| /* Conditional constant propagation pass for the GNU compiler. |
| Copyright (C) 2000-2022 Free Software Foundation, Inc. |
| Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org> |
| Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it |
| under the terms of the GNU General Public License as published by the |
| Free Software Foundation; either version 3, or (at your option) any |
| later version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* Conditional constant propagation (CCP) is based on the SSA |
| propagation engine (tree-ssa-propagate.cc). Constant assignments of |
| the form VAR = CST are propagated from the assignments into uses of |
| VAR, which in turn may generate new constants. The simulation uses |
| a four level lattice to keep track of constant values associated |
| with SSA names. Given an SSA name V_i, it may take one of the |
| following values: |
| |
| UNINITIALIZED -> the initial state of the value. This value |
| is replaced with a correct initial value |
| the first time the value is used, so the |
| rest of the pass does not need to care about |
| it. Using this value simplifies initialization |
| of the pass, and prevents us from needlessly |
| scanning statements that are never reached. |
| |
| UNDEFINED -> V_i is a local variable whose definition |
| has not been processed yet. Therefore we |
| don't yet know if its value is a constant |
| or not. |
| |
| CONSTANT -> V_i has been found to hold a constant |
| value C. |
| |
| VARYING -> V_i cannot take a constant value, or if it |
| does, it is not possible to determine it |
| at compile time. |
| |
| The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node: |
| |
| 1- In ccp_visit_stmt, we are interested in assignments whose RHS |
| evaluates into a constant and conditional jumps whose predicate |
| evaluates into a boolean true or false. When an assignment of |
| the form V_i = CONST is found, V_i's lattice value is set to |
| CONSTANT and CONST is associated with it. This causes the |
| propagation engine to add all the SSA edges coming out the |
| assignment into the worklists, so that statements that use V_i |
| can be visited. |
| |
| If the statement is a conditional with a constant predicate, we |
| mark the outgoing edges as executable or not executable |
| depending on the predicate's value. This is then used when |
| visiting PHI nodes to know when a PHI argument can be ignored. |
| |
| |
| 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the |
| same constant C, then the LHS of the PHI is set to C. This |
| evaluation is known as the "meet operation". Since one of the |
| goals of this evaluation is to optimistically return constant |
| values as often as possible, it uses two main short cuts: |
| |
| - If an argument is flowing in through a non-executable edge, it |
| is ignored. This is useful in cases like this: |
| |
| if (PRED) |
| a_9 = 3; |
| else |
| a_10 = 100; |
| a_11 = PHI (a_9, a_10) |
| |
| If PRED is known to always evaluate to false, then we can |
| assume that a_11 will always take its value from a_10, meaning |
| that instead of consider it VARYING (a_9 and a_10 have |
| different values), we can consider it CONSTANT 100. |
| |
| - If an argument has an UNDEFINED value, then it does not affect |
| the outcome of the meet operation. If a variable V_i has an |
| UNDEFINED value, it means that either its defining statement |
| hasn't been visited yet or V_i has no defining statement, in |
| which case the original symbol 'V' is being used |
| uninitialized. Since 'V' is a local variable, the compiler |
| may assume any initial value for it. |
| |
| |
| After propagation, every variable V_i that ends up with a lattice |
