_P (type) |
| && (opcode == PLUS_EXPR || opcode == MINUS_EXPR) |
| && fold_real_zero_addition_p (type, oelast->op, |
| opcode == MINUS_EXPR))) |
| { |
| if (VEC_length (operand_entry_t, *ops) != 1) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "Found [|^+] 0, removing\n"); |
| VEC_pop (operand_entry_t, *ops); |
| reassociate_stats.ops_eliminated++; |
| return; |
| } |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| |
| static void linearize_expr_tree (VEC(operand_entry_t, heap) **, gimple, |
| bool, bool); |
| |
| /* Structure for tracking and counting operands. */ |
| typedef struct oecount_s { |
| int cnt; |
| enum tree_code oecode; |
| tree op; |
| } oecount; |
| |
| DEF_VEC_O(oecount); |
| DEF_VEC_ALLOC_O(oecount,heap); |
| |
| /* The heap for the oecount hashtable and the sorted list of operands. */ |
| static VEC (oecount, heap) *cvec; |
| |
| /* Hash function for oecount. */ |
| |
| static hashval_t |
| oecount_hash (const void *p) |
| { |
| const oecount *c = VEC_index (oecount, cvec, (size_t)p - 42); |
| return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode; |
| } |
| |
| /* Comparison function for oecount. */ |
| |
| static int |
| oecount_eq (const void *p1, const void *p2) |
| { |
| const oecount *c1 = VEC_index (oecount, cvec, (size_t)p1 - 42); |
| const oecount *c2 = VEC_index (oecount, cvec, (size_t)p2 - 42); |
| return (c1->oecode == c2->oecode |
| && c1->op == c2->op); |
| } |
| |
| /* Comparison function for qsort sorting oecount elements by count. */ |
| |
| static int |
| oecount_cmp (const void *p1, const void *p2) |
| { |
| const oecount *c1 = (const oecount *)p1; |
| const oecount *c2 = (const oecount *)p2; |
| return c1->cnt - c2->cnt; |
| } |
| |
| /* Walks the linear chain with result *DEF searching for an operation |
| with operand OP and code OPCODE removing that from the chain. *DEF |
| is updated if there is only one operand but no operation left. */ |
| |
| static void |
| zero_one_operation (tree *def, enum tree_code opcode, tree op) |
| { |
| gimple stmt = SSA_NAME_DEF_STMT (*def); |
| |
| do |
| { |
| tree name = gimple_assign_rhs1 (stmt); |
| |
| /* If this is the operation we look for and one of the operands |
| is ours simply propagate the other operand into the stmts |
| single use. */ |
| if (gimple_assign_rhs_code (stmt) == opcode |
| && (name == op |
| || gimple_assign_rhs2 (stmt) == op)) |
| { |
| gimple use_stmt; |
| use_operand_p use; |
| gimple_stmt_iterator gsi; |
| if (name == op) |
| name = gimple_assign_rhs2 (stmt); |
| gcc_assert (has_single_use (gimple_assign_lhs (stmt))); |
| single_imm_use (gimple_assign_lhs (stmt), &use, &use_stmt); |
| if (gimple_assign_lhs (stmt) == *def) |
| *def = name; |
| SET_USE (use, name); |
| if (TREE_CODE (name) != SSA_NAME) |
| update_stmt (use_stmt); |
| gsi = gsi_for_stmt (stmt); |
| gsi_remove (&gsi, true); |
| release_defs (stmt); |
| return; |
| } |
| |
| /* Continue walking the chain. */ |
| gcc_assert (name != op |
| && TREE_CODE (name) == SSA_NAME); |
| stmt = SSA_NAME_DEF_STMT (name); |
| } |
| while (1); |
| } |
| |
| /* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for |
| the result. Places the statement after the definition of either |
| OP1 or OP2. Returns the new statement. */ |
| |
| static gimple |
| build_and_add_sum (tree tmpvar, tree op1, tree op2, enum tree_code opcode) |
| { |
| gimple op1def = NULL, op2def = NULL; |
| gimple_stmt_iterator gsi; |
| tree op; |
| gimple sum; |
| |
| /* Create the addition statement. */ |
| sum = gimple_build_assign_with_ops (opcode, tmpvar, op1, op2); |
| op = make_ssa_name (tmpvar, sum); |
| gimple_assign_set_lhs (sum, op); |
| |
| /* Find an insertion place and insert. */ |
| if (TREE_CODE (op1) == SSA_NAME) |
| op1def = SSA_NAME_DEF_STMT (op1); |
| if (TREE_CODE (op2) == SSA_NAME) |
| op2def = SSA_NAME_DEF_STMT (op2); |
| if ((!op1def || gimple_nop_p (op1def)) |
| && (!op2def || gimple_nop_p (op2def))) |
| { |
| gsi = gsi_start_bb (single_succ (ENTRY_BLOCK_PTR)); |
| gsi_insert_before (&gsi, sum, GSI_NEW_STMT); |
| } |
| else if ((!op1def || gimple_nop_p (op1def)) |
| || (op2def && !gimple_nop_p (op2def) |
| && stmt_dominates_stmt_p (op1def, op2def))) |
| { |
| if (gimple_code (op2def) == GIMPLE_PHI) |
| { |
| gsi = gsi_start_bb (gimple_bb (op2def)); |
| gsi_insert_before (&gsi, sum, GSI_NEW_STMT); |
| } |
| else |
| { |
| if (!stmt_ends_bb_p (op2def)) |
| { |
| gsi = gsi_for_stmt (op2def); |
| gsi_insert_after (&gsi, sum, GSI_NEW_STMT); |
| } |
| else |
| { |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, gimple_bb (op2def)->succs) |
| if (e->flags & EDGE_FALLTHRU) |
| gsi_insert_on_edge_immediate (e, sum); |
| } |
| } |
| } |
| else |
| { |
| if (gimple_code (op1def) == GIMPLE_PHI) |
| { |
| gsi = gsi_start_bb (gimple_bb (op1def)); |
| gsi_insert_before (&gsi, sum, GSI_NEW_STMT); |
| } |
| else |
| { |
| if (!stmt_ends_bb_p (op1def)) |
| { |
| gsi = gsi_for_stmt (op1def); |
| gsi_insert_after (&gsi, sum, GSI_NEW_STMT); |
| } |
| else |
