| /* Internal functions. |
| Copyright (C) 2011-2022 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "target.h" |
| #include "rtl.h" |
| #include "tree.h" |
| #include "gimple.h" |
| #include "predict.h" |
| #include "stringpool.h" |
| #include "tree-vrp.h" |
| #include "tree-ssanames.h" |
| #include "expmed.h" |
| #include "memmodel.h" |
| #include "optabs.h" |
| #include "emit-rtl.h" |
| #include "diagnostic-core.h" |
| #include "fold-const.h" |
| #include "internal-fn.h" |
| #include "stor-layout.h" |
| #include "dojump.h" |
| #include "expr.h" |
| #include "stringpool.h" |
| #include "attribs.h" |
| #include "asan.h" |
| #include "ubsan.h" |
| #include "recog.h" |
| #include "builtins.h" |
| #include "optabs-tree.h" |
| #include "gimple-ssa.h" |
| #include "tree-phinodes.h" |
| #include "ssa-iterators.h" |
| #include "explow.h" |
| #include "rtl-iter.h" |
| #include "gimple-range.h" |
| |
| /* For lang_hooks.types.type_for_mode. */ |
| #include "langhooks.h" |
| |
| /* The names of each internal function, indexed by function number. */ |
| const char *const internal_fn_name_array[] = { |
| #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) #CODE, |
| #include "internal-fn.def" |
| "<invalid-fn>" |
| }; |
| |
| /* The ECF_* flags of each internal function, indexed by function number. */ |
| const int internal_fn_flags_array[] = { |
| #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) FLAGS, |
| #include "internal-fn.def" |
| 0 |
| }; |
| |
| /* Return the internal function called NAME, or IFN_LAST if there's |
| no such function. */ |
| |
| internal_fn |
| lookup_internal_fn (const char *name) |
| { |
| typedef hash_map<nofree_string_hash, internal_fn> name_to_fn_map_type; |
| static name_to_fn_map_type *name_to_fn_map; |
| |
| if (!name_to_fn_map) |
| { |
| name_to_fn_map = new name_to_fn_map_type (IFN_LAST); |
| for (unsigned int i = 0; i < IFN_LAST; ++i) |
| name_to_fn_map->put (internal_fn_name (internal_fn (i)), |
| internal_fn (i)); |
| } |
| internal_fn *entry = name_to_fn_map->get (name); |
| return entry ? *entry : IFN_LAST; |
| } |
| |
| /* Fnspec of each internal function, indexed by function number. */ |
| const_tree internal_fn_fnspec_array[IFN_LAST + 1]; |
| |
| void |
| init_internal_fns () |
| { |
| #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \ |
| if (FNSPEC) internal_fn_fnspec_array[IFN_##CODE] = \ |
| build_string ((int) sizeof (FNSPEC) - 1, FNSPEC ? FNSPEC : ""); |
| #include "internal-fn.def" |
| internal_fn_fnspec_array[IFN_LAST] = 0; |
| } |
| |
| /* Create static initializers for the information returned by |
| direct_internal_fn. */ |
| #define not_direct { -2, -2, false } |
| #define mask_load_direct { -1, 2, false } |
| #define load_lanes_direct { -1, -1, false } |
| #define mask_load_lanes_direct { -1, -1, false } |
| #define gather_load_direct { 3, 1, false } |
| #define len_load_direct { -1, -1, false } |
| #define mask_store_direct { 3, 2, false } |
| #define store_lanes_direct { 0, 0, false } |
| #define mask_store_lanes_direct { 0, 0, false } |
| #define vec_cond_mask_direct { 1, 0, false } |
| #define vec_cond_direct { 2, 0, false } |
| #define scatter_store_direct { 3, 1, false } |
| #define len_store_direct { 3, 3, false } |
| #define vec_set_direct { 3, 3, false } |
| #define unary_direct { 0, 0, true } |
| #define unary_convert_direct { -1, 0, true } |
| #define binary_direct { 0, 0, true } |
| #define ternary_direct { 0, 0, true } |
| #define cond_unary_direct { 1, 1, true } |
| #define cond_binary_direct { 1, 1, true } |
| #define cond_ternary_direct { 1, 1, true } |
| #define while_direct { 0, 2, false } |
| #define fold_extract_direct { 2, 2, false } |
| #define fold_left_direct { 1, 1, false } |
| #define mask_fold_left_direct { 1, 1, false } |
| #define check_ptrs_direct { 0, 0, false } |
| |
| const direct_internal_fn_info direct_internal_fn_array[IFN_LAST + 1] = { |
| #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) not_direct, |
| #define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) TYPE##_direct, |
| #define DEF_INTERNAL_SIGNED_OPTAB_FN(CODE, FLAGS, SELECTOR, SIGNED_OPTAB, \ |
| UNSIGNED_OPTAB, TYPE) TYPE##_direct, |
| #include "internal-fn.def" |
| not_direct |
| }; |
| |
| /* Expand STMT using instruction ICODE. The instruction has NOUTPUTS |
| output operands and NINPUTS input operands, where NOUTPUTS is either |
| 0 or 1. The output operand (if any) comes first, followed by the |
| NINPUTS input operands. */ |
| |
| static void |
| expand_fn_using_insn (gcall *stmt, insn_code icode, unsigned int noutputs, |
| unsigned int ninputs) |
| { |
| gcc_assert (icode != CODE_FOR_nothing); |
| |
| expand_operand *ops = XALLOCAVEC (expand_operand, noutputs + ninputs); |
| unsigned int opno = 0; |
| rtx lhs_rtx = NULL_RTX; |
| tree lhs = gimple_call_lhs (stmt); |
| |
| if (noutputs) |
| { |
| gcc_assert (noutputs == 1); |
| if (lhs) |
| lhs_rtx = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| |
| /* Do not assign directly to a promoted subreg, since there is no |
| guarantee that the instruction will leave the upper bits of the |
| register in the state required by SUBREG_PROMOTED_SIGN. */ |
| rtx dest = lhs_rtx; |
| if (dest && GET_CODE (dest) == SUBREG && SUBREG_PROMOTED_VAR_P (dest)) |
| dest = NULL_RTX; |
| create_output_operand (&ops[opno], dest, |
| insn_data[icode].operand[opno].mode); |
| opno += 1; |
| } |
| else |
| gcc_assert (!lhs); |
| |
| for (unsigned int i = 0; i < ninputs; ++i) |
| { |
| tree rhs = gimple_call_arg (stmt, i); |
| tree rhs_type = TREE_TYPE (rhs); |
| rtx rhs_rtx = expand_normal (rhs); |
| if (INTEGRAL_TYPE_P (rhs_type)) |
| create_convert_operand_from (&ops[opno], rhs_rtx, |
| TYPE_MODE (rhs_type), |
| TYPE_UNSIGNED (rhs_type)); |
| else |
| create_input_operand (&ops[opno], rhs_rtx, TYPE_MODE (rhs_type)); |
| opno += 1; |
| } |
| |
| gcc_assert (opno == noutputs + ninputs); |
| expand_insn (icode, opno, ops); |
| if (lhs_rtx && !rtx_equal_p (lhs_rtx, ops[0].value)) |
| { |
| /* If the return value has an integral type, convert the instruction |
| result to that type. This is useful for things that return an |
| int regardless of the size of the input. If the instruction result |
| is smaller than required, assume that it is signed. |
| |
| If the return value has a nonintegral type, its mode must match |
| the instruction result. */ |
| if (GET_CODE (lhs_rtx) == SUBREG && SUBREG_PROMOTED_VAR_P (lhs_rtx)) |
| { |
| /* If this is a scalar in a register that is stored in a wider |
| mode than the declared mode, compute the result into its |
| declared mode and then convert to the wider mode. */ |
| gcc_checking_assert (INTEGRAL_TYPE_P (TREE_TYPE (lhs))); |
| rtx tmp = convert_to_mode (GET_MODE (lhs_rtx), ops[0].value, 0); |
| convert_move (SUBREG_REG (lhs_rtx), tmp, |
| SUBREG_PROMOTED_SIGN (lhs_rtx)); |
| } |
| else if (GET_MODE (lhs_rtx) == GET_MODE (ops[0].value)) |
| emit_move_insn (lhs_rtx, ops[0].value); |
| else |
| { |
| gcc_checking_assert (INTEGRAL_TYPE_P (TREE_TYPE (lhs))); |
| convert_move (lhs_rtx, ops[0].value, 0); |
| } |
| } |
| } |
| |
| /* ARRAY_TYPE is an array of vector modes. Return the associated insn |
| for load-lanes-style optab OPTAB, or CODE_FOR_nothing if none. */ |
| |
| static enum insn_code |
| get_multi_vector_move (tree array_type, convert_optab optab) |
| { |
| machine_mode imode; |
| machine_mode vmode; |
| |
| gcc_assert (TREE_CODE (array_type) == ARRAY_TYPE); |
| imode = TYPE_MODE (array_type); |
| vmode = TYPE_MODE (TREE_TYPE (array_type)); |
| |
| return convert_optab_handler (optab, imode, vmode); |
| } |
| |
| /* Expand LOAD_LANES call STMT using optab OPTAB. */ |
| |
| static void |
| expand_load_lanes_optab_fn (internal_fn, gcall *stmt, convert_optab optab) |
| { |
| class expand_operand ops[2]; |
| tree type, lhs, rhs; |
| rtx target, mem; |
| |
| lhs = gimple_call_lhs (stmt); |
| rhs = gimple_call_arg (stmt, 0); |
| type = TREE_TYPE (lhs); |
| |
| target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| mem = expand_normal (rhs); |
| |
| gcc_assert (MEM_P (mem)); |
| PUT_MODE (mem, TYPE_MODE (type)); |
| |
| create_output_operand (&ops[0], target, TYPE_MODE (type)); |
| create_fixed_operand (&ops[1], mem); |
| expand_insn (get_multi_vector_move (type, optab), 2, ops); |
| if (!rtx_equal_p (target, ops[0].value)) |
| emit_move_insn (target, ops[0].value); |
| } |
| |
| /* Expand STORE_LANES call STMT using optab OPTAB. */ |
| |
| static void |
| expand_store_lanes_optab_fn (internal_fn, gcall *stmt, convert_optab optab) |
| { |
| class expand_operand ops[2]; |
| tree type, lhs, rhs; |
| rtx target, reg; |
| |
| lhs = gimple_call_lhs (stmt); |
| rhs = gimple_call_arg (stmt, 0); |
| type = TREE_TYPE (rhs); |
| |
| target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| reg = expand_normal (rhs); |
| |
| gcc_assert (MEM_P (target)); |
| PUT_MODE (target, TYPE_MODE (type)); |
| |
| create_fixed_operand (&ops[0], target); |
| create_input_operand (&ops[1], reg, TYPE_MODE (type)); |
| expand_insn (get_multi_vector_move (type, optab), 2, ops); |
| } |
| |
| static void |
| expand_ANNOTATE (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get expanded in omp_device_lower pass. */ |
| |
| static void |
| expand_GOMP_USE_SIMT (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get expanded in omp_device_lower pass. */ |
| |
| static void |
| expand_GOMP_SIMT_ENTER (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* Allocate per-lane storage and begin non-uniform execution region. */ |
| |
| static void |
| expand_GOMP_SIMT_ENTER_ALLOC (internal_fn, gcall *stmt) |
| { |
| rtx target; |
| tree lhs = gimple_call_lhs (stmt); |
| if (lhs) |
| target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| else |
| target = gen_reg_rtx (Pmode); |
| rtx size = expand_normal (gimple_call_arg (stmt, 0)); |
| rtx align = expand_normal (gimple_call_arg (stmt, 1)); |
| class expand_operand ops[3]; |
| create_output_operand (&ops[0], target, Pmode); |
| create_input_operand (&ops[1], size, Pmode); |
| create_input_operand (&ops[2], align, Pmode); |
| gcc_assert (targetm.have_omp_simt_enter ()); |
| expand_insn (targetm.code_for_omp_simt_enter, 3, ops); |
| if (!rtx_equal_p (target, ops[0].value)) |
| emit_move_insn (target, ops[0].value); |
| } |
| |
| /* Deallocate per-lane storage and leave non-uniform execution region. */ |
| |
| static void |
| expand_GOMP_SIMT_EXIT (internal_fn, gcall *stmt) |
| { |
| gcc_checking_assert (!gimple_call_lhs (stmt)); |
| rtx arg = expand_normal (gimple_call_arg (stmt, 0)); |
| class expand_operand ops[1]; |
| create_input_operand (&ops[0], arg, Pmode); |
| gcc_assert (targetm.have_omp_simt_exit ()); |
| expand_insn (targetm.code_for_omp_simt_exit, 1, ops); |
| } |
| |
| /* Lane index on SIMT targets: thread index in the warp on NVPTX. On targets |
| without SIMT execution this should be expanded in omp_device_lower pass. */ |
| |
| static void |
| expand_GOMP_SIMT_LANE (internal_fn, gcall *stmt) |
| { |
| tree lhs = gimple_call_lhs (stmt); |
| if (!lhs) |
| return; |
| |
| rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| gcc_assert (targetm.have_omp_simt_lane ()); |
| emit_insn (targetm.gen_omp_simt_lane (target)); |
| } |
| |
| /* This should get expanded in omp_device_lower pass. */ |
| |
| static void |
| expand_GOMP_SIMT_VF (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get expanded in omp_device_lower pass. */ |
| |
| static void |
| expand_GOMP_TARGET_REV (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* Lane index of the first SIMT lane that supplies a non-zero argument. |
| This is a SIMT counterpart to GOMP_SIMD_LAST_LANE, used to represent the |
| lane that executed the last iteration for handling OpenMP lastprivate. */ |
| |
| static void |
| expand_GOMP_SIMT_LAST_LANE (internal_fn, gcall *stmt) |
| { |
| tree lhs = gimple_call_lhs (stmt); |
| if (!lhs) |
| return; |
| |
| rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| rtx cond = expand_normal (gimple_call_arg (stmt, 0)); |
| machine_mode mode = TYPE_MODE (TREE_TYPE (lhs)); |
| class expand_operand ops[2]; |
| create_output_operand (&ops[0], target, mode); |