| value of CONSTANT will have the associated constant value in the |
| array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for |
| final substitution and folding. |
| |
| This algorithm uses wide-ints at the max precision of the target. |
| This means that, with one uninteresting exception, variables with |
| UNSIGNED types never go to VARYING because the bits above the |
| precision of the type of the variable are always zero. The |
| uninteresting case is a variable of UNSIGNED type that has the |
| maximum precision of the target. Such variables can go to VARYING, |
| but this causes no loss of infomation since these variables will |
| never be extended. |
| |
| References: |
| |
| Constant propagation with conditional branches, |
| Wegman and Zadeck, ACM TOPLAS 13(2):181-210. |
| |
| Building an Optimizing Compiler, |
| Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9. |
| |
| Advanced Compiler Design and Implementation, |
| Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "target.h" |
| #include "tree.h" |
| #include "gimple.h" |
| #include "tree-pass.h" |
| #include "ssa.h" |
| #include "gimple-pretty-print.h" |
| #include "fold-const.h" |
| #include "gimple-iterator.h" |
| #include "gimple-fold.h" |
| #include "tree-eh.h" |
| #include "gimplify.h" |
| #include "tree-cfg.h" |
| #include "tree-ssa-propagate.h" |
| #include "dbgcnt.h" |
| #include "builtins.h" |
| #include "cfgloop.h" |
| #include "stor-layout.h" |
| #include "optabs-query.h" |
| #include "tree-ssa-ccp.h" |
| #include "tree-dfa.h" |
| #include "diagnostic-core.h" |
| #include "stringpool.h" |
| #include "attribs.h" |
| #include "tree-vector-builder.h" |
| #include "cgraph.h" |
| #include "alloc-pool.h" |
| #include "symbol-summary.h" |
| #include "ipa-utils.h" |
| #include "ipa-prop.h" |
| #include "internal-fn.h" |
| |
| /* Possible lattice values. */ |
| typedef enum |
| { |
| UNINITIALIZED, |
| UNDEFINED, |
| CONSTANT, |
| VARYING |
| } ccp_lattice_t; |
| |
| class ccp_prop_value_t { |
| public: |
| /* Lattice value. */ |
| ccp_lattice_t lattice_val; |
| |
| /* Propagated value. */ |
| tree value; |
| |
| /* Mask that applies to the propagated value during CCP. For X |
| with a CONSTANT lattice value X & ~mask == value & ~mask. The |
| zero bits in the mask cover constant values. The ones mean no |
| information. */ |
| widest_int mask; |
| }; |
| |
| class ccp_propagate : public ssa_propagation_engine |
| { |
| public: |
| enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) final override; |
| enum ssa_prop_result visit_phi (gphi *) final override; |
| }; |
| |
| /* Array of propagated constant values. After propagation, |
| CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If |
| the constant is held in an SSA name representing a memory store |
| (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual |
| memory reference used to store (i.e., the LHS of the assignment |
| doing the store). */ |
| static ccp_prop_value_t *const_val; |
| static unsigned n_const_val; |
| |
| static void canonicalize_value (ccp_prop_value_t *); |
| static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *); |
| |
| /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */ |
| |
| static void |
| dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val) |
| { |
| switch (val.lattice_val) |
| { |
| case UNINITIALIZED: |
| fprintf (outf, "%sUNINITIALIZED", prefix); |
| break; |
| case UNDEFINED: |
| fprintf (outf, "%sUNDEFINED", prefix); |
| break; |
| case VARYING: |
| fprintf (outf, "%sVARYING", prefix); |
| break; |
| case CONSTANT: |
| if (TREE_CODE (val.value) != INTEGER_CST |
| || val.mask == 0) |
| { |
| fprintf (outf, "%sCONSTANT ", prefix); |
| print_generic_expr (outf, val.value, dump_flags); |