| { |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, gimple_bb (op1def)->succs) |
| if (e->flags & EDGE_FALLTHRU) |
| gsi_insert_on_edge_immediate (e, sum); |
| } |
| } |
| } |
| update_stmt (sum); |
| |
| return sum; |
| } |
| |
| /* Perform un-distribution of divisions and multiplications. |
| A * X + B * X is transformed into (A + B) * X and A / X + B / X |
| to (A + B) / X for real X. |
| |
| The algorithm is organized as follows. |
| |
| - First we walk the addition chain *OPS looking for summands that |
| are defined by a multiplication or a real division. This results |
| in the candidates bitmap with relevant indices into *OPS. |
| |
| - Second we build the chains of multiplications or divisions for |
| these candidates, counting the number of occurences of (operand, code) |
| pairs in all of the candidates chains. |
| |
| - Third we sort the (operand, code) pairs by number of occurence and |
| process them starting with the pair with the most uses. |
| |
| * For each such pair we walk the candidates again to build a |
| second candidate bitmap noting all multiplication/division chains |
| that have at least one occurence of (operand, code). |
| |
| * We build an alternate addition chain only covering these |
| candidates with one (operand, code) operation removed from their |
| multiplication/division chain. |
| |
| * The first candidate gets replaced by the alternate addition chain |
| multiplied/divided by the operand. |
| |
| * All candidate chains get disabled for further processing and |
| processing of (operand, code) pairs continues. |
| |
| The alternate addition chains built are re-processed by the main |
| reassociation algorithm which allows optimizing a * x * y + b * y * x |
| to (a + b ) * x * y in one invocation of the reassociation pass. */ |
| |
| static bool |
| undistribute_ops_list (enum tree_code opcode, |
| VEC (operand_entry_t, heap) **ops, struct loop *loop) |
| { |
| unsigned int length = VEC_length (operand_entry_t, *ops); |
| operand_entry_t oe1; |
| unsigned i, j; |
| sbitmap candidates, candidates2; |
| unsigned nr_candidates, nr_candidates2; |
| sbitmap_iterator sbi0; |
| VEC (operand_entry_t, heap) **subops; |
| htab_t ctable; |
| bool changed = false; |
| |
| if (length <= 1 |
| || opcode != PLUS_EXPR) |
| return false; |
| |
| /* Build a list of candidates to process. */ |
| candidates = sbitmap_alloc (length); |
| sbitmap_zero (candidates); |
| nr_candidates = 0; |
| for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe1); ++i) |
| { |
| enum tree_code dcode; |
| gimple oe1def; |
| |
| if (TREE_CODE (oe1->op) != SSA_NAME) |
| continue; |
| oe1def = SSA_NAME_DEF_STMT (oe1->op); |
| if (!is_gimple_assign (oe1def)) |
| continue; |
| dcode = gimple_assign_rhs_code (oe1def); |
| if ((dcode != MULT_EXPR |
| && dcode != RDIV_EXPR) |
| || !is_reassociable_op (oe1def, dcode, loop)) |
| continue; |
| |
| SET_BIT (candidates, i); |
| nr_candidates++; |
| } |
| |
| if (nr_candidates < 2) |
| { |
| sbitmap_free (candidates); |
| return false; |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "searching for un-distribute opportunities "); |
| print_generic_expr (dump_file, |
| VEC_index (operand_entry_t, *ops, |
| sbitmap_first_set_bit (candidates))->op, 0); |
| fprintf (dump_file, " %d\n", nr_candidates); |
| } |
| |
| /* Build linearized sub-operand lists and the counting table. */ |
| cvec = NULL; |
| ctable = htab_create (15, oecount_hash, oecount_eq, NULL); |
| subops = XCNEWVEC (VEC (operand_entry_t, heap) *, |
| VEC_length (operand_entry_t, *ops)); |
| EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0) |
| { |
| gimple oedef; |
| enum tree_code oecode; |
| unsigned j; |
| |
| oedef = SSA_NAME_DEF_STMT (VEC_index (operand_entry_t, *ops, i)->op); |
| oecode = gimple_assign_rhs_code (oedef); |
| linearize_expr_tree (&subops[i], oedef, |
| associative_tree_code (oecode), false); |
| |
| for (j = 0; VEC_iterate (operand_entry_t, subops[i], j, oe1); ++j) |
| { |
| oecount c; |
| void **slot; |
| size_t idx; |
| c.oecode = oecode; |
| c.cnt = 1; |
| c.op = oe1->op; |
| VEC_safe_push (oecount, heap, cvec, &c); |
| idx = VEC_length (oecount, cvec) + 41; |
| slot = htab_find_slot (ctable, (void *)idx, INSERT); |
| if (!*slot) |
| { |
| *slot = (void *)idx; |
| } |
| else |
| { |
| VEC_pop (oecount, cvec); |
| VEC_index (oecount, cvec, (size_t)*slot - 42)->cnt++; |
| } |
| } |
| } |
| htab_delete (ctable); |
| |
| /* Sort the counting table. */ |
| qsort (VEC_address (oecount, cvec), VEC_length (oecount, cvec), |
| sizeof (oecount), oecount_cmp); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| oecount *c; |
| fprintf (dump_file, "Candidates:\n"); |
| for (j = 0; VEC_iterate (oecount, cvec, j, c); ++j) |
| { |
| fprintf (dump_file, " %u %s: ", c->cnt, |
| c->oecode == MULT_EXPR |
| ? "*" : c->oecode == RDIV_EXPR ? "/" : "?"); |
| print_generic_expr (dump_file, c->op, 0); |
| fprintf (dump_file, "\n"); |
| } |
| } |
| |
| /* Process the (operand, code) pairs in order of most occurence. */ |
