| /* Specific implementation of the UNPACK intrinsic |
| Copyright 2008, 2009 Free Software Foundation, Inc. |
| Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on |
| unpack_generic.c by Paul Brook <paul@nowt.org>. |
| |
| This file is part of the GNU Fortran 95 runtime library (libgfortran). |
| |
| Libgfortran is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public |
| License as published by the Free Software Foundation; either |
| version 3 of the License, or (at your option) any later version. |
| |
| Ligbfortran is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "libgfortran.h" |
| #include <stdlib.h> |
| #include <assert.h> |
| #include <string.h> |
| |
| |
| #if defined (HAVE_GFC_COMPLEX_4) |
| |
| void |
| unpack0_c4 (gfc_array_c4 *ret, const gfc_array_c4 *vector, |
| const gfc_array_l1 *mask, const GFC_COMPLEX_4 *fptr) |
| { |
| /* r.* indicates the return array. */ |
| index_type rstride[GFC_MAX_DIMENSIONS]; |
| index_type rstride0; |
| index_type rs; |
| GFC_COMPLEX_4 * restrict rptr; |
| /* v.* indicates the vector array. */ |
| index_type vstride0; |
| GFC_COMPLEX_4 *vptr; |
| /* Value for field, this is constant. */ |
| const GFC_COMPLEX_4 fval = *fptr; |
| /* m.* indicates the mask array. */ |
| index_type mstride[GFC_MAX_DIMENSIONS]; |
| index_type mstride0; |
| const GFC_LOGICAL_1 *mptr; |
| |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type n; |
| index_type dim; |
| |
| int empty; |
| int mask_kind; |
| |
| empty = 0; |
| |
| mptr = mask->data; |
| |
| /* Use the same loop for all logical types, by using GFC_LOGICAL_1 |
| and using shifting to address size and endian issues. */ |
| |
| mask_kind = GFC_DESCRIPTOR_SIZE (mask); |
| |
| if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 |
| #ifdef HAVE_GFC_LOGICAL_16 |
| || mask_kind == 16 |
| #endif |
| ) |
| { |
| /* Do not convert a NULL pointer as we use test for NULL below. */ |
| if (mptr) |
| mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); |
| } |
| else |
| runtime_error ("Funny sized logical array"); |
| |
| if (ret->data == NULL) |
| { |
| /* The front end has signalled that we need to populate the |
| return array descriptor. */ |
| dim = GFC_DESCRIPTOR_RANK (mask); |
| rs = 1; |
| for (n = 0; n < dim; n++) |
| { |
| count[n] = 0; |
| ret->dim[n].stride = rs; |
| ret->dim[n].lbound = 0; |
| ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; |
| extent[n] = ret->dim[n].ubound + 1; |
| empty = empty || extent[n] <= 0; |
| rstride[n] = ret->dim[n].stride; |
| mstride[n] = mask->dim[n].stride * mask_kind; |
| rs *= extent[n]; |
| } |
| ret->offset = 0; |
| ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_4)); |
| } |
| else |
| { |
| dim = GFC_DESCRIPTOR_RANK (ret); |
| for (n = 0; n < dim; n++) |
| { |
| count[n] = 0; |
| extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; |
| empty = empty || extent[n] <= 0; |
| rstride[n] = ret->dim[n].stride; |
| mstride[n] = mask->dim[n].stride * mask_kind; |
| } |
| if (rstride[0] == 0) |
| rstride[0] = 1; |
| } |
| |
| if (empty) |
| return; |
| |
| if (mstride[0] == 0) |
| mstride[0] = 1; |
| |
| vstride0 = vector->dim[0].stride; |
| if (vstride0 == 0) |
| vstride0 = 1; |
| rstride0 = rstride[0]; |
| mstride0 = mstride[0]; |
| rptr = ret->data; |
| vptr = vector->data; |
| |
| while (rptr) |
| { |
| if (*mptr) |
| { |
| /* From vector. */ |
| *rptr = *vptr; |
| vptr += vstride0; |
| } |
| else |
| { |
| /* From field. */ |
| *rptr = fval; |
| } |
| /* Advance to the next element. */ |
| rptr += rstride0; |
| mptr += mstride0; |
| count[0]++; |
| n = 0; |
| while (count[n] == extent[n]) |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| rptr -= rstride[n] * extent[n]; |
| mptr -= mstride[n] * extent[n]; |
| n++; |