| } |
| else |
| { |
| widest_int cval = wi::bit_and_not (wi::to_widest (val.value), |
| val.mask); |
| fprintf (outf, "%sCONSTANT ", prefix); |
| print_hex (cval, outf); |
| fprintf (outf, " ("); |
| print_hex (val.mask, outf); |
| fprintf (outf, ")"); |
| } |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| |
| /* Print lattice value VAL to stderr. */ |
| |
| void debug_lattice_value (ccp_prop_value_t val); |
| |
| DEBUG_FUNCTION void |
| debug_lattice_value (ccp_prop_value_t val) |
| { |
| dump_lattice_value (stderr, "", val); |
| fprintf (stderr, "\n"); |
| } |
| |
| /* Extend NONZERO_BITS to a full mask, based on sgn. */ |
| |
| static widest_int |
| extend_mask (const wide_int &nonzero_bits, signop sgn) |
| { |
| return widest_int::from (nonzero_bits, sgn); |
| } |
| |
| /* Compute a default value for variable VAR and store it in the |
| CONST_VAL array. The following rules are used to get default |
| values: |
| |
| 1- Global and static variables that are declared constant are |
| considered CONSTANT. |
| |
| 2- Any other value is considered UNDEFINED. This is useful when |
| considering PHI nodes. PHI arguments that are undefined do not |
| change the constant value of the PHI node, which allows for more |
| constants to be propagated. |
| |
| 3- Variables defined by statements other than assignments and PHI |
| nodes are considered VARYING. |
| |
| 4- Initial values of variables that are not GIMPLE registers are |
| considered VARYING. */ |
| |
| static ccp_prop_value_t |
| get_default_value (tree var) |
| { |
| ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 }; |
| gimple *stmt; |
| |
| stmt = SSA_NAME_DEF_STMT (var); |
| |
| if (gimple_nop_p (stmt)) |
| { |
| /* Variables defined by an empty statement are those used |
| before being initialized. If VAR is a local variable, we |
| can assume initially that it is UNDEFINED, otherwise we must |
| consider it VARYING. */ |
| if (!virtual_operand_p (var) |
| && SSA_NAME_VAR (var) |
| && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL) |
| val.lattice_val = UNDEFINED; |
| else |
| { |
| val.lattice_val = VARYING; |
| val.mask = -1; |
| if (flag_tree_bit_ccp) |
| { |
| wide_int nonzero_bits = get_nonzero_bits (var); |
| tree value; |
| widest_int mask; |
| |
| if (SSA_NAME_VAR (var) |
| && TREE_CODE (SSA_NAME_VAR (var)) == PARM_DECL |
| && ipcp_get_parm_bits (SSA_NAME_VAR (var), &value, &mask)) |
| { |
| val.lattice_val = CONSTANT; |
| val.value = value; |
| widest_int ipa_value = wi::to_widest (value); |
| /* Unknown bits from IPA CP must be equal to zero. */ |
| gcc_assert (wi::bit_and (ipa_value, mask) == 0); |
| val.mask = mask; |
| if (nonzero_bits != -1) |
| val.mask &= extend_mask (nonzero_bits, |
| TYPE_SIGN (TREE_TYPE (var))); |
| } |
| else if (nonzero_bits != -1) |
| { |
| val.lattice_val = CONSTANT; |
| val.value = build_zero_cst (TREE_TYPE (var)); |
| val.mask = extend_mask (nonzero_bits, |
| TYPE_SIGN (TREE_TYPE (var))); |
| } |
| } |
| } |
| } |
| else if (is_gimple_assign (stmt)) |
| { |
| tree cst; |
| if (gimple_assign_single_p (stmt) |
| && DECL_P (gimple_assign_rhs1 (stmt)) |
| && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt)))) |
| { |
| val.lattice_val = CONSTANT; |
| val.value = cst; |
| } |
| else |
| { |
| /* Any other variable defined by an assignment is considered |
| UNDEFINED. */ |
| val.lattice_val = UNDEFINED; |
| } |
| } |
| else if ((is_gimple_call (stmt) |
| && gimple_call_lhs (stmt) != NULL_TREE) |
| || gimple_code (stmt) == GIMPLE_PHI) |
| { |
| /* A variable defined by a call or a PHI node is considered |
| UNDEFINED. */ |
| val.lattice_val = UNDEFINED; |
| } |
| else |
| { |
| /* Otherwise, VAR will never take on a constant value. */ |