| create_input_operand (&ops[1], cond, mode); |
| gcc_assert (targetm.have_omp_simt_last_lane ()); |
| expand_insn (targetm.code_for_omp_simt_last_lane, 2, ops); |
| if (!rtx_equal_p (target, ops[0].value)) |
| emit_move_insn (target, ops[0].value); |
| } |
| |
| /* Non-transparent predicate used in SIMT lowering of OpenMP "ordered". */ |
| |
| static void |
| expand_GOMP_SIMT_ORDERED_PRED (internal_fn, gcall *stmt) |
| { |
| tree lhs = gimple_call_lhs (stmt); |
| if (!lhs) |
| return; |
| |
| rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| rtx ctr = expand_normal (gimple_call_arg (stmt, 0)); |
| machine_mode mode = TYPE_MODE (TREE_TYPE (lhs)); |
| class expand_operand ops[2]; |
| create_output_operand (&ops[0], target, mode); |
| create_input_operand (&ops[1], ctr, mode); |
| gcc_assert (targetm.have_omp_simt_ordered ()); |
| expand_insn (targetm.code_for_omp_simt_ordered, 2, ops); |
| if (!rtx_equal_p (target, ops[0].value)) |
| emit_move_insn (target, ops[0].value); |
| } |
| |
| /* "Or" boolean reduction across SIMT lanes: return non-zero in all lanes if |
| any lane supplies a non-zero argument. */ |
| |
| static void |
| expand_GOMP_SIMT_VOTE_ANY (internal_fn, gcall *stmt) |
| { |
| tree lhs = gimple_call_lhs (stmt); |
| if (!lhs) |
| return; |
| |
| rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| rtx cond = expand_normal (gimple_call_arg (stmt, 0)); |
| machine_mode mode = TYPE_MODE (TREE_TYPE (lhs)); |
| class expand_operand ops[2]; |
| create_output_operand (&ops[0], target, mode); |
| create_input_operand (&ops[1], cond, mode); |
| gcc_assert (targetm.have_omp_simt_vote_any ()); |
| expand_insn (targetm.code_for_omp_simt_vote_any, 2, ops); |
| if (!rtx_equal_p (target, ops[0].value)) |
| emit_move_insn (target, ops[0].value); |
| } |
| |
| /* Exchange between SIMT lanes with a "butterfly" pattern: source lane index |
| is destination lane index XOR given offset. */ |
| |
| static void |
| expand_GOMP_SIMT_XCHG_BFLY (internal_fn, gcall *stmt) |
| { |
| tree lhs = gimple_call_lhs (stmt); |
| if (!lhs) |
| return; |
| |
| rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| rtx src = expand_normal (gimple_call_arg (stmt, 0)); |
| rtx idx = expand_normal (gimple_call_arg (stmt, 1)); |
| machine_mode mode = TYPE_MODE (TREE_TYPE (lhs)); |
| class expand_operand ops[3]; |
| create_output_operand (&ops[0], target, mode); |
| create_input_operand (&ops[1], src, mode); |
| create_input_operand (&ops[2], idx, SImode); |
| gcc_assert (targetm.have_omp_simt_xchg_bfly ()); |
| expand_insn (targetm.code_for_omp_simt_xchg_bfly, 3, ops); |
| if (!rtx_equal_p (target, ops[0].value)) |
| emit_move_insn (target, ops[0].value); |
| } |
| |
| /* Exchange between SIMT lanes according to given source lane index. */ |
| |
| static void |
| expand_GOMP_SIMT_XCHG_IDX (internal_fn, gcall *stmt) |
| { |
| tree lhs = gimple_call_lhs (stmt); |
| if (!lhs) |
| return; |
| |
| rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| rtx src = expand_normal (gimple_call_arg (stmt, 0)); |
| rtx idx = expand_normal (gimple_call_arg (stmt, 1)); |
| machine_mode mode = TYPE_MODE (TREE_TYPE (lhs)); |
| class expand_operand ops[3]; |
| create_output_operand (&ops[0], target, mode); |
| create_input_operand (&ops[1], src, mode); |
| create_input_operand (&ops[2], idx, SImode); |
| gcc_assert (targetm.have_omp_simt_xchg_idx ()); |
| expand_insn (targetm.code_for_omp_simt_xchg_idx, 3, ops); |
| if (!rtx_equal_p (target, ops[0].value)) |
| emit_move_insn (target, ops[0].value); |
| } |
| |
| /* This should get expanded in adjust_simduid_builtins. */ |
| |
| static void |
| expand_GOMP_SIMD_LANE (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get expanded in adjust_simduid_builtins. */ |
| |
| static void |
| expand_GOMP_SIMD_VF (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get expanded in adjust_simduid_builtins. */ |
| |
| static void |
| expand_GOMP_SIMD_LAST_LANE (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get expanded in adjust_simduid_builtins. */ |
| |
| static void |
| expand_GOMP_SIMD_ORDERED_START (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get expanded in adjust_simduid_builtins. */ |
| |
| static void |
| expand_GOMP_SIMD_ORDERED_END (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get expanded in the sanopt pass. */ |
| |
| static void |
| expand_UBSAN_NULL (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get expanded in the sanopt pass. */ |
| |
| static void |
| expand_UBSAN_BOUNDS (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get expanded in the sanopt pass. */ |
| |
| static void |
| expand_UBSAN_VPTR (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get expanded in the sanopt pass. */ |
| |
| static void |
| expand_UBSAN_PTR (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get expanded in the sanopt pass. */ |
| |
| static void |
| expand_UBSAN_OBJECT_SIZE (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get expanded in the sanopt pass. */ |
| |
| static void |
| expand_HWASAN_CHECK (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* For hwasan stack tagging: |
| Clear tags on the dynamically allocated space. |
| For use after an object dynamically allocated on the stack goes out of |
| scope. */ |
| static void |
| expand_HWASAN_ALLOCA_UNPOISON (internal_fn, gcall *gc) |
| { |
| gcc_assert (Pmode == ptr_mode); |
| tree restored_position = gimple_call_arg (gc, 0); |
| rtx restored_rtx = expand_expr (restored_position, NULL_RTX, VOIDmode, |
| EXPAND_NORMAL); |
| rtx func = init_one_libfunc ("__hwasan_tag_memory"); |
| rtx off = expand_simple_binop (Pmode, MINUS, restored_rtx, |
| stack_pointer_rtx, NULL_RTX, 0, |
| OPTAB_WIDEN); |
| emit_library_call_value (func, NULL_RTX, LCT_NORMAL, VOIDmode, |
| virtual_stack_dynamic_rtx, Pmode, |
| HWASAN_STACK_BACKGROUND, QImode, |
| off, Pmode); |
| } |
| |
| /* For hwasan stack tagging: |
| Return a tag to be used for a dynamic allocation. */ |
| static void |
| expand_HWASAN_CHOOSE_TAG (internal_fn, gcall *gc) |
| { |
| tree tag = gimple_call_lhs (gc); |
| rtx target = expand_expr (tag, NULL_RTX, VOIDmode, EXPAND_NORMAL); |
| machine_mode mode = GET_MODE (target); |
| gcc_assert (mode == QImode); |
| |
| rtx base_tag = targetm.memtag.extract_tag (hwasan_frame_base (), NULL_RTX); |
| gcc_assert (base_tag); |
| rtx tag_offset = gen_int_mode (hwasan_current_frame_tag (), QImode); |
| rtx chosen_tag = expand_simple_binop (QImode, PLUS, base_tag, tag_offset, |
| target, /* unsignedp = */1, |
| OPTAB_WIDEN); |
| chosen_tag = hwasan_truncate_to_tag_size (chosen_tag, target); |
| |
| /* Really need to put the tag into the `target` RTX. */ |
| if (chosen_tag != target) |
| { |
| rtx temp = chosen_tag; |
| gcc_assert (GET_MODE (chosen_tag) == mode); |
| emit_move_insn (target, temp); |
| } |
| |
| hwasan_increment_frame_tag (); |
| } |
| |
| /* For hwasan stack tagging: |
| Tag a region of space in the shadow stack according to the base pointer of |
| an object on the stack. N.b. the length provided in the internal call is |
| required to be aligned to HWASAN_TAG_GRANULE_SIZE. */ |
| static void |
| expand_HWASAN_MARK (internal_fn, gcall *gc) |
| { |
| gcc_assert (ptr_mode == Pmode); |
| HOST_WIDE_INT flag = tree_to_shwi (gimple_call_arg (gc, 0)); |
| bool is_poison = ((asan_mark_flags)flag) == ASAN_MARK_POISON; |
| |
| tree base = gimple_call_arg (gc, 1); |
| gcc_checking_assert (TREE_CODE (base) == ADDR_EXPR); |
| rtx base_rtx = expand_normal (base); |
| |
| rtx tag = is_poison ? HWASAN_STACK_BACKGROUND |
| : targetm.memtag.extract_tag (base_rtx, NULL_RTX); |
| rtx address = targetm.memtag.untagged_pointer (base_rtx, NULL_RTX); |
| |
| tree len = gimple_call_arg (gc, 2); |
| rtx r_len = expand_normal (len); |
| |
| rtx func = init_one_libfunc ("__hwasan_tag_memory"); |
| emit_library_call (func, LCT_NORMAL, VOIDmode, address, Pmode, |
| tag, QImode, r_len, Pmode); |
| } |
| |
| /* For hwasan stack tagging: |
| Store a tag into a pointer. */ |
| static void |
| expand_HWASAN_SET_TAG (internal_fn, gcall *gc) |
| { |
| gcc_assert (ptr_mode == Pmode); |
| tree g_target = gimple_call_lhs (gc); |
| tree g_ptr = gimple_call_arg (gc, 0); |
| tree g_tag = gimple_call_arg (gc, 1); |
| |
| rtx ptr = expand_normal (g_ptr); |
| rtx tag = expand_expr (g_tag, NULL_RTX, QImode, EXPAND_NORMAL); |
| rtx target = expand_normal (g_target); |
| |
| rtx untagged = targetm.memtag.untagged_pointer (ptr, target); |
| rtx tagged_value = targetm.memtag.set_tag (untagged, tag, target); |
| if (tagged_value != target) |
| emit_move_insn (target, tagged_value); |
| } |
| |
| /* This should get expanded in the sanopt pass. */ |
| |
| static void |
| expand_ASAN_CHECK (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get expanded in the sanopt pass. */ |
| |
| static void |
| expand_ASAN_MARK (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get expanded in the sanopt pass. */ |
| |
| static void |
| expand_ASAN_POISON (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get expanded in the sanopt pass. */ |
| |
| static void |
| expand_ASAN_POISON_USE (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get expanded in the tsan pass. */ |
| |
| static void |
| expand_TSAN_FUNC_EXIT (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get expanded in the lower pass. */ |
| |
| static void |
| expand_FALLTHROUGH (internal_fn, gcall *call) |
| { |
| error_at (gimple_location (call), |
| "invalid use of attribute %<fallthrough%>"); |
| } |
| |
| /* Return minimum precision needed to represent all values |
| of ARG in SIGNed integral type. */ |
| |
| static int |
| get_min_precision (tree arg, signop sign) |
| { |
| int prec = TYPE_PRECISION (TREE_TYPE (arg)); |
| int cnt = 0; |
| signop orig_sign = sign; |
| if (TREE_CODE (arg) == INTEGER_CST) |
| { |
| int p; |
| if (TYPE_SIGN (TREE_TYPE (arg)) != sign) |
| { |
| widest_int w = wi::to_widest (arg); |
| w = wi::ext (w, prec, sign); |
| p = wi::min_precision (w, sign); |
| } |
| else |
| p = wi::min_precision (wi::to_wide (arg), sign); |
| return MIN (p, prec); |
| } |
| while (CONVERT_EXPR_P (arg) |
| && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0))) |
| && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec) |
| { |
| arg = TREE_OPERAND (arg, 0); |
| if (TYPE_PRECISION (TREE_TYPE (arg)) < prec) |
| { |
| if (TYPE_UNSIGNED (TREE_TYPE (arg))) |
| sign = UNSIGNED; |
| else if (sign == UNSIGNED && get_range_pos_neg (arg) != 1) |
| return prec + (orig_sign != sign); |
| prec = TYPE_PRECISION (TREE_TYPE (arg)); |
| } |
| if (++cnt > 30) |
| return prec + (orig_sign != sign); |
| } |
| if (CONVERT_EXPR_P (arg) |
| && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0))) |
| && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) > prec) |
| { |
| /* We have e.g. (unsigned short) y_2 where int y_2 = (int) x_1(D); |
| If y_2's min precision is smaller than prec, return that. */ |
| int oprec = get_min_precision (TREE_OPERAND (arg, 0), sign); |
| if (oprec < prec) |
| return oprec + (orig_sign != sign); |
| } |
| if (TREE_CODE (arg) != SSA_NAME) |
| return prec + (orig_sign != sign); |
| value_range r; |
| while (!get_global_range_query ()->range_of_expr (r, arg) |
| || r.kind () != VR_RANGE) |
| { |
| gimple *g = SSA_NAME_DEF_STMT (arg); |
| if (is_gimple_assign (g) |
| && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g))) |
| { |
| tree t = gimple_assign_rhs1 (g); |
| if (INTEGRAL_TYPE_P (TREE_TYPE (t)) |
| && TYPE_PRECISION (TREE_TYPE (t)) <= prec) |
| { |
| arg = t; |
| if (TYPE_PRECISION (TREE_TYPE (arg)) < prec) |
| { |
| if (TYPE_UNSIGNED (TREE_TYPE (arg))) |
| sign = UNSIGNED; |
| else if (sign == UNSIGNED && get_range_pos_neg (arg) != 1) |
| return prec + (orig_sign != sign); |
| prec = TYPE_PRECISION (TREE_TYPE (arg)); |
| } |
| if (++cnt > 30) |
| return prec + (orig_sign != sign); |
| continue; |
| } |
| } |
| return prec + (orig_sign != sign); |
| } |
| if (sign == TYPE_SIGN (TREE_TYPE (arg))) |
| { |
| int p1 = wi::min_precision (r.lower_bound (), sign); |
| int p2 = wi::min_precision (r.upper_bound (), sign); |
| p1 = MAX (p1, p2); |
| prec = MIN (prec, p1); |
| } |
| else if (sign == UNSIGNED && !wi::neg_p (r.lower_bound (), SIGNED)) |