| candidates2 = sbitmap_alloc (length); |
| while (!VEC_empty (oecount, cvec)) |
| { |
| oecount *c = VEC_last (oecount, cvec); |
| if (c->cnt < 2) |
| break; |
| |
| /* Now collect the operands in the outer chain that contain |
| the common operand in their inner chain. */ |
| sbitmap_zero (candidates2); |
| nr_candidates2 = 0; |
| EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0) |
| { |
| gimple oedef; |
| enum tree_code oecode; |
| unsigned j; |
| tree op = VEC_index (operand_entry_t, *ops, i)->op; |
| |
| /* If we undistributed in this chain already this may be |
| a constant. */ |
| if (TREE_CODE (op) != SSA_NAME) |
| continue; |
| |
| oedef = SSA_NAME_DEF_STMT (op); |
| oecode = gimple_assign_rhs_code (oedef); |
| if (oecode != c->oecode) |
| continue; |
| |
| for (j = 0; VEC_iterate (operand_entry_t, subops[i], j, oe1); ++j) |
| { |
| if (oe1->op == c->op) |
| { |
| SET_BIT (candidates2, i); |
| ++nr_candidates2; |
| break; |
| } |
| } |
| } |
| |
| if (nr_candidates2 >= 2) |
| { |
| operand_entry_t oe1, oe2; |
| tree tmpvar; |
| gimple prod; |
| int first = sbitmap_first_set_bit (candidates2); |
| |
| /* Build the new addition chain. */ |
| oe1 = VEC_index (operand_entry_t, *ops, first); |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Building ("); |
| print_generic_expr (dump_file, oe1->op, 0); |
| } |
| tmpvar = create_tmp_var (TREE_TYPE (oe1->op), NULL); |
| add_referenced_var (tmpvar); |
| zero_one_operation (&oe1->op, c->oecode, c->op); |
| EXECUTE_IF_SET_IN_SBITMAP (candidates2, first+1, i, sbi0) |
| { |
| gimple sum; |
| oe2 = VEC_index (operand_entry_t, *ops, i); |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, " + "); |
| print_generic_expr (dump_file, oe2->op, 0); |
| } |
| zero_one_operation (&oe2->op, c->oecode, c->op); |
| sum = build_and_add_sum (tmpvar, oe1->op, oe2->op, opcode); |
| oe2->op = fold_convert (TREE_TYPE (oe2->op), integer_zero_node); |
| oe2->rank = 0; |
| oe1->op = gimple_get_lhs (sum); |
| } |
| |
| /* Apply the multiplication/division. */ |
| prod = build_and_add_sum (tmpvar, oe1->op, c->op, c->oecode); |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/"); |
| print_generic_expr (dump_file, c->op, 0); |
| fprintf (dump_file, "\n"); |
| } |
| |
| /* Record it in the addition chain and disable further |
| undistribution with this op. */ |
| oe1->op = gimple_assign_lhs (prod); |
| oe1->rank = get_rank (oe1->op); |
| VEC_free (operand_entry_t, heap, subops[first]); |
| |
| changed = true; |
| } |
| |
| VEC_pop (oecount, cvec); |
| } |
| |
| for (i = 0; i < VEC_length (operand_entry_t, *ops); ++i) |
| VEC_free (operand_entry_t, heap, subops[i]); |
| free (subops); |
| VEC_free (oecount, heap, cvec); |
| sbitmap_free (candidates); |
| sbitmap_free (candidates2); |
| |
| return changed; |
| } |
| |
| |
| /* Perform various identities and other optimizations on the list of |
| operand entries, stored in OPS. The tree code for the binary |
| operation between all the operands is OPCODE. */ |
| |
| static void |
| optimize_ops_list (enum tree_code opcode, |
| VEC (operand_entry_t, heap) **ops) |
| { |
| unsigned int length = VEC_length (operand_entry_t, *ops); |
| unsigned int i; |
| operand_entry_t oe; |
| operand_entry_t oelast = NULL; |
| bool iterate = false; |
| |
| if (length == 1) |
| return; |
| |
| oelast = VEC_last (operand_entry_t, *ops); |
| |
| /* If the last two are constants, pop the constants off, merge them |
| and try the next two. */ |
| if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op)) |
| { |
| operand_entry_t oelm1 = VEC_index (operand_entry_t, *ops, length - 2); |
| |
| if (oelm1->rank == 0 |
| && is_gimple_min_invariant (oelm1->op) |
| && useless_type_conversion_p (TREE_TYPE (oelm1->op), |
| TREE_TYPE (oelast->op))) |
| { |
| tree folded = fold_binary (opcode, TREE_TYPE (oelm1->op), |
| oelm1->op, oelast->op); |
| |
| if (folded && is_gimple_min_invariant (folded)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "Merging constants\n"); |
| |
| VEC_pop (operand_entry_t, *ops); |
| VEC_pop (operand_entry_t, *ops); |
| |
| add_to_ops_vec (ops, folded); |
| reassociate_stats.constants_eliminated++; |
| |
| optimize_ops_list (opcode, ops); |
| return; |
| } |
| } |
| } |
| |
| eliminate_using_constants (opcode, ops); |
| oelast = NULL; |
| |
| for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe);) |
| { |
| bool done = false; |
| |
| if (eliminate_not_pairs (opcode, ops, i, oe)) |
| return; |
| if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast) |
| || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe))) |
| { |
| if (done) |
| return; |
| iterate = true; |
| oelast = NULL; |
| continue; |
| } |
| oelast = oe; |
| i++; |
| } |
| |
| length = VEC_length (operand_entry_t, *ops); |
| oelast = VEC_last (operand_entry_t, *ops); |
| |
| if (iterate) |
| optimize_ops_list (opcode, ops); |
| } |
| |
| /* Return true if OPERAND is defined by a PHI node which uses the LHS |
| of STMT in it's operands. This is also known as a "destructive |
