| /* Implementation of the ERFC_SCALED intrinsic, to be included by erfc_scaled.c |
| Copyright (c) 2008 Free Software Foundation, Inc. |
| |
| This file is part of the GNU Fortran runtime library (libgfortran). |
| |
| Libgfortran is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public |
| License as published by the Free Software Foundation; either |
| version 3 of the License, or (at your option) any later version. |
| |
| Libgfortran is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR a PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* This implementation of ERFC_SCALED is based on the netlib algorithm |
| available at http://www.netlib.org/specfun/erf */ |
| |
| #define TYPE KIND_SUFFIX(GFC_REAL_,KIND) |
| #define CONCAT(x,y) x ## y |
| #define KIND_SUFFIX(x,y) CONCAT(x,y) |
| |
| #if (KIND == 4) |
| |
| # define EXP(x) expf(x) |
| # define TRUNC(x) truncf(x) |
| |
| #elif (KIND == 8) |
| |
| # define EXP(x) exp(x) |
| # define TRUNC(x) trunc(x) |
| |
| #else |
| |
| # ifdef HAVE_EXPL |
| # define EXP(x) expl(x) |
| # endif |
| # ifdef HAVE_TRUNCL |
| # define TRUNC(x) truncl(x) |
| # endif |
| |
| #endif |
| |
| #if defined(EXP) && defined(TRUNC) |
| |
| extern TYPE KIND_SUFFIX(erfc_scaled_r,KIND) (TYPE); |
| export_proto(KIND_SUFFIX(erfc_scaled_r,KIND)); |
| |
| TYPE |
| KIND_SUFFIX(erfc_scaled_r,KIND) (TYPE x) |
| { |
| /* The main computation evaluates near-minimax approximations |
| from "Rational Chebyshev approximations for the error function" |
| by W. J. Cody, Math. Comp., 1969, PP. 631-638. This |
| transportable program uses rational functions that theoretically |
| approximate erf(x) and erfc(x) to at least 18 significant |
| decimal digits. The accuracy achieved depends on the arithmetic |
| system, the compiler, the intrinsic functions, and proper |
| selection of the machine-dependent constants. */ |
| |
| int i; |
| TYPE del, res, xden, xnum, y, ysq; |
| |
| #if (KIND == 4) |
| static TYPE xneg = -9.382, xsmall = 5.96e-8, |
| xbig = 9.194, xhuge = 2.90e+3, xmax = 4.79e+37; |
| #else |
| static TYPE xneg = -26.628, xsmall = 1.11e-16, |
| xbig = 26.543, xhuge = 6.71e+7, xmax = 2.53e+307; |
| #endif |
| |
| #define SQRPI ((TYPE) 0.56418958354775628695L) |
| #define THRESH ((TYPE) 0.46875L) |
| |
| static TYPE a[5] = { 3.16112374387056560l, 113.864154151050156l, |
| 377.485237685302021l, 3209.37758913846947l, 0.185777706184603153l }; |
| |
| static TYPE b[4] = { 23.6012909523441209l, 244.024637934444173l, |
| 1282.61652607737228l, 2844.23683343917062l }; |
| |
| static TYPE c[9] = { 0.564188496988670089l, 8.88314979438837594l, |
| 66.1191906371416295l, 298.635138197400131l, 881.952221241769090l, |
| 1712.04761263407058l, 2051.07837782607147l, 1230.33935479799725l, |
| 2.15311535474403846e-8l }; |
| |
| static TYPE d[8] = { 15.7449261107098347l, 117.693950891312499l, |
| 537.181101862009858l, 1621.38957456669019l, 3290.79923573345963l, |
| 4362.61909014324716l, 3439.36767414372164l, 1230.33935480374942l }; |
| |
| static TYPE p[6] = { 0.305326634961232344l, 0.360344899949804439l, |
| 0.125781726111229246l, 0.0160837851487422766l, |
| 0.000658749161529837803l, 0.0163153871373020978l }; |
| |
| static TYPE q[5] = { 2.56852019228982242l, 1.87295284992346047l, |
| 0.527905102951428412l, 0.0605183413124413191l, |
| 0.00233520497626869185l }; |
| |
| y = (x > 0 ? x : -x); |
| if (y <= THRESH) |
| { |
| ysq = 0; |
| if (y > xsmall) |
| ysq = y * y; |
| xnum = a[4]*ysq; |
| xden = ysq; |
| for (i = 0; i <= 2; i++) |
| { |
| xnum = (xnum + a[i]) * ysq; |
| xden = (xden + b[i]) * ysq; |
| } |
| res = x * (xnum + a[3]) / (xden + b[3]); |
| res = 1 - res; |
| res = EXP(ysq) * res; |
| return res; |
| } |
| else if (y <= 4) |
| { |
| xnum = c[8]*y; |
| xden = y; |
| for (i = 0; i <= 6; i++) |
| { |
| xnum = (xnum + c[i]) * y; |
| xden = (xden + d[i]) * y; |
| } |
| res = (xnum + c[7]) / (xden + d[7]); |
| } |
| else |
| { |
| res = 0; |
| if (y >= xbig) |
| { |
| if (y >= xmax) |
| goto finish; |
| if (y >= xhuge) |
| { |
| res = SQRPI / y; |
| goto finish; |
| } |
| } |
| ysq = ((TYPE) 1) / (y * y); |
| xnum = p[5]*ysq; |
| xden = ysq; |
| for (i = 0; i <= 3; i++) |
| { |
| xnum = (xnum + p[i]) * ysq; |
| xden = (xden + q[i]) * ysq; |
| } |
| res = ysq *(xnum + p[4]) / (xden + q[4]); |
| res = (SQRPI - res) / y; |
| } |
| |
| finish: |
| if (x < 0) |
| { |
| if (x < xneg) |
| res = __builtin_inf (); |
| else |
| { |
| ysq = TRUNC (x*((TYPE) 16))/((TYPE) 16); |
| del = (x-ysq)*(x+ysq); |
| y = EXP(ysq*ysq) * EXP(del); |
| res = (y+y) - res; |
| } |
| } |
| return res; |
| } |
| |
| #endif |
| |
| #undef EXP |
| #undef TRUNC |
| |
| #undef CONCAT |
| #undef TYPE |
| #undef KIND_SUFFIX |