| { |
| int p = wi::min_precision (r.upper_bound (), UNSIGNED); |
| prec = MIN (prec, p); |
| } |
| return prec + (orig_sign != sign); |
| } |
| |
| /* Helper for expand_*_overflow. Set the __imag__ part to true |
| (1 except for signed:1 type, in which case store -1). */ |
| |
| static void |
| expand_arith_set_overflow (tree lhs, rtx target) |
| { |
| if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (lhs))) == 1 |
| && !TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs)))) |
| write_complex_part (target, constm1_rtx, true, false); |
| else |
| write_complex_part (target, const1_rtx, true, false); |
| } |
| |
| /* Helper for expand_*_overflow. Store RES into the __real__ part |
| of TARGET. If RES has larger MODE than __real__ part of TARGET, |
| set the __imag__ part to 1 if RES doesn't fit into it. Similarly |
| if LHS has smaller precision than its mode. */ |
| |
| static void |
| expand_arith_overflow_result_store (tree lhs, rtx target, |
| scalar_int_mode mode, rtx res) |
| { |
| scalar_int_mode tgtmode |
| = as_a <scalar_int_mode> (GET_MODE_INNER (GET_MODE (target))); |
| rtx lres = res; |
| if (tgtmode != mode) |
| { |
| rtx_code_label *done_label = gen_label_rtx (); |
| int uns = TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs))); |
| lres = convert_modes (tgtmode, mode, res, uns); |
| gcc_assert (GET_MODE_PRECISION (tgtmode) < GET_MODE_PRECISION (mode)); |
| do_compare_rtx_and_jump (res, convert_modes (mode, tgtmode, lres, uns), |
| EQ, true, mode, NULL_RTX, NULL, done_label, |
| profile_probability::very_likely ()); |
| expand_arith_set_overflow (lhs, target); |
| emit_label (done_label); |
| } |
| int prec = TYPE_PRECISION (TREE_TYPE (TREE_TYPE (lhs))); |
| int tgtprec = GET_MODE_PRECISION (tgtmode); |
| if (prec < tgtprec) |
| { |
| rtx_code_label *done_label = gen_label_rtx (); |
| int uns = TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs))); |
| res = lres; |
| if (uns) |
| { |
| rtx mask |
| = immed_wide_int_const (wi::shifted_mask (0, prec, false, tgtprec), |
| tgtmode); |
| lres = expand_simple_binop (tgtmode, AND, res, mask, NULL_RTX, |
| true, OPTAB_LIB_WIDEN); |
| } |
| else |
| { |
| lres = expand_shift (LSHIFT_EXPR, tgtmode, res, tgtprec - prec, |
| NULL_RTX, 1); |
| lres = expand_shift (RSHIFT_EXPR, tgtmode, lres, tgtprec - prec, |
| NULL_RTX, 0); |
| } |
| do_compare_rtx_and_jump (res, lres, |
| EQ, true, tgtmode, NULL_RTX, NULL, done_label, |
| profile_probability::very_likely ()); |
| expand_arith_set_overflow (lhs, target); |
| emit_label (done_label); |
| } |
| write_complex_part (target, lres, false, false); |
| } |
| |
| /* Helper for expand_*_overflow. Store RES into TARGET. */ |
| |
| static void |
| expand_ubsan_result_store (rtx target, rtx res) |
| { |
| if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target)) |
| /* If this is a scalar in a register that is stored in a wider mode |
| than the declared mode, compute the result into its declared mode |
| and then convert to the wider mode. Our value is the computed |
| expression. */ |
| convert_move (SUBREG_REG (target), res, SUBREG_PROMOTED_SIGN (target)); |
| else |
| emit_move_insn (target, res); |
| } |
| |
| /* Add sub/add overflow checking to the statement STMT. |
| CODE says whether the operation is +, or -. */ |
| |
| void |
| expand_addsub_overflow (location_t loc, tree_code code, tree lhs, |
| tree arg0, tree arg1, bool unsr_p, bool uns0_p, |
| bool uns1_p, bool is_ubsan, tree *datap) |
| { |
| rtx res, target = NULL_RTX; |
| tree fn; |
| rtx_code_label *done_label = gen_label_rtx (); |
| rtx_code_label *do_error = gen_label_rtx (); |
| do_pending_stack_adjust (); |
| rtx op0 = expand_normal (arg0); |
| rtx op1 = expand_normal (arg1); |
| scalar_int_mode mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg0)); |
| int prec = GET_MODE_PRECISION (mode); |
| rtx sgn = immed_wide_int_const (wi::min_value (prec, SIGNED), mode); |
| bool do_xor = false; |
| |
| if (is_ubsan) |
| gcc_assert (!unsr_p && !uns0_p && !uns1_p); |
| |
| if (lhs) |
| { |
| target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| if (!is_ubsan) |
| write_complex_part (target, const0_rtx, true, false); |
| } |
| |
| /* We assume both operands and result have the same precision |
| here (GET_MODE_BITSIZE (mode)), S stands for signed type |
| with that precision, U for unsigned type with that precision, |
| sgn for unsigned most significant bit in that precision. |
| s1 is signed first operand, u1 is unsigned first operand, |
| s2 is signed second operand, u2 is unsigned second operand, |
| sr is signed result, ur is unsigned result and the following |
| rules say how to compute result (which is always result of |
| the operands as if both were unsigned, cast to the right |
| signedness) and how to compute whether operation overflowed. |
| |
| s1 + s2 -> sr |
| res = (S) ((U) s1 + (U) s2) |
| ovf = s2 < 0 ? res > s1 : res < s1 (or jump on overflow) |
| s1 - s2 -> sr |
| res = (S) ((U) s1 - (U) s2) |
| ovf = s2 < 0 ? res < s1 : res > s2 (or jump on overflow) |
| u1 + u2 -> ur |
| res = u1 + u2 |
| ovf = res < u1 (or jump on carry, but RTL opts will handle it) |
| u1 - u2 -> ur |
| res = u1 - u2 |
| ovf = res > u1 (or jump on carry, but RTL opts will handle it) |
| s1 + u2 -> sr |
| res = (S) ((U) s1 + u2) |
| ovf = ((U) res ^ sgn) < u2 |
| s1 + u2 -> ur |
| t1 = (S) (u2 ^ sgn) |
| t2 = s1 + t1 |
| res = (U) t2 ^ sgn |
| ovf = t1 < 0 ? t2 > s1 : t2 < s1 (or jump on overflow) |
| s1 - u2 -> sr |
| res = (S) ((U) s1 - u2) |
| ovf = u2 > ((U) s1 ^ sgn) |
| s1 - u2 -> ur |
| res = (U) s1 - u2 |
| ovf = s1 < 0 || u2 > (U) s1 |
| u1 - s2 -> sr |
| res = u1 - (U) s2 |
| ovf = u1 >= ((U) s2 ^ sgn) |
| u1 - s2 -> ur |
| t1 = u1 ^ sgn |
| t2 = t1 - (U) s2 |
| res = t2 ^ sgn |
| ovf = s2 < 0 ? (S) t2 < (S) t1 : (S) t2 > (S) t1 (or jump on overflow) |
| s1 + s2 -> ur |
| res = (U) s1 + (U) s2 |
| ovf = s2 < 0 ? (s1 | (S) res) < 0) : (s1 & (S) res) < 0) |
| u1 + u2 -> sr |
| res = (S) (u1 + u2) |
| ovf = (U) res < u2 || res < 0 |
| u1 - u2 -> sr |
| res = (S) (u1 - u2) |
| ovf = u1 >= u2 ? res < 0 : res >= 0 |
| s1 - s2 -> ur |
| res = (U) s1 - (U) s2 |
| ovf = s2 >= 0 ? ((s1 | (S) res) < 0) : ((s1 & (S) res) < 0) */ |
| |
| if (code == PLUS_EXPR && uns0_p && !uns1_p) |
| { |
| /* PLUS_EXPR is commutative, if operand signedness differs, |
| canonicalize to the first operand being signed and second |
| unsigned to simplify following code. */ |
| std::swap (op0, op1); |
| std::swap (arg0, arg1); |
| uns0_p = false; |
| uns1_p = true; |
| } |
| |
| /* u1 +- u2 -> ur */ |
| if (uns0_p && uns1_p && unsr_p) |
| { |
| insn_code icode = optab_handler (code == PLUS_EXPR ? uaddv4_optab |
| : usubv4_optab, mode); |
| if (icode != CODE_FOR_nothing) |
| { |
| class expand_operand ops[4]; |
| rtx_insn *last = get_last_insn (); |
| |
| res = gen_reg_rtx (mode); |
| create_output_operand (&ops[0], res, mode); |
| create_input_operand (&ops[1], op0, mode); |
| create_input_operand (&ops[2], op1, mode); |
| create_fixed_operand (&ops[3], do_error); |
| if (maybe_expand_insn (icode, 4, ops)) |
| { |
| last = get_last_insn (); |
| if (profile_status_for_fn (cfun) != PROFILE_ABSENT |
| && JUMP_P (last) |
| && any_condjump_p (last) |
| && !find_reg_note (last, REG_BR_PROB, 0)) |
| add_reg_br_prob_note (last, |
| profile_probability::very_unlikely ()); |
| emit_jump (done_label); |
| goto do_error_label; |
| } |
| |
| delete_insns_since (last); |
| } |
| |
| /* Compute the operation. On RTL level, the addition is always |
| unsigned. */ |
| res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab, |
| op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN); |
| rtx tem = op0; |
| /* For PLUS_EXPR, the operation is commutative, so we can pick |
| operand to compare against. For prec <= BITS_PER_WORD, I think |
| preferring REG operand is better over CONST_INT, because |
| the CONST_INT might enlarge the instruction or CSE would need |
| to figure out we'd already loaded it into a register before. |
| For prec > BITS_PER_WORD, I think CONST_INT might be more beneficial, |
| as then the multi-word comparison can be perhaps simplified. */ |
| if (code == PLUS_EXPR |
| && (prec <= BITS_PER_WORD |
| ? (CONST_SCALAR_INT_P (op0) && REG_P (op1)) |
| : CONST_SCALAR_INT_P (op1))) |
| tem = op1; |
| do_compare_rtx_and_jump (res, tem, code == PLUS_EXPR ? GEU : LEU, |
| true, mode, NULL_RTX, NULL, done_label, |
| profile_probability::very_likely ()); |
| goto do_error_label; |
| } |
| |
| /* s1 +- u2 -> sr */ |
| if (!uns0_p && uns1_p && !unsr_p) |
| { |
| /* Compute the operation. On RTL level, the addition is always |
| unsigned. */ |
| res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab, |
| op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN); |
| rtx tem = expand_binop (mode, add_optab, |
| code == PLUS_EXPR ? res : op0, sgn, |
| NULL_RTX, false, OPTAB_LIB_WIDEN); |
| do_compare_rtx_and_jump (tem, op1, GEU, true, mode, NULL_RTX, NULL, |
| done_label, profile_probability::very_likely ()); |
| goto do_error_label; |
| } |
| |
| /* s1 + u2 -> ur */ |
| if (code == PLUS_EXPR && !uns0_p && uns1_p && unsr_p) |
| { |
| op1 = expand_binop (mode, add_optab, op1, sgn, NULL_RTX, false, |
| OPTAB_LIB_WIDEN); |
| /* As we've changed op1, we have to avoid using the value range |
| for the original argument. */ |
| arg1 = error_mark_node; |
| do_xor = true; |
| goto do_signed; |
| } |
| |
| /* u1 - s2 -> ur */ |
| if (code == MINUS_EXPR && uns0_p && !uns1_p && unsr_p) |
| { |
| op0 = expand_binop (mode, add_optab, op0, sgn, NULL_RTX, false, |
| OPTAB_LIB_WIDEN); |
| /* As we've changed op0, we have to avoid using the value range |
| for the original argument. */ |
| arg0 = error_mark_node; |
| do_xor = true; |
| goto do_signed; |
| } |
| |
| /* s1 - u2 -> ur */ |
| if (code == MINUS_EXPR && !uns0_p && uns1_p && unsr_p) |
| { |
| /* Compute the operation. On RTL level, the addition is always |
| unsigned. */ |
| res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false, |
| OPTAB_LIB_WIDEN); |
| int pos_neg = get_range_pos_neg (arg0); |
| if (pos_neg == 2) |
| /* If ARG0 is known to be always negative, this is always overflow. */ |
| emit_jump (do_error); |
| else if (pos_neg == 3) |
| /* If ARG0 is not known to be always positive, check at runtime. */ |
| do_compare_rtx_and_jump (op0, const0_rtx, LT, false, mode, NULL_RTX, |
| NULL, do_error, profile_probability::very_unlikely ()); |
| do_compare_rtx_and_jump (op1, op0, LEU, true, mode, NULL_RTX, NULL, |
| done_label, profile_probability::very_likely ()); |
| goto do_error_label; |
| } |
| |
| /* u1 - s2 -> sr */ |
| if (code == MINUS_EXPR && uns0_p && !uns1_p && !unsr_p) |
| { |
| /* Compute the operation. On RTL level, the addition is always |
| unsigned. */ |
| res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false, |
| OPTAB_LIB_WIDEN); |
| rtx tem = expand_binop (mode, add_optab, op1, sgn, NULL_RTX, false, |
| OPTAB_LIB_WIDEN); |
| do_compare_rtx_and_jump (op0, tem, LTU, true, mode, NULL_RTX, NULL, |
| done_label, profile_probability::very_likely ()); |
| goto do_error_label; |
| } |
| |
| /* u1 + u2 -> sr */ |
| if (code == PLUS_EXPR && uns0_p && uns1_p && !unsr_p) |
| { |
| /* Compute the operation. On RTL level, the addition is always |
| unsigned. */ |
| res = expand_binop (mode, add_optab, op0, op1, NULL_RTX, false, |
| OPTAB_LIB_WIDEN); |
| do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode, NULL_RTX, |
| NULL, do_error, profile_probability::very_unlikely ()); |
| rtx tem = op1; |
| /* The operation is commutative, so we can pick operand to compare |
| against. For prec <= BITS_PER_WORD, I think preferring REG operand |
| is better over CONST_INT, because the CONST_INT might enlarge the |
| instruction or CSE would need to figure out we'd already loaded it |
| into a register before. For prec > BITS_PER_WORD, I think CONST_INT |
| might be more beneficial, as then the multi-word comparison can be |
| perhaps simplified. */ |
| if (prec <= BITS_PER_WORD |
| ? (CONST_SCALAR_INT_P (op1) && REG_P (op0)) |
| : CONST_SCALAR_INT_P (op0)) |
| tem = op0; |
| do_compare_rtx_and_jump (res, tem, GEU, true, mode, NULL_RTX, NULL, |