| if (n >= dim) |
| { |
| /* Break out of the loop. */ |
| rptr = NULL; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| rptr += rstride[n]; |
| mptr += mstride[n]; |
| } |
| } |
| } |
| } |
| |
| void |
| unpack1_c4 (gfc_array_c4 *ret, const gfc_array_c4 *vector, |
| const gfc_array_l1 *mask, const gfc_array_c4 *field) |
| { |
| /* r.* indicates the return array. */ |
| index_type rstride[GFC_MAX_DIMENSIONS]; |
| index_type rstride0; |
| index_type rs; |
| GFC_COMPLEX_4 * restrict rptr; |
| /* v.* indicates the vector array. */ |
| index_type vstride0; |
| GFC_COMPLEX_4 *vptr; |
| /* f.* indicates the field array. */ |
| index_type fstride[GFC_MAX_DIMENSIONS]; |
| index_type fstride0; |
| const GFC_COMPLEX_4 *fptr; |
| /* m.* indicates the mask array. */ |
| index_type mstride[GFC_MAX_DIMENSIONS]; |
| index_type mstride0; |
| const GFC_LOGICAL_1 *mptr; |
| |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type n; |
| index_type dim; |
| |
| int empty; |
| int mask_kind; |
| |
| empty = 0; |
| |
| mptr = mask->data; |
| |
| /* Use the same loop for all logical types, by using GFC_LOGICAL_1 |
| and using shifting to address size and endian issues. */ |
| |
| mask_kind = GFC_DESCRIPTOR_SIZE (mask); |
| |
| if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 |
| #ifdef HAVE_GFC_LOGICAL_16 |
| || mask_kind == 16 |
| #endif |
| ) |
| { |
| /* Do not convert a NULL pointer as we use test for NULL below. */ |
| if (mptr) |
| mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); |
| } |
| else |
| runtime_error ("Funny sized logical array"); |
| |
| if (ret->data == NULL) |
| { |
| /* The front end has signalled that we need to populate the |
| return array descriptor. */ |
| dim = GFC_DESCRIPTOR_RANK (mask); |
| rs = 1; |
| for (n = 0; n < dim; n++) |
| { |
| count[n] = 0; |
| ret->dim[n].stride = rs; |
| ret->dim[n].lbound = 0; |
| ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound; |
| extent[n] = ret->dim[n].ubound + 1; |
| empty = empty || extent[n] <= 0; |
| rstride[n] = ret->dim[n].stride; |
| fstride[n] = field->dim[n].stride; |
| mstride[n] = mask->dim[n].stride * mask_kind; |
| rs *= extent[n]; |
| } |
| ret->offset = 0; |
| ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_4)); |
| } |
| else |
| { |
| dim = GFC_DESCRIPTOR_RANK (ret); |
| for (n = 0; n < dim; n++) |
| { |
| count[n] = 0; |
| extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; |
| empty = empty || extent[n] <= 0; |
| rstride[n] = ret->dim[n].stride; |
| fstride[n] = field->dim[n].stride; |
| mstride[n] = mask->dim[n].stride * mask_kind; |
| } |
| if (rstride[0] == 0) |
| rstride[0] = 1; |
| } |
| |
| if (empty) |
| return; |
| |
| if (fstride[0] == 0) |
| fstride[0] = 1; |
| if (mstride[0] == 0) |
| mstride[0] = 1; |
| |
| vstride0 = vector->dim[0].stride; |
| if (vstride0 == 0) |
| vstride0 = 1; |
| rstride0 = rstride[0]; |
| fstride0 = fstride[0]; |
| mstride0 = mstride[0]; |
| rptr = ret->data; |
| fptr = field->data; |
| vptr = vector->data; |
| |
| while (rptr) |
| { |
| if (*mptr) |
| { |
| /* From vector. */ |
| *rptr = *vptr; |
| vptr += vstride0; |
| } |
| else |
| { |
| /* From field. */ |
| *rptr = *fptr; |
| } |
| /* Advance to the next element. */ |
| rptr += rstride0; |
| fptr += fstride0; |
| mptr += mstride0; |
| count[0]++; |
| n = 0; |
| while (count[n] == extent[n]) |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| rptr -= rstride[n] * extent[n]; |
| fptr -= fstride[n] * extent[n]; |
| mptr -= mstride[n] * extent[n]; |
| n++; |
| if (n >= dim) |
| { |
| /* Break out of the loop. */ |
| rptr = NULL; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| rptr += rstride[n]; |
| fptr += fstride[n]; |
| mptr += mstride[n]; |
| } |
| } |
| } |
| } |
| |
| #endif |
| |