| update" operation. */ |
| |
| static bool |
| is_phi_for_stmt (gimple stmt, tree operand) |
| { |
| gimple def_stmt; |
| tree lhs; |
| use_operand_p arg_p; |
| ssa_op_iter i; |
| |
| if (TREE_CODE (operand) != SSA_NAME) |
| return false; |
| |
| lhs = gimple_assign_lhs (stmt); |
| |
| def_stmt = SSA_NAME_DEF_STMT (operand); |
| if (gimple_code (def_stmt) != GIMPLE_PHI) |
| return false; |
| |
| FOR_EACH_PHI_ARG (arg_p, def_stmt, i, SSA_OP_USE) |
| if (lhs == USE_FROM_PTR (arg_p)) |
| return true; |
| return false; |
| } |
| |
| /* Remove def stmt of VAR if VAR has zero uses and recurse |
| on rhs1 operand if so. */ |
| |
| static void |
| remove_visited_stmt_chain (tree var) |
| { |
| gimple stmt; |
| gimple_stmt_iterator gsi; |
| |
| while (1) |
| { |
| if (TREE_CODE (var) != SSA_NAME || !has_zero_uses (var)) |
| return; |
| stmt = SSA_NAME_DEF_STMT (var); |
| if (!is_gimple_assign (stmt) |
| || !gimple_visited_p (stmt)) |
| return; |
| var = gimple_assign_rhs1 (stmt); |
| gsi = gsi_for_stmt (stmt); |
| gsi_remove (&gsi, true); |
| release_defs (stmt); |
| } |
| } |
| |
| /* Recursively rewrite our linearized statements so that the operators |
| match those in OPS[OPINDEX], putting the computation in rank |
| order. */ |
| |
| static void |
| rewrite_expr_tree (gimple stmt, unsigned int opindex, |
| VEC(operand_entry_t, heap) * ops, bool moved) |
| { |
| tree rhs1 = gimple_assign_rhs1 (stmt); |
| tree rhs2 = gimple_assign_rhs2 (stmt); |
| operand_entry_t oe; |
| |
| /* If we have three operands left, then we want to make sure the one |
| that gets the double binary op are the ones with the same rank. |
| |
| The alternative we try is to see if this is a destructive |
| update style statement, which is like: |
| b = phi (a, ...) |
| a = c + b; |
| In that case, we want to use the destructive update form to |
| expose the possible vectorizer sum reduction opportunity. |
| In that case, the third operand will be the phi node. |
| |
| We could, of course, try to be better as noted above, and do a |
| lot of work to try to find these opportunities in >3 operand |
| cases, but it is unlikely to be worth it. */ |
| if (opindex + 3 == VEC_length (operand_entry_t, ops)) |
| { |
| operand_entry_t oe1, oe2, oe3; |
| |
| oe1 = VEC_index (operand_entry_t, ops, opindex); |
| oe2 = VEC_index (operand_entry_t, ops, opindex + 1); |
| oe3 = VEC_index (operand_entry_t, ops, opindex + 2); |
| |
| if ((oe1->rank == oe2->rank |
| && oe2->rank != oe3->rank) |
| || (is_phi_for_stmt (stmt, oe3->op) |
| && !is_phi_for_stmt (stmt, oe1->op) |
| && !is_phi_for_stmt (stmt, oe2->op))) |
| { |
| struct operand_entry temp = *oe3; |
| oe3->op = oe1->op; |
| oe3->rank = oe1->rank; |
| oe1->op = temp.op; |
| oe1->rank= temp.rank; |
| } |
| else if ((oe1->rank == oe3->rank |
| && oe2->rank != oe3->rank) |
| || (is_phi_for_stmt (stmt, oe2->op) |
| && !is_phi_for_stmt (stmt, oe1->op) |
| && !is_phi_for_stmt (stmt, oe3->op))) |
| { |
| struct operand_entry temp = *oe2; |
| oe2->op = oe1->op; |
| oe2->rank = oe1->rank; |
| oe1->op = temp.op; |
| oe1->rank= temp.rank; |
| } |
| } |
| |
| /* The final recursion case for this function is that you have |
| exactly two operations left. |
| If we had one exactly one op in the entire list to start with, we |
| would have never called this function, and the tail recursion |
| rewrites them one at a time. */ |
| if (opindex + 2 == VEC_length (operand_entry_t, ops)) |
| { |
| operand_entry_t oe1, oe2; |
| |
| oe1 = VEC_index (operand_entry_t, ops, opindex); |
| oe2 = VEC_index (operand_entry_t, ops, opindex + 1); |
| |
| if (rhs1 != oe1->op || rhs2 != oe2->op) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Transforming "); |
| print_gimple_stmt (dump_file, stmt, 0, 0); |
| } |
| |
| gimple_assign_set_rhs1 (stmt, oe1->op); |
| gimple_assign_set_rhs2 (stmt, oe2->op); |
| update_stmt (stmt); |
| if (rhs1 != oe1->op && rhs1 != oe2->op) |
| remove_visited_stmt_chain (rhs1); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, " into "); |
| print_gimple_stmt (dump_file, stmt, 0, 0); |
| } |
| |
| } |
| return; |
| } |
| |
| /* If we hit here, we should have 3 or more ops left. */ |
| gcc_assert (opindex + 2 < VEC_length (operand_entry_t, ops)); |
| |
| /* Rewrite the next operator. */ |
| oe = VEC_index (operand_entry_t, ops, opindex); |
| |
| if (oe->op != rhs2) |
| { |
| if (!moved) |
| { |
| gimple_stmt_iterator gsinow, gsirhs1; |
| gimple stmt1 = stmt, stmt2; |
| unsigned int count; |
| |
| gsinow = gsi_for_stmt (stmt); |
| count = VEC_length (operand_entry_t, ops) - opindex - 2; |
| while (count-- != 0) |
| { |
| stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt1)); |
| gsirhs1 = gsi_for_stmt (stmt2); |
| gsi_move_before (&gsirhs1, &gsinow); |
| gsi_prev (&gsinow); |
| stmt1 = stmt2; |
| } |
| moved = true; |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Transforming "); |
| print_gimple_stmt (dump_file, stmt, 0, 0); |
| } |
| |
| gimple_assign_set_rhs2 (stmt, oe->op); |