| done_label, profile_probability::very_likely ()); |
| goto do_error_label; |
| } |
| |
| /* s1 +- s2 -> ur */ |
| if (!uns0_p && !uns1_p && unsr_p) |
| { |
| /* Compute the operation. On RTL level, the addition is always |
| unsigned. */ |
| res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab, |
| op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN); |
| int pos_neg = get_range_pos_neg (arg1); |
| if (code == PLUS_EXPR) |
| { |
| int pos_neg0 = get_range_pos_neg (arg0); |
| if (pos_neg0 != 3 && pos_neg == 3) |
| { |
| std::swap (op0, op1); |
| pos_neg = pos_neg0; |
| } |
| } |
| rtx tem; |
| if (pos_neg != 3) |
| { |
| tem = expand_binop (mode, ((pos_neg == 1) ^ (code == MINUS_EXPR)) |
| ? and_optab : ior_optab, |
| op0, res, NULL_RTX, false, OPTAB_LIB_WIDEN); |
| do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL, |
| NULL, done_label, profile_probability::very_likely ()); |
| } |
| else |
| { |
| rtx_code_label *do_ior_label = gen_label_rtx (); |
| do_compare_rtx_and_jump (op1, const0_rtx, |
| code == MINUS_EXPR ? GE : LT, false, mode, |
| NULL_RTX, NULL, do_ior_label, |
| profile_probability::even ()); |
| tem = expand_binop (mode, and_optab, op0, res, NULL_RTX, false, |
| OPTAB_LIB_WIDEN); |
| do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX, |
| NULL, done_label, profile_probability::very_likely ()); |
| emit_jump (do_error); |
| emit_label (do_ior_label); |
| tem = expand_binop (mode, ior_optab, op0, res, NULL_RTX, false, |
| OPTAB_LIB_WIDEN); |
| do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX, |
| NULL, done_label, profile_probability::very_likely ()); |
| } |
| goto do_error_label; |
| } |
| |
| /* u1 - u2 -> sr */ |
| if (code == MINUS_EXPR && uns0_p && uns1_p && !unsr_p) |
| { |
| /* Compute the operation. On RTL level, the addition is always |
| unsigned. */ |
| res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false, |
| OPTAB_LIB_WIDEN); |
| rtx_code_label *op0_geu_op1 = gen_label_rtx (); |
| do_compare_rtx_and_jump (op0, op1, GEU, true, mode, NULL_RTX, NULL, |
| op0_geu_op1, profile_probability::even ()); |
| do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode, NULL_RTX, |
| NULL, done_label, profile_probability::very_likely ()); |
| emit_jump (do_error); |
| emit_label (op0_geu_op1); |
| do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX, |
| NULL, done_label, profile_probability::very_likely ()); |
| goto do_error_label; |
| } |
| |
| gcc_assert (!uns0_p && !uns1_p && !unsr_p); |
| |
| /* s1 +- s2 -> sr */ |
| do_signed: |
| { |
| insn_code icode = optab_handler (code == PLUS_EXPR ? addv4_optab |
| : subv4_optab, mode); |
| if (icode != CODE_FOR_nothing) |
| { |
| class expand_operand ops[4]; |
| rtx_insn *last = get_last_insn (); |
| |
| res = gen_reg_rtx (mode); |
| create_output_operand (&ops[0], res, mode); |
| create_input_operand (&ops[1], op0, mode); |
| create_input_operand (&ops[2], op1, mode); |
| create_fixed_operand (&ops[3], do_error); |
| if (maybe_expand_insn (icode, 4, ops)) |
| { |
| last = get_last_insn (); |
| if (profile_status_for_fn (cfun) != PROFILE_ABSENT |
| && JUMP_P (last) |
| && any_condjump_p (last) |
| && !find_reg_note (last, REG_BR_PROB, 0)) |
| add_reg_br_prob_note (last, |
| profile_probability::very_unlikely ()); |
| emit_jump (done_label); |
| goto do_error_label; |
| } |
| |
| delete_insns_since (last); |
| } |
| |
| /* Compute the operation. On RTL level, the addition is always |
| unsigned. */ |
| res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab, |
| op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN); |
| |
| /* If we can prove that one of the arguments (for MINUS_EXPR only |
| the second operand, as subtraction is not commutative) is always |
| non-negative or always negative, we can do just one comparison |
| and conditional jump. */ |
| int pos_neg = get_range_pos_neg (arg1); |
| if (code == PLUS_EXPR) |
| { |
| int pos_neg0 = get_range_pos_neg (arg0); |
| if (pos_neg0 != 3 && pos_neg == 3) |
| { |
| std::swap (op0, op1); |
| pos_neg = pos_neg0; |
| } |
| } |
| |
| /* Addition overflows if and only if the two operands have the same sign, |
| and the result has the opposite sign. Subtraction overflows if and |
| only if the two operands have opposite sign, and the subtrahend has |
| the same sign as the result. Here 0 is counted as positive. */ |
| if (pos_neg == 3) |
| { |
| /* Compute op0 ^ op1 (operands have opposite sign). */ |
| rtx op_xor = expand_binop (mode, xor_optab, op0, op1, NULL_RTX, false, |
| OPTAB_LIB_WIDEN); |
| |
| /* Compute res ^ op1 (result and 2nd operand have opposite sign). */ |
| rtx res_xor = expand_binop (mode, xor_optab, res, op1, NULL_RTX, false, |
| OPTAB_LIB_WIDEN); |
| |
| rtx tem; |
| if (code == PLUS_EXPR) |
| { |
| /* Compute (res ^ op1) & ~(op0 ^ op1). */ |
| tem = expand_unop (mode, one_cmpl_optab, op_xor, NULL_RTX, false); |
| tem = expand_binop (mode, and_optab, res_xor, tem, NULL_RTX, false, |
| OPTAB_LIB_WIDEN); |
| } |
| else |
| { |
| /* Compute (op0 ^ op1) & ~(res ^ op1). */ |
| tem = expand_unop (mode, one_cmpl_optab, res_xor, NULL_RTX, false); |
| tem = expand_binop (mode, and_optab, op_xor, tem, NULL_RTX, false, |
| OPTAB_LIB_WIDEN); |
| } |
| |
| /* No overflow if the result has bit sign cleared. */ |
| do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX, |
| NULL, done_label, profile_probability::very_likely ()); |
| } |
| |
| /* Compare the result of the operation with the first operand. |
| No overflow for addition if second operand is positive and result |
| is larger or second operand is negative and result is smaller. |
| Likewise for subtraction with sign of second operand flipped. */ |
| else |
| do_compare_rtx_and_jump (res, op0, |
| (pos_neg == 1) ^ (code == MINUS_EXPR) ? GE : LE, |
| false, mode, NULL_RTX, NULL, done_label, |
| profile_probability::very_likely ()); |
| } |
| |
| do_error_label: |
| emit_label (do_error); |
| if (is_ubsan) |
| { |
| /* Expand the ubsan builtin call. */ |
| push_temp_slots (); |
| fn = ubsan_build_overflow_builtin (code, loc, TREE_TYPE (arg0), |
| arg0, arg1, datap); |
| expand_normal (fn); |
| pop_temp_slots (); |
| do_pending_stack_adjust (); |
| } |
| else if (lhs) |
| expand_arith_set_overflow (lhs, target); |
| |
| /* We're done. */ |
| emit_label (done_label); |
| |
| if (lhs) |
| { |
| if (is_ubsan) |
| expand_ubsan_result_store (target, res); |
| else |
| { |
| if (do_xor) |
| res = expand_binop (mode, add_optab, res, sgn, NULL_RTX, false, |
| OPTAB_LIB_WIDEN); |
| |
| expand_arith_overflow_result_store (lhs, target, mode, res); |
| } |
| } |
| } |
| |
| /* Add negate overflow checking to the statement STMT. */ |
| |
| static void |
| expand_neg_overflow (location_t loc, tree lhs, tree arg1, bool is_ubsan, |
| tree *datap) |
| { |
| rtx res, op1; |
| tree fn; |
| rtx_code_label *done_label, *do_error; |
| rtx target = NULL_RTX; |
| |
| done_label = gen_label_rtx (); |
| do_error = gen_label_rtx (); |
| |
| do_pending_stack_adjust (); |
| op1 = expand_normal (arg1); |
| |
| scalar_int_mode mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg1)); |
| if (lhs) |
| { |
| target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| if (!is_ubsan) |
| write_complex_part (target, const0_rtx, true, false); |
| } |
| |
| enum insn_code icode = optab_handler (negv3_optab, mode); |
| if (icode != CODE_FOR_nothing) |
| { |
| class expand_operand ops[3]; |
| rtx_insn *last = get_last_insn (); |
| |
| res = gen_reg_rtx (mode); |
| create_output_operand (&ops[0], res, mode); |
| create_input_operand (&ops[1], op1, mode); |
| create_fixed_operand (&ops[2], do_error); |
| if (maybe_expand_insn (icode, 3, ops)) |
| { |
| last = get_last_insn (); |
| if (profile_status_for_fn (cfun) != PROFILE_ABSENT |
| && JUMP_P (last) |
| && any_condjump_p (last) |
| && !find_reg_note (last, REG_BR_PROB, 0)) |
| add_reg_br_prob_note (last, |
| profile_probability::very_unlikely ()); |
| emit_jump (done_label); |
| } |
| else |
| { |
| delete_insns_since (last); |
| icode = CODE_FOR_nothing; |
| } |
| } |
| |
| if (icode == CODE_FOR_nothing) |
| { |
| /* Compute the operation. On RTL level, the addition is always |
| unsigned. */ |
| res = expand_unop (mode, neg_optab, op1, NULL_RTX, false); |
| |
| /* Compare the operand with the most negative value. */ |
| rtx minv = expand_normal (TYPE_MIN_VALUE (TREE_TYPE (arg1))); |
| do_compare_rtx_and_jump (op1, minv, NE, true, mode, NULL_RTX, NULL, |
| done_label, profile_probability::very_likely ()); |
| } |
| |
| emit_label (do_error); |
| if (is_ubsan) |
| { |
| /* Expand the ubsan builtin call. */ |
| push_temp_slots (); |
| fn = ubsan_build_overflow_builtin (NEGATE_EXPR, loc, TREE_TYPE (arg1), |
| arg1, NULL_TREE, datap); |
| expand_normal (fn); |
| pop_temp_slots (); |
| do_pending_stack_adjust (); |
| } |
| else if (lhs) |
| expand_arith_set_overflow (lhs, target); |
| |
| /* We're done. */ |
| emit_label (done_label); |
| |
| if (lhs) |
| { |
| if (is_ubsan) |
| expand_ubsan_result_store (target, res); |
| else |
| expand_arith_overflow_result_store (lhs, target, mode, res); |
| } |
| } |
| |
| /* Return true if UNS WIDEN_MULT_EXPR with result mode WMODE and operand |
| mode MODE can be expanded without using a libcall. */ |
| |
| static bool |
| can_widen_mult_without_libcall (scalar_int_mode wmode, scalar_int_mode mode, |
| rtx op0, rtx op1, bool uns) |
| { |
| if (find_widening_optab_handler (umul_widen_optab, wmode, mode) |
| != CODE_FOR_nothing) |
| return true; |
| |
| if (find_widening_optab_handler (smul_widen_optab, wmode, mode) |
| != CODE_FOR_nothing) |
| return true; |
| |
| rtx_insn *last = get_last_insn (); |
| if (CONSTANT_P (op0)) |
| op0 = convert_modes (wmode, mode, op0, uns); |
| else |
| op0 = gen_raw_REG (wmode, LAST_VIRTUAL_REGISTER + 1); |
| if (CONSTANT_P (op1)) |
| op1 = convert_modes (wmode, mode, op1, uns); |
| else |
| op1 = gen_raw_REG (wmode, LAST_VIRTUAL_REGISTER + 2); |
| rtx ret = expand_mult (wmode, op0, op1, NULL_RTX, uns, true); |
| delete_insns_since (last); |
| return ret != NULL_RTX; |
| } |
| |
| /* Add mul overflow checking to the statement STMT. */ |
| |
| static void |
| expand_mul_overflow (location_t loc, tree lhs, tree arg0, tree arg1, |
| bool unsr_p, bool uns0_p, bool uns1_p, bool is_ubsan, |
| tree *datap) |
| { |
| rtx res, op0, op1; |
| tree fn, type; |
| rtx_code_label *done_label, *do_error; |
| rtx target = NULL_RTX; |
| signop sign; |
| enum insn_code icode; |
| |
| done_label = gen_label_rtx (); |
| do_error = gen_label_rtx (); |
| |
| do_pending_stack_adjust (); |
| op0 = expand_normal (arg0); |
| op1 = expand_normal (arg1); |
| |
| scalar_int_mode mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg0)); |
| bool uns = unsr_p; |
| if (lhs) |
| { |
| target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| if (!is_ubsan) |
| write_complex_part (target, const0_rtx, true, false); |
| } |
| |
| if (is_ubsan) |
| gcc_assert (!unsr_p && !uns0_p && !uns1_p); |
| |
| /* We assume both operands and result have the same precision |
| here (GET_MODE_BITSIZE (mode)), S stands for signed type |
| with that precision, U for unsigned type with that precision, |
| sgn for unsigned most significant bit in that precision. |
| s1 is signed first operand, u1 is unsigned first operand, |
| s2 is signed second operand, u2 is unsigned second operand, |
| sr is signed result, ur is unsigned result and the following |
| rules say how to compute result (which is always result of |
| the operands as if both were unsigned, cast to the right |
| signedness) and how to compute whether operation overflowed. |
| main_ovf (false) stands for jump on signed multiplication |
| overflow or the main algorithm with uns == false. |
| main_ovf (true) stands for jump on unsigned multiplication |
| overflow or the main algorithm with uns == true. |
| |
| s1 * s2 -> sr |
| res = (S) ((U) s1 * (U) s2) |
| ovf = main_ovf (false) |
| u1 * u2 -> ur |
| res = u1 * u2 |
| ovf = main_ovf (true) |
| s1 * u2 -> ur |
| res = (U) s1 * u2 |
| ovf = (s1 < 0 && u2) || main_ovf (true) |
| u1 * u2 -> sr |
| res = (S) (u1 * u2) |
| ovf = res < 0 || main_ovf (true) |
| s1 * u2 -> sr |
| res = (S) ((U) s1 * u2) |
| ovf = (S) u2 >= 0 ? main_ovf (false) |
| : (s1 != 0 && (s1 != -1 || u2 != (U) res)) |
| s1 * s2 -> ur |
| t1 = (s1 & s2) < 0 ? (-(U) s1) : ((U) s1) |
| t2 = (s1 & s2) < 0 ? (-(U) s2) : ((U) s2) |
| res = t1 * t2 |
| ovf = (s1 ^ s2) < 0 ? (s1 && s2) : main_ovf (true) */ |
| |
| if (uns0_p && !uns1_p) |
| { |
| /* Multiplication is commutative, if operand signedness differs, |
| canonicalize to the first operand being signed and second |
| unsigned to simplify following code. */ |
| std::swap (op0, op1); |
| std::swap (arg0, arg1); |
| uns0_p = false; |
| uns1_p = true; |
| } |
| |
| int pos_neg0 = get_range_pos_neg (arg0); |
| int pos_neg1 = get_range_pos_neg (arg1); |
| |
| /* s1 * u2 -> ur */ |
| if (!uns0_p && uns1_p && unsr_p) |
| { |
| switch (pos_neg0) |
| { |
| case 1: |
| /* If s1 is non-negative, just perform normal u1 * u2 -> ur. */ |
| goto do_main; |
| case 2: |
| /* If s1 is negative, avoid the main code, just multiply and |
| signal overflow if op1 is not 0. */ |
| struct separate_ops ops; |
| ops.code = MULT_EXPR; |
| ops.type = TREE_TYPE (arg1); |
| ops.op0 = make_tree (ops.type, op0); |
| ops.op1 = make_tree (ops.type, op1); |
| ops.op2 = NULL_TREE; |
| ops.location = loc; |
| res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); |
| do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX, |
| NULL, done_label, profile_probability::very_likely ()); |
| goto do_error_label; |
| case 3: |
| if (get_min_precision (arg1, UNSIGNED) |
| + get_min_precision (arg0, SIGNED) <= GET_MODE_PRECISION (mode)) |
| { |
| /* If the first operand is sign extended from narrower type, the |
| second operand is zero extended from narrower type and |
| the sum of the two precisions is smaller or equal to the |
| result precision: if the first argument is at runtime |
| non-negative, maximum result will be 0x7e81 or 0x7f..fe80..01 |
| and there will be no overflow, if the first argument is |
| negative and the second argument zero, the result will be |
| 0 and there will be no overflow, if the first argument is |
| negative and the second argument positive, the result when |
| treated as signed will be negative (minimum -0x7f80 or |
| -0x7f..f80..0) there will be always overflow. So, do |
| res = (U) (s1 * u2) |
| ovf = (S) res < 0 */ |
| struct separate_ops ops; |
| ops.code = MULT_EXPR; |
| ops.type |
| = build_nonstandard_integer_type (GET_MODE_PRECISION (mode), |
| 1); |
| ops.op0 = make_tree (ops.type, op0); |
| ops.op1 = make_tree (ops.type, op1); |
| ops.op2 = NULL_TREE; |
| ops.location = loc; |
| res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); |
| do_compare_rtx_and_jump (res, const0_rtx, GE, false, |
| mode, NULL_RTX, NULL, done_label, |
| profile_probability::very_likely ()); |
| goto do_error_label; |
| } |
| rtx_code_label *do_main_label; |
| do_main_label = gen_label_rtx (); |
| do_compare_rtx_and_jump (op0, const0_rtx, GE, false, mode, NULL_RTX, |
| NULL, do_main_label, profile_probability::very_likely ()); |
| do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX, |
| NULL, do_main_label, profile_probability::very_likely ()); |
| expand_arith_set_overflow (lhs, target); |
| emit_label (do_main_label); |
| goto do_main; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* u1 * u2 -> sr */ |
| if (uns0_p && uns1_p && !unsr_p) |
| { |
| if ((pos_neg0 | pos_neg1) == 1) |
| { |
| /* If both arguments are zero extended from narrower types, |
| the MSB will be clear on both and so we can pretend it is |
| a normal s1 * s2 -> sr multiplication. */ |
| uns0_p = false; |
| uns1_p = false; |
| } |
| else |
| uns = true; |
| /* Rest of handling of this case after res is computed. */ |
| goto do_main; |
| } |
| |
| /* s1 * u2 -> sr */ |
| if (!uns0_p && uns1_p && !unsr_p) |
| { |
| switch (pos_neg1) |
| { |
| case 1: |
| goto do_main; |
| case 2: |
| /* If (S) u2 is negative (i.e. u2 is larger than maximum of S, |
| avoid the main code, just multiply and signal overflow |
| unless 0 * u2 or -1 * ((U) Smin). */ |
| struct separate_ops ops; |
| ops.code = MULT_EXPR; |
| ops.type = TREE_TYPE (arg1); |
| ops.op0 = make_tree (ops.type, op0); |
| ops.op1 = make_tree (ops.type, op1); |
| ops.op2 = NULL_TREE; |
| ops.location = loc; |
| res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); |
| do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX, |
| NULL, done_label, profile_probability::very_likely ()); |
| do_compare_rtx_and_jump (op0, constm1_rtx, NE, true, mode, NULL_RTX, |
| NULL, do_error, profile_probability::very_unlikely ()); |
| int prec; |
| prec = GET_MODE_PRECISION (mode); |
| rtx sgn; |
| sgn = immed_wide_int_const (wi::min_value (prec, SIGNED), mode); |
| do_compare_rtx_and_jump (op1, sgn, EQ, true, mode, NULL_RTX, |
| NULL, done_label, profile_probability::very_likely ()); |
| goto do_error_label; |
| case 3: |
| /* Rest of handling of this case after res is computed. */ |
| goto do_main; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* s1 * s2 -> ur */ |
| if (!uns0_p && !uns1_p && unsr_p) |
| { |
| rtx tem; |
| switch (pos_neg0 | pos_neg1) |
| { |
| case 1: /* Both operands known to be non-negative. */ |
| goto do_main; |
| case 2: /* Both operands known to be negative. */ |
| op0 = expand_unop (mode, neg_optab, op0, NULL_RTX, false); |
| op1 = expand_unop (mode, neg_optab, op1, NULL_RTX, false); |
| /* Avoid looking at arg0/arg1 ranges, as we've changed |
| the arguments. */ |
| arg0 = error_mark_node; |
| arg1 = error_mark_node; |
| goto do_main; |
| case 3: |
| if ((pos_neg0 ^ pos_neg1) == 3) |
| { |
| /* If one operand is known to be negative and the other |
| non-negative, this overflows always, unless the non-negative |
| one is 0. Just do normal multiply and set overflow |
| unless one of the operands is 0. */ |
| struct separate_ops ops; |
| ops.code = MULT_EXPR; |
| ops.type |
| = build_nonstandard_integer_type (GET_MODE_PRECISION (mode), |
| 1); |
| ops.op0 = make_tree (ops.type, op0); |
| ops.op1 = make_tree (ops.type, op1); |
| ops.op2 = NULL_TREE; |
| ops.location = loc; |
| res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); |
| do_compare_rtx_and_jump (pos_neg0 == 1 ? op0 : op1, const0_rtx, EQ, |
| true, mode, NULL_RTX, NULL, done_label, |
| profile_probability::very_likely ()); |
| goto do_error_label; |
| } |
| if (get_min_precision (arg0, SIGNED) |
| + get_min_precision (arg1, SIGNED) <= GET_MODE_PRECISION (mode)) |
| { |
| /* If both operands are sign extended from narrower types and |
| the sum of the two precisions is smaller or equal to the |
| result precision: if both arguments are at runtime |
| non-negative, maximum result will be 0x3f01 or 0x3f..f0..01 |
| and there will be no overflow, if both arguments are negative, |
| maximum result will be 0x40..00 and there will be no overflow |
| either, if one argument is positive and the other argument |
| negative, the result when treated as signed will be negative |
| and there will be always overflow, and if one argument is |
| zero and the other negative the result will be zero and no |
| overflow. So, do |
| res = (U) (s1 * s2) |
| ovf = (S) res < 0 */ |
| struct separate_ops ops; |
| ops.code = MULT_EXPR; |
| ops.type |
| = build_nonstandard_integer_type (GET_MODE_PRECISION (mode), |
| 1); |
| ops.op0 = make_tree (ops.type, op0); |
| ops.op1 = make_tree (ops.type, op1); |
| ops.op2 = NULL_TREE; |
| ops.location = loc; |
| res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); |
| do_compare_rtx_and_jump (res, const0_rtx, GE, false, |
| mode, NULL_RTX, NULL, done_label, |
| profile_probability::very_likely ()); |
| goto do_error_label; |
| } |
| /* The general case, do all the needed comparisons at runtime. */ |
| rtx_code_label *do_main_label, *after_negate_label; |
| rtx rop0, rop1; |
| rop0 = gen_reg_rtx (mode); |
| rop1 = gen_reg_rtx (mode); |
| emit_move_insn (rop0, op0); |
| emit_move_insn (rop1, op1); |
| op0 = rop0; |
| op1 = rop1; |
| do_main_label = gen_label_rtx (); |
| after_negate_label = gen_label_rtx (); |
| tem = expand_binop (mode, and_optab, op0, op1, NULL_RTX, false, |
| OPTAB_LIB_WIDEN); |
| do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX, |
| NULL, after_negate_label, profile_probability::very_likely ()); |
| /* Both arguments negative here, negate them and continue with |
| normal unsigned overflow checking multiplication. */ |
| emit_move_insn (op0, expand_unop (mode, neg_optab, op0, |
| NULL_RTX, false)); |
| emit_move_insn (op1, expand_unop (mode, neg_optab, op1, |
| NULL_RTX, false)); |
| /* Avoid looking at arg0/arg1 ranges, as we might have changed |
| the arguments. */ |
| arg0 = error_mark_node; |
| arg1 = error_mark_node; |
| emit_jump (do_main_label); |
| emit_label (after_negate_label); |
| tem = expand_binop (mode, xor_optab, op0, op1, NULL_RTX, false, |
| OPTAB_LIB_WIDEN); |
| do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX, |
| NULL, do_main_label, |
| profile_probability::very_likely ()); |
| /* One argument is negative here, the other positive. This |
| overflows always, unless one of the arguments is 0. But |
| if e.g. s2 is 0, (U) s1 * 0 doesn't overflow, whatever s1 |
| is, thus we can keep do_main code oring in overflow as is. */ |
| if (pos_neg0 != 2) |
| do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX, |
| NULL, do_main_label, |
| profile_probability::very_unlikely ()); |
| if (pos_neg1 != 2) |
| do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX, |
| NULL, do_main_label, |
| profile_probability::very_unlikely ()); |
| expand_arith_set_overflow (lhs, target); |
| emit_label (do_main_label); |
| goto do_main; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| do_main: |
| type = build_nonstandard_integer_type (GET_MODE_PRECISION (mode), uns); |
| sign = uns ? UNSIGNED : SIGNED; |
| icode = optab_handler (uns ? umulv4_optab : mulv4_optab, mode); |
| if (uns |
| && (integer_pow2p (arg0) || integer_pow2p (arg1)) |
| && (optimize_insn_for_speed_p () || icode == CODE_FOR_nothing)) |
| { |
| /* Optimize unsigned multiplication by power of 2 constant |
| using 2 shifts, one for result, one to extract the shifted |
| out bits to see if they are all zero. |
| Don't do this if optimizing for size and we have umulv4_optab, |
| in that case assume multiplication will be shorter. |
| This is heuristics based on the single target that provides |
| umulv4 right now (i?86/x86_64), if further targets add it, this |
| might need to be revisited. |
| Cases where both operands are constant should be folded already |
| during GIMPLE, and cases where one operand is constant but not |
| power of 2 are questionable, either the WIDEN_MULT_EXPR case |
| below can be done without multiplication, just by shifts and adds, |
| or we'd need to divide the result (and hope it actually doesn't |
| really divide nor multiply) and compare the result of the division |
| with the original operand. */ |
| rtx opn0 = op0; |
| rtx opn1 = op1; |
| tree argn0 = arg0; |
| tree argn1 = arg1; |
| if (integer_pow2p (arg0)) |
| { |
| std::swap (opn0, opn1); |
| std::swap (argn0, argn1); |
| } |
| int cnt = tree_log2 (argn1); |
| if (cnt >= 0 && cnt < GET_MODE_PRECISION (mode)) |
| { |
| rtx upper = const0_rtx; |
| res = expand_shift (LSHIFT_EXPR, mode, opn0, cnt, NULL_RTX, uns); |
| if (cnt != 0) |
| upper = expand_shift (RSHIFT_EXPR, mode, opn0, |
| GET_MODE_PRECISION (mode) - cnt, |
| NULL_RTX, uns); |
| do_compare_rtx_and_jump (upper, const0_rtx, EQ, true, mode, |
| NULL_RTX, NULL, done_label, |
| profile_probability::very_likely ()); |
| goto do_error_label; |
| } |
| } |
| if (icode != CODE_FOR_nothing) |
| { |
| class expand_operand ops[4]; |
| rtx_insn *last = get_last_insn (); |
| |
| res = gen_reg_rtx (mode); |
| create_output_operand (&ops[0], res, mode); |
| create_input_operand (&ops[1], op0, mode); |
| create_input_operand (&ops[2], op1, mode); |
| create_fixed_operand (&ops[3], do_error); |
| if (maybe_expand_insn (icode, 4, ops)) |
| { |
| last = get_last_insn (); |
| if (profile_status_for_fn (cfun) != PROFILE_ABSENT |
| && JUMP_P (last) |
| && any_condjump_p (last) |
| && !find_reg_note (last, REG_BR_PROB, 0)) |
| add_reg_br_prob_note (last, |