| update_stmt (stmt); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, " into "); |
| print_gimple_stmt (dump_file, stmt, 0, 0); |
| } |
| } |
| /* Recurse on the LHS of the binary operator, which is guaranteed to |
| be the non-leaf side. */ |
| rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops, moved); |
| } |
| |
| /* Transform STMT, which is really (A +B) + (C + D) into the left |
| linear form, ((A+B)+C)+D. |
| Recurse on D if necessary. */ |
| |
| static void |
| linearize_expr (gimple stmt) |
| { |
| gimple_stmt_iterator gsinow, gsirhs; |
| gimple binlhs = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt)); |
| gimple binrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt)); |
| enum tree_code rhscode = gimple_assign_rhs_code (stmt); |
| gimple newbinrhs = NULL; |
| struct loop *loop = loop_containing_stmt (stmt); |
| |
| gcc_assert (is_reassociable_op (binlhs, rhscode, loop) |
| && is_reassociable_op (binrhs, rhscode, loop)); |
| |
| gsinow = gsi_for_stmt (stmt); |
| gsirhs = gsi_for_stmt (binrhs); |
| gsi_move_before (&gsirhs, &gsinow); |
| |
| gimple_assign_set_rhs2 (stmt, gimple_assign_rhs1 (binrhs)); |
| gimple_assign_set_rhs1 (binrhs, gimple_assign_lhs (binlhs)); |
| gimple_assign_set_rhs1 (stmt, gimple_assign_lhs (binrhs)); |
| |
| if (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME) |
| newbinrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt)); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Linearized: "); |
| print_gimple_stmt (dump_file, stmt, 0, 0); |
| } |
| |
| reassociate_stats.linearized++; |
| update_stmt (binrhs); |
| update_stmt (binlhs); |
| update_stmt (stmt); |
| |
| gimple_set_visited (stmt, true); |
| gimple_set_visited (binlhs, true); |
| gimple_set_visited (binrhs, true); |
| |
| /* Tail recurse on the new rhs if it still needs reassociation. */ |
| if (newbinrhs && is_reassociable_op (newbinrhs, rhscode, loop)) |
| /* ??? This should probably be linearize_expr (newbinrhs) but I don't |
| want to change the algorithm while converting to tuples. */ |
| linearize_expr (stmt); |
| } |
| |
| /* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return |
| it. Otherwise, return NULL. */ |
| |
| static gimple |
| get_single_immediate_use (tree lhs) |
| { |
| use_operand_p immuse; |
| gimple immusestmt; |
| |
| if (TREE_CODE (lhs) == SSA_NAME |
| && single_imm_use (lhs, &immuse, &immusestmt) |
| && is_gimple_assign (immusestmt)) |
| return immusestmt; |
| |
| return NULL; |
| } |
| |
| static VEC(tree, heap) *broken_up_subtracts; |
| |
| /* Recursively negate the value of TONEGATE, and return the SSA_NAME |
| representing the negated value. Insertions of any necessary |
| instructions go before GSI. |
| This function is recursive in that, if you hand it "a_5" as the |
| value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will |
| transform b_3 + b_4 into a_5 = -b_3 + -b_4. */ |
| |
| static tree |
| negate_value (tree tonegate, gimple_stmt_iterator *gsi) |
| { |
| gimple negatedefstmt= NULL; |
| tree resultofnegate; |
| |
| /* If we are trying to negate a name, defined by an add, negate the |
| add operands instead. */ |
| if (TREE_CODE (tonegate) == SSA_NAME) |
| negatedefstmt = SSA_NAME_DEF_STMT (tonegate); |
| if (TREE_CODE (tonegate) == SSA_NAME |
| && is_gimple_assign (negatedefstmt) |
| && TREE_CODE (gimple_assign_lhs (negatedefstmt)) == SSA_NAME |
| && has_single_use (gimple_assign_lhs (negatedefstmt)) |
| && gimple_assign_rhs_code (negatedefstmt) == PLUS_EXPR) |
| { |
| gimple_stmt_iterator gsi; |
| tree rhs1 = gimple_assign_rhs1 (negatedefstmt); |
| tree rhs2 = gimple_assign_rhs2 (negatedefstmt); |
| |
| gsi = gsi_for_stmt (negatedefstmt); |
| rhs1 = negate_value (rhs1, &gsi); |
| gimple_assign_set_rhs1 (negatedefstmt, rhs1); |
| |
| gsi = gsi_for_stmt (negatedefstmt); |
| rhs2 = negate_value (rhs2, &gsi); |
| gimple_assign_set_rhs2 (negatedefstmt, rhs2); |
| |
| update_stmt (negatedefstmt); |
| return gimple_assign_lhs (negatedefstmt); |
| } |
| |
| tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate); |
| resultofnegate = force_gimple_operand_gsi (gsi, tonegate, true, |
| NULL_TREE, true, GSI_SAME_STMT); |
| VEC_safe_push (tree, heap, broken_up_subtracts, resultofnegate); |
| return resultofnegate; |
| } |
| |
| /* Return true if we should break up the subtract in STMT into an add |
| with negate. This is true when we the subtract operands are really |
| adds, or the subtract itself is used in an add expression. In |
| either case, breaking up the subtract into an add with negate |
| exposes the adds to reassociation. */ |
| |
| static bool |
| should_break_up_subtract (gimple stmt) |
| { |
| tree lhs = gimple_assign_lhs (stmt); |
| tree binlhs = gimple_assign_rhs1 (stmt); |
| tree binrhs = gimple_assign_rhs2 (stmt); |
| gimple immusestmt; |
| struct loop *loop = loop_containing_stmt (stmt); |
| |
| if (TREE_CODE (binlhs) == SSA_NAME |
| && is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR, loop)) |
| return true; |
| |
| if (TREE_CODE (binrhs) == SSA_NAME |