| profile_probability::very_unlikely ()); |
| emit_jump (done_label); |
| } |
| else |
| { |
| delete_insns_since (last); |
| icode = CODE_FOR_nothing; |
| } |
| } |
| |
| if (icode == CODE_FOR_nothing) |
| { |
| struct separate_ops ops; |
| int prec = GET_MODE_PRECISION (mode); |
| scalar_int_mode hmode, wmode; |
| ops.op0 = make_tree (type, op0); |
| ops.op1 = make_tree (type, op1); |
| ops.op2 = NULL_TREE; |
| ops.location = loc; |
| |
| /* Optimize unsigned overflow check where we don't use the |
| multiplication result, just whether overflow happened. |
| If we can do MULT_HIGHPART_EXPR, that followed by |
| comparison of the result against zero is cheapest. |
| We'll still compute res, but it should be DCEd later. */ |
| use_operand_p use; |
| gimple *use_stmt; |
| if (!is_ubsan |
| && lhs |
| && uns |
| && !(uns0_p && uns1_p && !unsr_p) |
| && can_mult_highpart_p (mode, uns) == 1 |
| && single_imm_use (lhs, &use, &use_stmt) |
| && is_gimple_assign (use_stmt) |
| && gimple_assign_rhs_code (use_stmt) == IMAGPART_EXPR) |
| goto highpart; |
| |
| if (GET_MODE_2XWIDER_MODE (mode).exists (&wmode) |
| && targetm.scalar_mode_supported_p (wmode) |
| && can_widen_mult_without_libcall (wmode, mode, op0, op1, uns)) |
| { |
| twoxwider: |
| ops.code = WIDEN_MULT_EXPR; |
| ops.type |
| = build_nonstandard_integer_type (GET_MODE_PRECISION (wmode), uns); |
| |
| res = expand_expr_real_2 (&ops, NULL_RTX, wmode, EXPAND_NORMAL); |
| rtx hipart = expand_shift (RSHIFT_EXPR, wmode, res, prec, |
| NULL_RTX, uns); |
| hipart = convert_modes (mode, wmode, hipart, uns); |
| res = convert_modes (mode, wmode, res, uns); |
| if (uns) |
| /* For the unsigned multiplication, there was overflow if |
| HIPART is non-zero. */ |
| do_compare_rtx_and_jump (hipart, const0_rtx, EQ, true, mode, |
| NULL_RTX, NULL, done_label, |
| profile_probability::very_likely ()); |
| else |
| { |
| /* RES is used more than once, place it in a pseudo. */ |
| res = force_reg (mode, res); |
| |
| rtx signbit = expand_shift (RSHIFT_EXPR, mode, res, prec - 1, |
| NULL_RTX, 0); |
| /* RES is low half of the double width result, HIPART |
| the high half. There was overflow if |
| HIPART is different from RES < 0 ? -1 : 0. */ |
| do_compare_rtx_and_jump (signbit, hipart, EQ, true, mode, |
| NULL_RTX, NULL, done_label, |
| profile_probability::very_likely ()); |
| } |
| } |
| else if (can_mult_highpart_p (mode, uns) == 1) |
| { |
| highpart: |
| ops.code = MULT_HIGHPART_EXPR; |
| ops.type = type; |
| |
| rtx hipart = expand_expr_real_2 (&ops, NULL_RTX, mode, |
| EXPAND_NORMAL); |
| ops.code = MULT_EXPR; |
| res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); |
| if (uns) |
| /* For the unsigned multiplication, there was overflow if |
| HIPART is non-zero. */ |
| do_compare_rtx_and_jump (hipart, const0_rtx, EQ, true, mode, |
| NULL_RTX, NULL, done_label, |
| profile_probability::very_likely ()); |
| else |
| { |
| rtx signbit = expand_shift (RSHIFT_EXPR, mode, res, prec - 1, |
| NULL_RTX, 0); |
| /* RES is low half of the double width result, HIPART |
| the high half. There was overflow if |
| HIPART is different from RES < 0 ? -1 : 0. */ |
| do_compare_rtx_and_jump (signbit, hipart, EQ, true, mode, |
| NULL_RTX, NULL, done_label, |
| profile_probability::very_likely ()); |
| } |
| |
| } |
| else if (int_mode_for_size (prec / 2, 1).exists (&hmode) |
| && 2 * GET_MODE_PRECISION (hmode) == prec) |
| { |
| rtx_code_label *large_op0 = gen_label_rtx (); |
| rtx_code_label *small_op0_large_op1 = gen_label_rtx (); |
| rtx_code_label *one_small_one_large = gen_label_rtx (); |
| rtx_code_label *both_ops_large = gen_label_rtx (); |
| rtx_code_label *after_hipart_neg = uns ? NULL : gen_label_rtx (); |
| rtx_code_label *after_lopart_neg = uns ? NULL : gen_label_rtx (); |
| rtx_code_label *do_overflow = gen_label_rtx (); |
| rtx_code_label *hipart_different = uns ? NULL : gen_label_rtx (); |
| |
| unsigned int hprec = GET_MODE_PRECISION (hmode); |
| rtx hipart0 = expand_shift (RSHIFT_EXPR, mode, op0, hprec, |
| NULL_RTX, uns); |
| hipart0 = convert_modes (hmode, mode, hipart0, uns); |
| rtx lopart0 = convert_modes (hmode, mode, op0, uns); |
| rtx signbit0 = const0_rtx; |
| if (!uns) |
| signbit0 = expand_shift (RSHIFT_EXPR, hmode, lopart0, hprec - 1, |
| NULL_RTX, 0); |
| rtx hipart1 = expand_shift (RSHIFT_EXPR, mode, op1, hprec, |
| NULL_RTX, uns); |
| hipart1 = convert_modes (hmode, mode, hipart1, uns); |
| rtx lopart1 = convert_modes (hmode, mode, op1, uns); |
| rtx signbit1 = const0_rtx; |
| if (!uns) |
| signbit1 = expand_shift (RSHIFT_EXPR, hmode, lopart1, hprec - 1, |
| NULL_RTX, 0); |
| |
| res = gen_reg_rtx (mode); |
| |
| /* True if op0 resp. op1 are known to be in the range of |
| halfstype. */ |
| bool op0_small_p = false; |
| bool op1_small_p = false; |
| /* True if op0 resp. op1 are known to have all zeros or all ones |
| in the upper half of bits, but are not known to be |
| op{0,1}_small_p. */ |
| bool op0_medium_p = false; |
| bool op1_medium_p = false; |
| /* -1 if op{0,1} is known to be negative, 0 if it is known to be |
| nonnegative, 1 if unknown. */ |
| int op0_sign = 1; |
| int op1_sign = 1; |
| |
| if (pos_neg0 == 1) |
| op0_sign = 0; |
| else if (pos_neg0 == 2) |
| op0_sign = -1; |
| if (pos_neg1 == 1) |
| op1_sign = 0; |
| else if (pos_neg1 == 2) |
| op1_sign = -1; |
| |
| unsigned int mprec0 = prec; |
| if (arg0 != error_mark_node) |
| mprec0 = get_min_precision (arg0, sign); |
| if (mprec0 <= hprec) |
| op0_small_p = true; |
| else if (!uns && mprec0 <= hprec + 1) |
| op0_medium_p = true; |
| unsigned int mprec1 = prec; |
| if (arg1 != error_mark_node) |
| mprec1 = get_min_precision (arg1, sign); |
| if (mprec1 <= hprec) |
| op1_small_p = true; |
| else if (!uns && mprec1 <= hprec + 1) |
| op1_medium_p = true; |
| |
| int smaller_sign = 1; |
| int larger_sign = 1; |
| if (op0_small_p) |
| { |
| smaller_sign = op0_sign; |
| larger_sign = op1_sign; |
| } |
| else if (op1_small_p) |
| { |
| smaller_sign = op1_sign; |
| larger_sign = op0_sign; |
| } |
| else if (op0_sign == op1_sign) |
| { |
| smaller_sign = op0_sign; |
| larger_sign = op0_sign; |
| } |
| |
| if (!op0_small_p) |
| do_compare_rtx_and_jump (signbit0, hipart0, NE, true, hmode, |
| NULL_RTX, NULL, large_op0, |
| profile_probability::unlikely ()); |
| |
| if (!op1_small_p) |
| do_compare_rtx_and_jump (signbit1, hipart1, NE, true, hmode, |
| NULL_RTX, NULL, small_op0_large_op1, |
| profile_probability::unlikely ()); |
| |
| /* If both op0 and op1 are sign (!uns) or zero (uns) extended from |
| hmode to mode, the multiplication will never overflow. We can |
| do just one hmode x hmode => mode widening multiplication. */ |
| tree halfstype = build_nonstandard_integer_type (hprec, uns); |
| ops.op0 = make_tree (halfstype, lopart0); |
| ops.op1 = make_tree (halfstype, lopart1); |
| ops.code = WIDEN_MULT_EXPR; |
| ops.type = type; |
| rtx thisres |
| = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); |
| emit_move_insn (res, thisres); |
| emit_jump (done_label); |
| |
| emit_label (small_op0_large_op1); |
| |
| /* If op0 is sign (!uns) or zero (uns) extended from hmode to mode, |
| but op1 is not, just swap the arguments and handle it as op1 |
| sign/zero extended, op0 not. */ |
| rtx larger = gen_reg_rtx (mode); |
| rtx hipart = gen_reg_rtx (hmode); |
| rtx lopart = gen_reg_rtx (hmode); |
| emit_move_insn (larger, op1); |
| emit_move_insn (hipart, hipart1); |
| emit_move_insn (lopart, lopart0); |
| emit_jump (one_small_one_large); |
| |
| emit_label (large_op0); |
| |
| if (!op1_small_p) |
| do_compare_rtx_and_jump (signbit1, hipart1, NE, true, hmode, |
| NULL_RTX, NULL, both_ops_large, |
| profile_probability::unlikely ()); |
| |
| /* If op1 is sign (!uns) or zero (uns) extended from hmode to mode, |
| but op0 is not, prepare larger, hipart and lopart pseudos and |
| handle it together with small_op0_large_op1. */ |
| emit_move_insn (larger, op0); |
| emit_move_insn (hipart, hipart0); |
| emit_move_insn (lopart, lopart1); |
| |
| emit_label (one_small_one_large); |
| |
| /* lopart is the low part of the operand that is sign extended |
| to mode, larger is the other operand, hipart is the |
| high part of larger and lopart0 and lopart1 are the low parts |
| of both operands. |
| We perform lopart0 * lopart1 and lopart * hipart widening |
| multiplications. */ |
| tree halfutype = build_nonstandard_integer_type (hprec, 1); |
| ops.op0 = make_tree (halfutype, lopart0); |
| ops.op1 = make_tree (halfutype, lopart1); |
| rtx lo0xlo1 |
| = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); |
| |
| ops.op0 = make_tree (halfutype, lopart); |
| ops.op1 = make_tree (halfutype, hipart); |
| rtx loxhi = gen_reg_rtx (mode); |
| rtx tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); |
| emit_move_insn (loxhi, tem); |
| |
| if (!uns) |
| { |
| /* if (hipart < 0) loxhi -= lopart << (bitsize / 2); */ |
| if (larger_sign == 0) |
| emit_jump (after_hipart_neg); |
| else if (larger_sign != -1) |
| do_compare_rtx_and_jump (hipart, const0_rtx, GE, false, hmode, |
| NULL_RTX, NULL, after_hipart_neg, |
| profile_probability::even ()); |
| |
| tem = convert_modes (mode, hmode, lopart, 1); |
| tem = expand_shift (LSHIFT_EXPR, mode, tem, hprec, NULL_RTX, 1); |
| tem = expand_simple_binop (mode, MINUS, loxhi, tem, NULL_RTX, |
| 1, OPTAB_WIDEN); |
| emit_move_insn (loxhi, tem); |
| |
| emit_label (after_hipart_neg); |
| |
| /* if (lopart < 0) loxhi -= larger; */ |
| if (smaller_sign == 0) |
| emit_jump (after_lopart_neg); |
| else if (smaller_sign != -1) |
| do_compare_rtx_and_jump (lopart, const0_rtx, GE, false, hmode, |
| NULL_RTX, NULL, after_lopart_neg, |
| profile_probability::even ()); |
| |
| tem = expand_simple_binop (mode, MINUS, loxhi, larger, NULL_RTX, |
| 1, OPTAB_WIDEN); |
| emit_move_insn (loxhi, tem); |
| |
| emit_label (after_lopart_neg); |
| } |
| |
| /* loxhi += (uns) lo0xlo1 >> (bitsize / 2); */ |
| tem = expand_shift (RSHIFT_EXPR, mode, lo0xlo1, hprec, NULL_RTX, 1); |
| tem = expand_simple_binop (mode, PLUS, loxhi, tem, NULL_RTX, |
| 1, OPTAB_WIDEN); |
| emit_move_insn (loxhi, tem); |
| |
| /* if (loxhi >> (bitsize / 2) |
| == (hmode) loxhi >> (bitsize / 2 - 1)) (if !uns) |
| if (loxhi >> (bitsize / 2) == 0 (if uns). */ |
| rtx hipartloxhi = expand_shift (RSHIFT_EXPR, mode, loxhi, hprec, |
| NULL_RTX, 0); |
| hipartloxhi = convert_modes (hmode, mode, hipartloxhi, 0); |
| rtx signbitloxhi = const0_rtx; |
| if (!uns) |
| signbitloxhi = expand_shift (RSHIFT_EXPR, hmode, |
| convert_modes (hmode, mode, |
| loxhi, 0), |
| hprec - 1, NULL_RTX, 0); |
| |
| do_compare_rtx_and_jump (signbitloxhi, hipartloxhi, NE, true, hmode, |
| NULL_RTX, NULL, do_overflow, |
| profile_probability::very_unlikely ()); |
| |
| /* res = (loxhi << (bitsize / 2)) | (hmode) lo0xlo1; */ |
| rtx loxhishifted = expand_shift (LSHIFT_EXPR, mode, loxhi, hprec, |
| NULL_RTX, 1); |
| tem = convert_modes (mode, hmode, |
| convert_modes (hmode, mode, lo0xlo1, 1), 1); |
| |
| tem = expand_simple_binop (mode, IOR, loxhishifted, tem, res, |
| 1, OPTAB_WIDEN); |
| if (tem != res) |
| emit_move_insn (res, tem); |
| emit_jump (done_label); |
| |
| emit_label (both_ops_large); |
| |
| /* If both operands are large (not sign (!uns) or zero (uns) |
| extended from hmode), then perform the full multiplication |
| which will be the result of the operation. |
| The only cases which don't overflow are for signed multiplication |
| some cases where both hipart0 and highpart1 are 0 or -1. |
| For unsigned multiplication when high parts are both non-zero |
| this overflows always. */ |
| ops.code = MULT_EXPR; |
| ops.op0 = make_tree (type, op0); |
| ops.op1 = make_tree (type, op1); |
| tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); |
| emit_move_insn (res, tem); |
| |
| if (!uns) |
| { |
| if (!op0_medium_p) |
| { |
| tem = expand_simple_binop (hmode, PLUS, hipart0, const1_rtx, |
| NULL_RTX, 1, OPTAB_WIDEN); |
| do_compare_rtx_and_jump (tem, const1_rtx, GTU, true, hmode, |
| NULL_RTX, NULL, do_error, |
| profile_probability::very_unlikely ()); |
| } |
| |
| if (!op1_medium_p) |
| { |
| tem = expand_simple_binop (hmode, PLUS, hipart1, const1_rtx, |
| NULL_RTX, 1, OPTAB_WIDEN); |
| do_compare_rtx_and_jump (tem, const1_rtx, GTU, true, hmode, |
| NULL_RTX, NULL, do_error, |
| profile_probability::very_unlikely ()); |
| } |
| |
| /* At this point hipart{0,1} are both in [-1, 0]. If they are |
| the same, overflow happened if res is non-positive, if they |
| are different, overflow happened if res is positive. */ |
| if (op0_sign != 1 && op1_sign != 1 && op0_sign != op1_sign) |
| emit_jump (hipart_different); |
| else if (op0_sign == 1 || op1_sign == 1) |
| do_compare_rtx_and_jump (hipart0, hipart1, NE, true, hmode, |
| NULL_RTX, NULL, hipart_different, |
| profile_probability::even ()); |
| |
| do_compare_rtx_and_jump (res, const0_rtx, LE, false, mode, |
| NULL_RTX, NULL, do_error, |
| profile_probability::very_unlikely ()); |
| emit_jump (done_label); |
| |
| emit_label (hipart_different); |
| |
| do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, |
| NULL_RTX, NULL, do_error, |
| profile_probability::very_unlikely ()); |
| emit_jump (done_label); |
| } |
| |
| emit_label (do_overflow); |
| |
| /* Overflow, do full multiplication and fallthru into do_error. */ |
| ops.op0 = make_tree (type, op0); |
| ops.op1 = make_tree (type, op1); |
| tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); |
| emit_move_insn (res, tem); |
| } |
| else if (GET_MODE_2XWIDER_MODE (mode).exists (&wmode) |
| && targetm.scalar_mode_supported_p (wmode)) |
| /* Even emitting a libcall is better than not detecting overflow |
| at all. */ |
| goto twoxwider; |
| else |
| { |
| gcc_assert (!is_ubsan); |
| ops.code = MULT_EXPR; |
| ops.type = type; |
| res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); |
| emit_jump (done_label); |
| } |
| } |
| |
| do_error_label: |
| emit_label (do_error); |
| if (is_ubsan) |
| { |
| /* Expand the ubsan builtin call. */ |
| push_temp_slots (); |
| fn = ubsan_build_overflow_builtin (MULT_EXPR, loc, TREE_TYPE (arg0), |
| arg0, arg1, datap); |
| expand_normal (fn); |
| pop_temp_slots (); |
| do_pending_stack_adjust (); |
| } |
| else if (lhs) |
| expand_arith_set_overflow (lhs, target); |
| |
| /* We're done. */ |
| emit_label (done_label); |
| |
| /* u1 * u2 -> sr */ |
| if (uns0_p && uns1_p && !unsr_p) |
| { |
| rtx_code_label *all_done_label = gen_label_rtx (); |
| do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX, |
| NULL, all_done_label, profile_probability::very_likely ()); |
| expand_arith_set_overflow (lhs, target); |
| emit_label (all_done_label); |
| } |
| |
| /* s1 * u2 -> sr */ |
| if (!uns0_p && uns1_p && !unsr_p && pos_neg1 == 3) |
| { |
| rtx_code_label *all_done_label = gen_label_rtx (); |
| rtx_code_label *set_noovf = gen_label_rtx (); |
| do_compare_rtx_and_jump (op1, const0_rtx, GE, false, mode, NULL_RTX, |
| NULL, all_done_label, profile_probability::very_likely ()); |
| expand_arith_set_overflow (lhs, target); |
| do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX, |
| NULL, set_noovf, profile_probability::very_likely ()); |
| do_compare_rtx_and_jump (op0, constm1_rtx, NE, true, mode, NULL_RTX, |
| NULL, all_done_label, profile_probability::very_unlikely ()); |
| do_compare_rtx_and_jump (op1, res, NE, true, mode, NULL_RTX, NULL, |
| all_done_label, profile_probability::very_unlikely ()); |
| emit_label (set_noovf); |
| write_complex_part (target, const0_rtx, true, false); |
| emit_label (all_done_label); |
| } |
| |
| if (lhs) |
| { |
| if (is_ubsan) |
| expand_ubsan_result_store (target, res); |
| else |
| expand_arith_overflow_result_store (lhs, target, mode, res); |
| } |
| } |
| |
| /* Expand UBSAN_CHECK_* internal function if it has vector operands. */ |
| |
| static void |
| expand_vector_ubsan_overflow (location_t loc, enum tree_code code, tree lhs, |
| tree arg0, tree arg1) |
| { |
| poly_uint64 cnt = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)); |
| rtx_code_label *loop_lab = NULL; |
| rtx cntvar = NULL_RTX; |
| tree cntv = NULL_TREE; |
| tree eltype = TREE_TYPE (TREE_TYPE (arg0)); |
| tree sz = TYPE_SIZE (eltype); |
| tree data = NULL_TREE; |
| tree resv = NULL_TREE; |
| rtx lhsr = NULL_RTX; |
| rtx resvr = NULL_RTX; |
| unsigned HOST_WIDE_INT const_cnt = 0; |
| bool use_loop_p = (!cnt.is_constant (&const_cnt) || const_cnt > 4); |
| |
| if (lhs) |
| { |
| optab op; |
| lhsr = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| if (!VECTOR_MODE_P (GET_MODE (lhsr)) |
| || (op = optab_for_tree_code (code, TREE_TYPE (arg0), |
| optab_default)) == unknown_optab |
| || (optab_handler (op, TYPE_MODE (TREE_TYPE (arg0))) |
| == CODE_FOR_nothing)) |
| { |
| if (MEM_P (lhsr)) |
| resv = make_tree (TREE_TYPE (lhs), lhsr); |
| else |
| { |
| resvr = assign_temp (TREE_TYPE (lhs), 1, 1); |
| resv = make_tree (TREE_TYPE (lhs), resvr); |
| } |
| } |
| } |
| if (use_loop_p) |
| { |
| do_pending_stack_adjust (); |
| loop_lab = gen_label_rtx (); |
| cntvar = gen_reg_rtx (TYPE_MODE (sizetype)); |
| cntv = make_tree (sizetype, cntvar); |
| emit_move_insn (cntvar, const0_rtx); |
| emit_label (loop_lab); |
| } |
| if (TREE_CODE (arg0) != VECTOR_CST) |
| { |
| rtx arg0r = expand_normal (arg0); |
| arg0 = make_tree (TREE_TYPE (arg0), arg0r); |
| } |
| if (TREE_CODE (arg1) != VECTOR_CST) |
| { |
| rtx arg1r = expand_normal (arg1); |
| arg1 = make_tree (TREE_TYPE (arg1), arg1r); |
| } |
| for (unsigned int i = 0; i < (use_loop_p ? 1 : const_cnt); i++) |
| { |
| tree op0, op1, res = NULL_TREE; |
| if (use_loop_p) |
| { |
| tree atype = build_array_type_nelts (eltype, cnt); |
| op0 = uniform_vector_p (arg0); |
| if (op0 == NULL_TREE) |
| { |
| op0 = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, arg0); |
| op0 = build4_loc (loc, ARRAY_REF, eltype, op0, cntv, |
| NULL_TREE, NULL_TREE); |
| } |
| op1 = uniform_vector_p (arg1); |
| if (op1 == NULL_TREE) |
| { |
| op1 = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, arg1); |
| op1 = build4_loc (loc, ARRAY_REF, eltype, op1, cntv, |
| NULL_TREE, NULL_TREE); |
| } |
| if (resv) |
| { |
| res = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, resv); |
| res = build4_loc (loc, ARRAY_REF, eltype, res, cntv, |
| NULL_TREE, NULL_TREE); |
| } |
| } |
| else |
| { |
| tree bitpos = bitsize_int (tree_to_uhwi (sz) * i); |
| op0 = fold_build3_loc (loc, BIT_FIELD_REF, eltype, arg0, sz, bitpos); |
| op1 = fold_build3_loc (loc, BIT_FIELD_REF, eltype, arg1, sz, bitpos); |
| if (resv) |
| res = fold_build3_loc (loc, BIT_FIELD_REF, eltype, resv, sz, |
| bitpos); |
| } |
| switch (code) |
| { |
| case PLUS_EXPR: |
| expand_addsub_overflow (loc, PLUS_EXPR, res, op0, op1, |
| false, false, false, true, &data); |
| break; |
| case MINUS_EXPR: |
| if (use_loop_p ? integer_zerop (arg0) : integer_zerop (op0)) |
| expand_neg_overflow (loc, res, op1, true, &data); |
| else |
| expand_addsub_overflow (loc, MINUS_EXPR, res, op0, op1, |
| false, false, false, true, &data); |
| break; |
| case MULT_EXPR: |
| expand_mul_overflow (loc, res, op0, op1, false, false, false, |
| true, &data); |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| if (use_loop_p) |
| { |
| struct separate_ops ops; |
| ops.code = PLUS_EXPR; |
| ops.type = TREE_TYPE (cntv); |
| ops.op0 = cntv; |
| ops.op1 = build_int_cst (TREE_TYPE (cntv), 1); |
| ops.op2 = NULL_TREE; |
| ops.location = loc; |
| rtx ret = expand_expr_real_2 (&ops, cntvar, TYPE_MODE (sizetype), |
| EXPAND_NORMAL); |
| if (ret != cntvar) |
| emit_move_insn (cntvar, ret); |
| rtx cntrtx = gen_int_mode (cnt, TYPE_MODE (sizetype)); |
| do_compare_rtx_and_jump (cntvar, cntrtx, NE, false, |
| TYPE_MODE (sizetype), NULL_RTX, NULL, loop_lab, |
| profile_probability::very_likely ()); |
| } |
| if (lhs && resv == NULL_TREE) |
| { |
| struct separate_ops ops; |
| ops.code = code; |
| ops.type = TREE_TYPE (arg0); |
| ops.op0 = arg0; |
| ops.op1 = arg1; |
| ops.op2 = NULL_TREE; |
| ops.location = loc; |
| rtx ret = expand_expr_real_2 (&ops, lhsr, TYPE_MODE (TREE_TYPE (arg0)), |
| EXPAND_NORMAL); |
| if (ret != lhsr) |
| emit_move_insn (lhsr, ret); |
| } |
| else if (resvr) |
| emit_move_insn (lhsr, resvr); |
| } |
| |
| /* Expand UBSAN_CHECK_ADD call STMT. */ |
| |
| static void |
| expand_UBSAN_CHECK_ADD (internal_fn, gcall *stmt) |
| { |
| location_t loc = gimple_location (stmt); |
| tree lhs = gimple_call_lhs (stmt); |
| tree arg0 = gimple_call_arg (stmt, 0); |
| tree arg1 = gimple_call_arg (stmt, 1); |
| if (VECTOR_TYPE_P (TREE_TYPE (arg0))) |
| expand_vector_ubsan_overflow (loc, PLUS_EXPR, lhs, arg0, arg1); |
| else |
| expand_addsub_overflow (loc, PLUS_EXPR, lhs, arg0, arg1, |
| false, false, false, true, NULL); |
| } |
| |
| /* Expand UBSAN_CHECK_SUB call STMT. */ |
| |
| static void |
| expand_UBSAN_CHECK_SUB (internal_fn, gcall *stmt) |
| { |
| location_t loc = gimple_location (stmt); |
| tree lhs = gimple_call_lhs (stmt); |
| tree arg0 = gimple_call_arg (stmt, 0); |
| tree arg1 = gimple_call_arg (stmt, 1); |
| if (VECTOR_TYPE_P (TREE_TYPE (arg0))) |
| expand_vector_ubsan_overflow (loc, MINUS_EXPR, lhs, arg0, arg1); |
| else if (integer_zerop (arg0)) |
| expand_neg_overflow (loc, lhs, arg1, true, NULL); |
| else |
| expand_addsub_overflow (loc, MINUS_EXPR, lhs, arg0, arg1, |
| false, false, false, true, NULL); |
| } |
| |
| /* Expand UBSAN_CHECK_MUL call STMT. */ |
| |
| static void |
| expand_UBSAN_CHECK_MUL (internal_fn, gcall *stmt) |
| { |
| location_t loc = gimple_location (stmt); |
| tree lhs = gimple_call_lhs (stmt); |
| tree arg0 = gimple_call_arg (stmt, 0); |
| tree arg1 = gimple_call_arg (stmt, 1); |
| if (VECTOR_TYPE_P (TREE_TYPE (arg0))) |
| expand_vector_ubsan_overflow (loc, MULT_EXPR, lhs, arg0, arg1); |
| else |
| expand_mul_overflow (loc, lhs, arg0, arg1, false, false, false, true, |
| NULL); |
| } |
| |
| /* Helper function for {ADD,SUB,MUL}_OVERFLOW call stmt expansion. */ |
| |
| static void |
| expand_arith_overflow (enum tree_code code, gimple *stmt) |
| { |
| tree lhs = gimple_call_lhs (stmt); |
| if (lhs == NULL_TREE) |
| return; |
| tree arg0 = gimple_call_arg (stmt, 0); |
| tree arg1 = gimple_call_arg (stmt, 1); |
| tree type = TREE_TYPE (TREE_TYPE (lhs)); |
| int uns0_p = TYPE_UNSIGNED (TREE_TYPE (arg0)); |
| int uns1_p = TYPE_UNSIGNED (TREE_TYPE (arg1)); |
| int unsr_p = TYPE_UNSIGNED (type); |
| int prec0 = TYPE_PRECISION (TREE_TYPE (arg0)); |
| int prec1 = TYPE_PRECISION (TREE_TYPE (arg1)); |
| int precres = TYPE_PRECISION (type); |
| location_t loc = gimple_location (stmt); |
| if (!uns0_p && get_range_pos_neg (arg0) == 1) |
| uns0_p = true; |
| if (!uns1_p && get_range_pos_neg (arg1) == 1) |
| uns1_p = true; |
| int pr = get_min_precision (arg0, uns0_p ? UNSIGNED : SIGNED); |
| prec0 = MIN (prec0, pr); |
| pr = get_min_precision (arg1, uns1_p ? UNSIGNED : SIGNED); |
| prec1 = MIN (prec1, pr); |
| |
| /* If uns0_p && uns1_p, precop is minimum needed precision |
| of unsigned type to hold the exact result, otherwise |
| precop is minimum needed precision of signed type to |
| hold the exact result. */ |
| int precop; |
| if (code == MULT_EXPR) |
| precop = prec0 + prec1 + (uns0_p != uns1_p); |
| else |
| { |
| if (uns0_p == uns1_p) |
| precop = MAX (prec0, prec1) + 1; |
| else if (uns0_p) |
| precop = MAX (prec0 + 1, prec1) + 1; |
| else |
| precop = MAX (prec0, prec1 + 1) + 1; |
| } |
| int orig_precres = precres; |
| |
| do |
| { |
| if ((uns0_p && uns1_p) |
| ? ((precop + !unsr_p) <= precres |
| /* u1 - u2 -> ur can overflow, no matter what precision |
| the result has. */ |
| && (code != MINUS_EXPR || !unsr_p)) |
| : (!unsr_p && precop <= precres)) |
| { |
| /* The infinity precision result will always fit into result. */ |
| rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| write_complex_part (target, const0_rtx, true, false); |
| scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type); |
| struct separate_ops ops; |
| ops.code = code; |
| ops.type = type; |
| ops.op0 = fold_convert_loc (loc, type, arg0); |
| ops.op1 = fold_convert_loc (loc, type, arg1); |
| ops.op2 = NULL_TREE; |
| ops.location = loc; |
| rtx tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); |
| expand_arith_overflow_result_store (lhs, target, mode, tem); |
| return; |
| } |
| |
| /* For operations with low precision, if target doesn't have them, start |
| with precres widening right away, otherwise do it only if the most |