| && is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR, loop)) |
| return true; |
| |
| if (TREE_CODE (lhs) == SSA_NAME |
| && (immusestmt = get_single_immediate_use (lhs)) |
| && is_gimple_assign (immusestmt) |
| && (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR |
| || gimple_assign_rhs_code (immusestmt) == MULT_EXPR)) |
| return true; |
| return false; |
| } |
| |
| /* Transform STMT from A - B into A + -B. */ |
| |
| static void |
| break_up_subtract (gimple stmt, gimple_stmt_iterator *gsip) |
| { |
| tree rhs1 = gimple_assign_rhs1 (stmt); |
| tree rhs2 = gimple_assign_rhs2 (stmt); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Breaking up subtract "); |
| print_gimple_stmt (dump_file, stmt, 0, 0); |
| } |
| |
| rhs2 = negate_value (rhs2, gsip); |
| gimple_assign_set_rhs_with_ops (gsip, PLUS_EXPR, rhs1, rhs2); |
| update_stmt (stmt); |
| } |
| |
| /* Recursively linearize a binary expression that is the RHS of STMT. |
| Place the operands of the expression tree in the vector named OPS. */ |
| |
| static void |
| linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt, |
| bool is_associative, bool set_visited) |
| { |
| tree binlhs = gimple_assign_rhs1 (stmt); |
| tree binrhs = gimple_assign_rhs2 (stmt); |
| gimple binlhsdef, binrhsdef; |
| bool binlhsisreassoc = false; |
| bool binrhsisreassoc = false; |
| enum tree_code rhscode = gimple_assign_rhs_code (stmt); |
| struct loop *loop = loop_containing_stmt (stmt); |
| |
| if (set_visited) |
| gimple_set_visited (stmt, true); |
| |
| if (TREE_CODE (binlhs) == SSA_NAME) |
| { |
| binlhsdef = SSA_NAME_DEF_STMT (binlhs); |
| binlhsisreassoc = is_reassociable_op (binlhsdef, rhscode, loop); |
| } |
| |
| if (TREE_CODE (binrhs) == SSA_NAME) |
| { |
| binrhsdef = SSA_NAME_DEF_STMT (binrhs); |
| binrhsisreassoc = is_reassociable_op (binrhsdef, rhscode, loop); |
| } |
| |
| /* If the LHS is not reassociable, but the RHS is, we need to swap |
| them. If neither is reassociable, there is nothing we can do, so |
| just put them in the ops vector. If the LHS is reassociable, |
| linearize it. If both are reassociable, then linearize the RHS |
| and the LHS. */ |
| |
| if (!binlhsisreassoc) |
| { |
| tree temp; |
| |
| /* If this is not a associative operation like division, give up. */ |
| if (!is_associative) |
| { |
| add_to_ops_vec (ops, binrhs); |
| return; |
| } |
| |
| if (!binrhsisreassoc) |
| { |
| add_to_ops_vec (ops, binrhs); |
| add_to_ops_vec (ops, binlhs); |
| return; |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "swapping operands of "); |
| print_gimple_stmt (dump_file, stmt, 0, 0); |
| } |
| |
| swap_tree_operands (stmt, |
| gimple_assign_rhs1_ptr (stmt), |
| gimple_assign_rhs2_ptr (stmt)); |
| update_stmt (stmt); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, " is now "); |
| print_gimple_stmt (dump_file, stmt, 0, 0); |
| } |
| |
| /* We want to make it so the lhs is always the reassociative op, |
| so swap. */ |
| temp = binlhs; |
| binlhs = binrhs; |
| binrhs = temp; |
| } |
| else if (binrhsisreassoc) |
| { |
| linearize_expr (stmt); |
| binlhs = gimple_assign_rhs1 (stmt); |
| binrhs = gimple_assign_rhs2 (stmt); |
| } |
| |
| gcc_assert (TREE_CODE (binrhs) != SSA_NAME |
| || !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), |
| rhscode, loop)); |
| linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs), |
| is_associative, set_visited); |
| add_to_ops_vec (ops, binrhs); |
| } |
| |
| /* Repropagate the negates back into subtracts, since no other pass |
| currently does it. */ |
| |
| static void |
| repropagate_negates (void) |
| { |
| unsigned int i = 0; |
| tree negate; |
| |
| for (i = 0; VEC_iterate (tree, broken_up_subtracts, i, negate); i++) |
| { |
| gimple user = get_single_immediate_use (negate); |
| |
| /* The negate operand can be either operand of a PLUS_EXPR |
| (it can be the LHS if the RHS is a constant for example). |
| |
| Force the negate operand to the RHS of the PLUS_EXPR, then |
| transform the PLUS_EXPR into a MINUS_EXPR. */ |
| if (user |
| && is_gimple_assign (user) |
| && gimple_assign_rhs_code (user) == PLUS_EXPR) |
| { |
| /* If the negated operand appears on the LHS of the |
| PLUS_EXPR, exchange the operands of the PLUS_EXPR |
| to force the negated operand to the RHS of the PLUS_EXPR. */ |
| if (gimple_assign_rhs1 (user) == negate) |
| { |
| swap_tree_operands (user, |
| gimple_assign_rhs1_ptr (user), |
| gimple_assign_rhs2_ptr (user)); |
| } |
| |
| /* Now transform the PLUS_EXPR into a MINUS_EXPR and replace |
| the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */ |
| if (gimple_assign_rhs2 (user) == negate) |
| { |
| tree rhs1 = gimple_assign_rhs1 (user); |
| tree rhs2 = get_unary_op (negate, NEGATE_EXPR); |
| gimple_stmt_iterator gsi = gsi_for_stmt (user); |
| gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, rhs1, rhs2); |
| update_stmt (user); |
| } |
| } |
| } |
| } |
| |
| /* Break up subtract operations in block BB. |
| |
| We do this top down because we don't know whether the subtract is |
| part of a possible chain of reassociation except at the top. |
| |
| IE given |
| d = f + g |
| c = a + e |
| b = c - d |
| q = b - r |
| k = t - q |
| |
| we want to break up k = t - q, but we won't until we've transformed q |
| = b - r, which won't be broken up until we transform b = c - d. |
| |
| En passant, clear the GIMPLE visited flag on every statement. */ |
| |
| static void |
| break_up_subtract_bb (basic_block bb) |
| { |
| gimple_stmt_iterator gsi; |
| basic_block son; |
| |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple stmt = gsi_stmt (gsi); |
| gimple_set_visited (stmt, false); |
| |
| /* Look for simple gimple subtract operations. */ |
| if (is_gimple_assign (stmt) |
| && gimple_assign_rhs_code (stmt) == MINUS_EXPR) |
| { |
| tree lhs = gimple_assign_lhs (stmt); |
| tree rhs1 = gimple_assign_rhs1 (stmt); |
| tree rhs2 = gimple_assign_rhs2 (stmt); |
| |
| /* If associative-math we can do reassociation for |
| non-integral types. Or, we can do reassociation for |
| non-saturating fixed-point types. */ |
| if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs)) |
| || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1)) |
| || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2))) |
| && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs)) |
| || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs1)) |
| || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs2)) |
| || !flag_associative_math) |
| && (!NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE (lhs)) |
| || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs1)) |
| || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs2)))) |
| continue; |
| |
| /* Check for a subtract used only in an addition. If this |
| is the case, transform it into add of a negate for better |
| reassociation. IE transform C = A-B into C = A + -B if C |
| is only used in an addition. */ |
| if (should_break_up_subtract (stmt)) |
| break_up_subtract (stmt, &gsi); |
| } |
| } |
| for (son = first_dom_son (CDI_DOMINATORS, bb); |
| son; |
| son = next_dom_son (CDI_DOMINATORS, son)) |
| break_up_subtract_bb (son); |
| } |
| |
| /* Reassociate expressions in basic block BB and its post-dominator as |
| children. */ |
| |
| static void |
| reassociate_bb (basic_block bb) |
| { |
| gimple_stmt_iterator gsi; |
| basic_block son; |
| |
| for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi)) |
| { |
| gimple stmt = gsi_stmt (gsi); |
| |
| if (is_gimple_assign (stmt)) |
| { |
| tree lhs, rhs1, rhs2; |
| enum tree_code rhs_code = gimple_assign_rhs_code (stmt); |
| |
| /* If this is not a gimple binary expression, there is |
| nothing for us to do with it. */ |
| if (get_gimple_rhs_class (rhs_code) != GIMPLE_BINARY_RHS) |
| continue; |
| |
| /* If this was part of an already processed statement, |
| we don't need to touch it again. */ |
| if (gimple_visited_p (stmt)) |
| { |
| /* This statement might have become dead because of previous |
| reassociations. */ |
| if (has_zero_uses (gimple_get_lhs (stmt))) |
| { |
| gsi_remove (&gsi, true); |
| release_defs (stmt); |
| /* We might end up removing the last stmt above which |
| places the iterator to the end of the sequence. |
| Reset it to the last stmt in this case which might |
| be the end of the sequence as well if we removed |
| the last statement of the sequence. In which case |
| we need to bail out. */ |
| if (gsi_end_p (gsi)) |
| { |
| gsi = gsi_last_bb (bb); |
| if (gsi_end_p (gsi)) |
| break; |
| } |
| } |
| continue; |
| } |
| |
| lhs = gimple_assign_lhs (stmt); |
| rhs1 = gimple_assign_rhs1 (stmt); |
| rhs2 = gimple_assign_rhs2 (stmt); |
| |
| /* If associative-math we can do reassociation for |
| non-integral types. Or, we can do reassociation for |
| non-saturating fixed-point types. */ |
| if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs)) |
| || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1)) |
| || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2))) |
| && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs)) |
| || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs1)) |
| || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs2)) |
| || !flag_associative_math) |
| && (!NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE (lhs)) |
| || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs1)) |
| || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs2)))) |
| continue; |
| |
| if (associative_tree_code (rhs_code)) |
| { |
| VEC(operand_entry_t, heap) *ops = NULL; |
| |
| /* There may be no immediate uses left by the time we |
| get here because we may have eliminated them all. */ |
| if (TREE_CODE (lhs) == SSA_NAME && has_zero_uses (lhs)) |
| continue; |
| |
| gimple_set_visited (stmt, true); |
| linearize_expr_tree (&ops, stmt, true, true); |
| qsort (VEC_address (operand_entry_t, ops), |
| VEC_length (operand_entry_t, ops), |
| sizeof (operand_entry_t), |
| sort_by_operand_rank); |
| optimize_ops_list (rhs_code, &ops); |