| simple cases can't be used. */ |
| const int min_precision = targetm.min_arithmetic_precision (); |
| if (orig_precres == precres && precres < min_precision) |
| ; |
| else if ((uns0_p && uns1_p && unsr_p && prec0 <= precres |
| && prec1 <= precres) |
| || ((!uns0_p || !uns1_p) && !unsr_p |
| && prec0 + uns0_p <= precres |
| && prec1 + uns1_p <= precres)) |
| { |
| arg0 = fold_convert_loc (loc, type, arg0); |
| arg1 = fold_convert_loc (loc, type, arg1); |
| switch (code) |
| { |
| case MINUS_EXPR: |
| if (integer_zerop (arg0) && !unsr_p) |
| { |
| expand_neg_overflow (loc, lhs, arg1, false, NULL); |
| return; |
| } |
| /* FALLTHRU */ |
| case PLUS_EXPR: |
| expand_addsub_overflow (loc, code, lhs, arg0, arg1, unsr_p, |
| unsr_p, unsr_p, false, NULL); |
| return; |
| case MULT_EXPR: |
| expand_mul_overflow (loc, lhs, arg0, arg1, unsr_p, |
| unsr_p, unsr_p, false, NULL); |
| return; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* For sub-word operations, retry with a wider type first. */ |
| if (orig_precres == precres && precop <= BITS_PER_WORD) |
| { |
| int p = MAX (min_precision, precop); |
| scalar_int_mode m = smallest_int_mode_for_size (p); |
| tree optype = build_nonstandard_integer_type (GET_MODE_PRECISION (m), |
| uns0_p && uns1_p |
| && unsr_p); |
| p = TYPE_PRECISION (optype); |
| if (p > precres) |
| { |
| precres = p; |
| unsr_p = TYPE_UNSIGNED (optype); |
| type = optype; |
| continue; |
| } |
| } |
| |
| if (prec0 <= precres && prec1 <= precres) |
| { |
| tree types[2]; |
| if (unsr_p) |
| { |
| types[0] = build_nonstandard_integer_type (precres, 0); |
| types[1] = type; |
| } |
| else |
| { |
| types[0] = type; |
| types[1] = build_nonstandard_integer_type (precres, 1); |
| } |
| arg0 = fold_convert_loc (loc, types[uns0_p], arg0); |
| arg1 = fold_convert_loc (loc, types[uns1_p], arg1); |
| if (code != MULT_EXPR) |
| expand_addsub_overflow (loc, code, lhs, arg0, arg1, unsr_p, |
| uns0_p, uns1_p, false, NULL); |
| else |
| expand_mul_overflow (loc, lhs, arg0, arg1, unsr_p, |
| uns0_p, uns1_p, false, NULL); |
| return; |
| } |
| |
| /* Retry with a wider type. */ |
| if (orig_precres == precres) |
| { |
| int p = MAX (prec0, prec1); |
| scalar_int_mode m = smallest_int_mode_for_size (p); |
| tree optype = build_nonstandard_integer_type (GET_MODE_PRECISION (m), |
| uns0_p && uns1_p |
| && unsr_p); |
| p = TYPE_PRECISION (optype); |
| if (p > precres) |
| { |
| precres = p; |
| unsr_p = TYPE_UNSIGNED (optype); |
| type = optype; |
| continue; |
| } |
| } |
| |
| gcc_unreachable (); |
| } |
| while (1); |
| } |
| |
| /* Expand ADD_OVERFLOW STMT. */ |
| |
| static void |
| expand_ADD_OVERFLOW (internal_fn, gcall *stmt) |
| { |
| expand_arith_overflow (PLUS_EXPR, stmt); |
| } |
| |
| /* Expand SUB_OVERFLOW STMT. */ |
| |
| static void |
| expand_SUB_OVERFLOW (internal_fn, gcall *stmt) |
| { |
| expand_arith_overflow (MINUS_EXPR, stmt); |
| } |
| |
| /* Expand MUL_OVERFLOW STMT. */ |
| |
| static void |
| expand_MUL_OVERFLOW (internal_fn, gcall *stmt) |
| { |
| expand_arith_overflow (MULT_EXPR, stmt); |
| } |
| |
| /* This should get folded in tree-vectorizer.cc. */ |
| |
| static void |
| expand_LOOP_VECTORIZED (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* This should get folded in tree-vectorizer.cc. */ |
| |
| static void |
| expand_LOOP_DIST_ALIAS (internal_fn, gcall *) |
| { |
| gcc_unreachable (); |
| } |
| |
| /* Return a memory reference of type TYPE for argument INDEX of STMT. |
| Use argument INDEX + 1 to derive the second (TBAA) operand. */ |
| |
| static tree |
| expand_call_mem_ref (tree type, gcall *stmt, int index) |
| { |
| tree addr = gimple_call_arg (stmt, index); |
| tree alias_ptr_type = TREE_TYPE (gimple_call_arg (stmt, index + 1)); |
| unsigned int align = tree_to_shwi (gimple_call_arg (stmt, index + 1)); |
| if (TYPE_ALIGN (type) != align) |
| type = build_aligned_type (type, align); |
| |
| tree tmp = addr; |
| if (TREE_CODE (tmp) == SSA_NAME) |
| { |
| gimple *def = SSA_NAME_DEF_STMT (tmp); |
| if (gimple_assign_single_p (def)) |
| tmp = gimple_assign_rhs1 (def); |
| } |
| |
| if (TREE_CODE (tmp) == ADDR_EXPR) |
| { |
| tree mem = TREE_OPERAND (tmp, 0); |
| if (TREE_CODE (mem) == TARGET_MEM_REF |
| && types_compatible_p (TREE_TYPE (mem), type)) |
| { |
| tree offset = TMR_OFFSET (mem); |
| if (type != TREE_TYPE (mem) |
| || alias_ptr_type != TREE_TYPE (offset) |
| || !integer_zerop (offset)) |
| { |
| mem = copy_node (mem); |
| TMR_OFFSET (mem) = wide_int_to_tree (alias_ptr_type, |
| wi::to_poly_wide (offset)); |
| TREE_TYPE (mem) = type; |
| } |
| return mem; |
| } |
| } |
| |
| return fold_build2 (MEM_REF, type, addr, build_int_cst (alias_ptr_type, 0)); |
| } |
| |
| /* Expand MASK_LOAD{,_LANES} or LEN_LOAD call STMT using optab OPTAB. */ |
| |
| static void |
| expand_partial_load_optab_fn (internal_fn, gcall *stmt, convert_optab optab) |
| { |
| class expand_operand ops[4]; |
| tree type, lhs, rhs, maskt, biast; |
| rtx mem, target, mask, bias; |
| insn_code icode; |
| |
| maskt = gimple_call_arg (stmt, 2); |
| lhs = gimple_call_lhs (stmt); |
| if (lhs == NULL_TREE) |
| return; |
| type = TREE_TYPE (lhs); |
| rhs = expand_call_mem_ref (type, stmt, 0); |
| |
| if (optab == vec_mask_load_lanes_optab) |
| icode = get_multi_vector_move (type, optab); |
| else if (optab == len_load_optab) |
| icode = direct_optab_handler (optab, TYPE_MODE (type)); |
| else |
| icode = convert_optab_handler (optab, TYPE_MODE (type), |
| TYPE_MODE (TREE_TYPE (maskt))); |
| |
| mem = expand_expr (rhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| gcc_assert (MEM_P (mem)); |
| mask = expand_normal (maskt); |
| target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| create_output_operand (&ops[0], target, TYPE_MODE (type)); |
| create_fixed_operand (&ops[1], mem); |
| if (optab == len_load_optab) |
| { |
| create_convert_operand_from (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt)), |
| TYPE_UNSIGNED (TREE_TYPE (maskt))); |
| biast = gimple_call_arg (stmt, 3); |
| bias = expand_normal (biast); |
| create_input_operand (&ops[3], bias, QImode); |
| expand_insn (icode, 4, ops); |
| } |
| else |
| { |
| create_input_operand (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt))); |
| expand_insn (icode, 3, ops); |
| } |
| |
| if (!rtx_equal_p (target, ops[0].value)) |
| emit_move_insn (target, ops[0].value); |
| } |
| |
| #define expand_mask_load_optab_fn expand_partial_load_optab_fn |
| #define expand_mask_load_lanes_optab_fn expand_mask_load_optab_fn |
| #define expand_len_load_optab_fn expand_partial_load_optab_fn |
| |
| /* Expand MASK_STORE{,_LANES} or LEN_STORE call STMT using optab OPTAB. */ |
| |
| static void |
| expand_partial_store_optab_fn (internal_fn, gcall *stmt, convert_optab optab) |
| { |
| class expand_operand ops[4]; |
| tree type, lhs, rhs, maskt, biast; |
| rtx mem, reg, mask, bias; |
| insn_code icode; |
| |
| maskt = gimple_call_arg (stmt, 2); |
| rhs = gimple_call_arg (stmt, 3); |
| type = TREE_TYPE (rhs); |
| lhs = expand_call_mem_ref (type, stmt, 0); |
| |
| if (optab == vec_mask_store_lanes_optab) |
| icode = get_multi_vector_move (type, optab); |
| else if (optab == len_store_optab) |
| icode = direct_optab_handler (optab, TYPE_MODE (type)); |
| else |
| icode = convert_optab_handler (optab, TYPE_MODE (type), |
| TYPE_MODE (TREE_TYPE (maskt))); |
| |
| mem = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| gcc_assert (MEM_P (mem)); |
| mask = expand_normal (maskt); |
| reg = expand_normal (rhs); |
| create_fixed_operand (&ops[0], mem); |
| create_input_operand (&ops[1], reg, TYPE_MODE (type)); |
| if (optab == len_store_optab) |
| { |
| create_convert_operand_from (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt)), |
| TYPE_UNSIGNED (TREE_TYPE (maskt))); |
| biast = gimple_call_arg (stmt, 4); |
| bias = expand_normal (biast); |
| create_input_operand (&ops[3], bias, QImode); |
| expand_insn (icode, 4, ops); |
| } |
| else |
| { |
| create_input_operand (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt))); |
| expand_insn (icode, 3, ops); |
| } |
| } |
| |
| #define expand_mask_store_optab_fn expand_partial_store_optab_fn |
| #define expand_mask_store_lanes_optab_fn expand_mask_store_optab_fn |
| #define expand_len_store_optab_fn expand_partial_store_optab_fn |
| |
| /* Expand VCOND, VCONDU and VCONDEQ optab internal functions. |
| The expansion of STMT happens based on OPTAB table associated. */ |
| |
| static void |
| expand_vec_cond_optab_fn (internal_fn, gcall *stmt, convert_optab optab) |
| { |
| class expand_operand ops[6]; |
| insn_code icode; |
| tree lhs = gimple_call_lhs (stmt); |
| tree op0a = gimple_call_arg (stmt, 0); |
| tree op0b = gimple_call_arg (stmt, 1); |
| tree op1 = gimple_call_arg (stmt, 2); |
| tree op2 = gimple_call_arg (stmt, 3); |
| enum tree_code tcode = (tree_code) int_cst_value (gimple_call_arg (stmt, 4)); |
| |
| tree vec_cond_type = TREE_TYPE (lhs); |
| tree op_mode = TREE_TYPE (op0a); |
| bool unsignedp = TYPE_UNSIGNED (op_mode); |
| |
| machine_mode mode = TYPE_MODE (vec_cond_type); |
| machine_mode cmp_op_mode = TYPE_MODE (op_mode); |
| |
| icode = convert_optab_handler (optab, mode, cmp_op_mode); |
| rtx comparison |
| = vector_compare_rtx (VOIDmode, tcode, op0a, op0b, unsignedp, icode, 4); |
| rtx rtx_op1 = expand_normal (op1); |
| rtx rtx_op2 = expand_normal (op2); |
| |
| rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| create_output_operand (&ops[0], target, mode); |
| create_input_operand (&ops[1], rtx_op1, mode); |
| create_input_operand (&ops[2], rtx_op2, mode); |
| create_fixed_operand (&ops[3], comparison); |
| create_fixed_operand (&ops[4], XEXP (comparison, 0)); |
| create_fixed_operand (&ops[5], XEXP (comparison, 1)); |
| expand_insn (icode, 6, ops); |
| if (!rtx_equal_p (ops[0].value, target)) |
| emit_move_insn (target, ops[0].value); |
| } |
| |
| /* Expand VCOND_MASK optab internal function. |
| The expansion of STMT happens based on OPTAB table associated. */ |
| |
| static void |
| expand_vec_cond_mask_optab_fn (internal_fn, gcall *stmt, convert_optab optab) |
| { |
| class expand_operand ops[4]; |
| |
| tree lhs = gimple_call_lhs (stmt); |
| tree op0 = gimple_call_arg (stmt, 0); |
| tree op1 = gimple_call_arg (stmt, 1); |
| tree op2 = gimple_call_arg (stmt, 2); |
| tree vec_cond_type = TREE_TYPE (lhs); |
| |
| machine_mode mode = TYPE_MODE (vec_cond_type); |
| machine_mode mask_mode = TYPE_MODE (TREE_TYPE (op0)); |
| enum insn_code icode = convert_optab_handler (optab, mode, mask_mode); |
| rtx mask, rtx_op1, rtx_op2; |
| |
| gcc_assert (icode != CODE_FOR_nothing); |
| |
| mask = expand_normal (op0); |
| rtx_op1 = expand_normal (op1); |
| rtx_op2 = expand_normal (op2); |
| |
| mask = force_reg (mask_mode, mask); |
| rtx_op1 = force_reg (mode, rtx_op1); |
| |
| rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| create_output_operand (&ops[0], target, mode); |
| create_input_operand (&ops[1], rtx_op1, mode); |
| create_input_operand (&ops[2], rtx_op2, mode); |
| create_input_operand (&ops[3], mask, mask_mode); |
| expand_insn (icode, 4, ops); |
| if (!rtx_equal_p (ops[0].value, target)) |
| emit_move_insn (target, ops[0].value); |
| } |
| |
| /* Expand VEC_SET internal functions. */ |
| |
| static void |
| expand_vec_set_optab_fn (internal_fn, gcall *stmt, convert_optab optab) |
| { |
| tree lhs = gimple_call_lhs (stmt); |
| tree op0 = gimple_call_arg (stmt, 0); |
| tree op1 = gimple_call_arg (stmt, 1); |
| tree op2 = gimple_call_arg (stmt, 2); |
| rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); |
| rtx src = expand_normal (op0); |
| |
| machine_mode outermode = TYPE_MODE (TREE_TYPE (op0)); |
| scalar_mode innermode = GET_MODE_INNER (outermode); |
| |
| rtx value = expand_normal (op1); |
| rtx pos = expand_normal (op2); |
| |
| class expand_operand ops[3]; |
| enum insn_code icode = optab_handler (optab, outermode); |
| |
| if (icode != CODE_FOR_nothing) |
| { |
| rtx temp = gen_reg_rtx (outermode); |
| emit_move_insn (temp, src); |
| |
| create_fixed_operand (&ops[0], temp); |
| create_input_operand (&ops[1], value, innermode); |
| create_convert_operand_from (&ops[2 |