| if (undistribute_ops_list (rhs_code, &ops, |
| loop_containing_stmt (stmt))) |
| { |
| qsort (VEC_address (operand_entry_t, ops), |
| VEC_length (operand_entry_t, ops), |
| sizeof (operand_entry_t), |
| sort_by_operand_rank); |
| optimize_ops_list (rhs_code, &ops); |
| } |
| |
| if (VEC_length (operand_entry_t, ops) == 1) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Transforming "); |
| print_gimple_stmt (dump_file, stmt, 0, 0); |
| } |
| |
| rhs1 = gimple_assign_rhs1 (stmt); |
| gimple_assign_set_rhs_from_tree (&gsi, |
| VEC_last (operand_entry_t, |
| ops)->op); |
| update_stmt (stmt); |
| remove_visited_stmt_chain (rhs1); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, " into "); |
| print_gimple_stmt (dump_file, stmt, 0, 0); |
| } |
| } |
| else |
| rewrite_expr_tree (stmt, 0, ops, false); |
| |
| VEC_free (operand_entry_t, heap, ops); |
| } |
| } |
| } |
| for (son = first_dom_son (CDI_POST_DOMINATORS, bb); |
| son; |
| son = next_dom_son (CDI_POST_DOMINATORS, son)) |
| reassociate_bb (son); |
| } |
| |
| void dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops); |
| void debug_ops_vector (VEC (operand_entry_t, heap) *ops); |
| |
| /* Dump the operand entry vector OPS to FILE. */ |
| |
| void |
| dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops) |
| { |
| operand_entry_t oe; |
| unsigned int i; |
| |
| for (i = 0; VEC_iterate (operand_entry_t, ops, i, oe); i++) |
| { |
| fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank); |
| print_generic_expr (file, oe->op, 0); |
| } |
| } |
| |
| /* Dump the operand entry vector OPS to STDERR. */ |
| |
| void |
| debug_ops_vector (VEC (operand_entry_t, heap) *ops) |
| { |
| dump_ops_vector (stderr, ops); |
| } |
| |
| static void |
| do_reassoc (void) |
| { |
| break_up_subtract_bb (ENTRY_BLOCK_PTR); |
| reassociate_bb (EXIT_BLOCK_PTR); |
| } |
| |
| /* Initialize the reassociation pass. */ |
| |
| static void |
| init_reassoc (void) |
| { |
| int i; |
| long rank = 2; |
| tree param; |
| int *bbs = XNEWVEC (int, last_basic_block + 1); |
| |
| /* Find the loops, so that we can prevent moving calculations in |
| them. */ |
| loop_optimizer_init (AVOID_CFG_MODIFICATIONS); |
| |
| memset (&reassociate_stats, 0, sizeof (reassociate_stats)); |
| |
| operand_entry_pool = create_alloc_pool ("operand entry pool", |
| sizeof (struct operand_entry), 30); |
| |
| /* Reverse RPO (Reverse Post Order) will give us something where |
| deeper loops come later. */ |
| pre_and_rev_post_order_compute (NULL, bbs, false); |
| bb_rank = XCNEWVEC (long, last_basic_block + 1); |
| operand_rank = pointer_map_create (); |
| |
| /* Give each argument a distinct rank. */ |
| for (param = DECL_ARGUMENTS (current_function_decl); |
| param; |
| param = TREE_CHAIN (param)) |
| { |
| if (gimple_default_def (cfun, param) != NULL) |
| { |
| tree def = gimple_default_def (cfun, param); |
| insert_operand_rank (def, ++rank); |
| } |
| } |
| |
| /* Give the chain decl a distinct rank. */ |
| if (cfun->static_chain_decl != NULL) |
| { |
| tree def = gimple_default_def (cfun, cfun->static_chain_decl); |
| if (def != NULL) |
| insert_operand_rank (def, ++rank); |
| } |
| |
| /* Set up rank for each BB */ |
| for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++) |
| bb_rank[bbs[i]] = ++rank << 16; |
| |
| free (bbs); |
| calculate_dominance_info (CDI_POST_DOMINATORS); |
| broken_up_subtracts = NULL; |
| } |
| |
| /* Cleanup after the reassociation pass, and print stats if |
| requested. */ |
| |
| static void |
| fini_reassoc (void) |
| { |
| statistics_counter_event (cfun, "Linearized", |
| reassociate_stats.linearized); |
| statistics_counter_event (cfun, "Constants eliminated", |
| reassociate_stats.constants_eliminated); |
| statistics_counter_event (cfun, "Ops eliminated", |
| reassociate_stats.ops_eliminated); |
| statistics_counter_event (cfun, "Statements rewritten", |
| reassociate_stats.rewritten); |
| |
| pointer_map_destroy (operand_rank); |
| free_alloc_pool (operand_entry_pool); |
| free (bb_rank); |
| VEC_free (tree, heap, broken_up_subtracts); |
| free_dominance_info (CDI_POST_DOMINATORS); |
| loop_optimizer_finalize (); |
| } |
| |
| /* Gate and execute functions for Reassociation. */ |
| |
| static unsigned int |
| execute_reassoc (void) |
| { |
| init_reassoc (); |
| |
| do_reassoc (); |
| repropagate_negates (); |
| |
| fini_reassoc (); |
| return 0; |
| } |
| |
| static bool |
| gate_tree_ssa_reassoc (void) |
| { |
| return flag_tree_reassoc != 0; |
| } |
| |
| struct gimple_opt_pass pass_reassoc = |
| { |
| { |
| GIMPLE_PASS, |
| "reassoc", /* name */ |
| gate_tree_ssa_reassoc, /* gate */ |
| execute_reassoc, /* execute */ |
| NULL, /* sub */ |
| NULL, /* next */ |
| 0, /* static_pass_number */ |
| TV_TREE_REASSOC, /* tv_id */ |
| PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */ |
| 0, /* properties_provided */ |
| 0, /* properties_destroyed */ |
| 0, /* todo_flags_start */ |
| TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */ |
| } |
| }; |
| |