| val.lattice_val = VARYING; |
| val.mask = -1; |
| } |
| |
| return val; |
| } |
| |
| |
| /* Get the constant value associated with variable VAR. */ |
| |
| static inline ccp_prop_value_t * |
| get_value (tree var) |
| { |
| ccp_prop_value_t *val; |
| |
| if (const_val == NULL |
| || SSA_NAME_VERSION (var) >= n_const_val) |
| return NULL; |
| |
| val = &const_val[SSA_NAME_VERSION (var)]; |
| if (val->lattice_val == UNINITIALIZED) |
| *val = get_default_value (var); |
| |
| canonicalize_value (val); |
| |
| return val; |
| } |
| |
| /* Return the constant tree value associated with VAR. */ |
| |
| static inline tree |
| get_constant_value (tree var) |
| { |
| ccp_prop_value_t *val; |
| if (TREE_CODE (var) != SSA_NAME) |
| { |
| if (is_gimple_min_invariant (var)) |
| return var; |
| return NULL_TREE; |
| } |
| val = get_value (var); |
| if (val |
| && val->lattice_val == CONSTANT |
| && (TREE_CODE (val->value) != INTEGER_CST |
| || val->mask == 0)) |
| return val->value; |
| return NULL_TREE; |
| } |
| |
| /* Sets the value associated with VAR to VARYING. */ |
| |
| static inline void |
| set_value_varying (tree var) |
| { |
| ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)]; |
| |
| val->lattice_val = VARYING; |
| val->value = NULL_TREE; |
| val->mask = -1; |
| } |
| |
| /* For integer constants, make sure to drop TREE_OVERFLOW. */ |
| |
| static void |
| canonicalize_value (ccp_prop_value_t *val) |
| { |
| if (val->lattice_val != CONSTANT) |
| return; |
| |
| if (TREE_OVERFLOW_P (val->value)) |
| val->value = drop_tree_overflow (val->value); |
| } |
| |
| /* Return whether the lattice transition is valid. */ |
| |
| static bool |
| valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val) |
| { |
| /* Lattice transitions must always be monotonically increasing in |
| value. */ |
| if (old_val.lattice_val < new_val.lattice_val) |
| return true; |
| |
| if (old_val.lattice_val != new_val.lattice_val) |
| return false; |
| |
| if (!old_val.value && !new_val.value) |
| return true; |
| |
| /* Now both lattice values are CONSTANT. */ |
| |
| /* Allow arbitrary copy changes as we might look through PHI <a_1, ...> |
| when only a single copy edge is executable. */ |
| if (TREE_CODE (old_val.value) == SSA_NAME |
| && TREE_CODE (new_val.value) == SSA_NAME) |
| return true; |
| |
| /* Allow transitioning from a constant to a copy. */ |
| if (is_gimple_min_invariant (old_val.value) |
| && TREE_CODE (new_val.value) == SSA_NAME) |
| return true; |
| |
| /* Allow transitioning from PHI <&x, not executable> == &x |
| to PHI <&x, &y> == common alignment. */ |
| if (TREE_CODE (old_val.value) != INTEGER_CST |
| && TREE_CODE (new_val.value) == INTEGER_CST) |
| return true; |
| |
| /* Bit-lattices have to agree in the still valid bits. */ |
| if (TREE_CODE (old_val.value) == INTEGER_CST |
| && TREE_CODE (new_val.value) == INTEGER_CST) |
| return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask) |
| == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask)); |
| |
| /* Otherwise constant values have to agree. */ |
| if (operand_equal_p (old_val.value, new_val.value, 0)) |
| return true; |
| |
| /* At least the kinds and types should agree now. */ |
| if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value) |
| || !types_compatible_p (TREE_TYPE (old_val.value), |
| TREE_TYPE (new_val.value))) |
| return false; |
| |
| /* For floats and !HONOR_NANS allow transitions from (partial) NaN |
| to non-NaN. */ |
| tree type = TREE_TYPE (new_val.value); |
| if (SCALAR_FLOAT_TYPE_P (type) |
| && !HONOR_NANS (type)) |
| { |
| if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value))) |
| return true; |
| } |
| else if (VECTOR_FLOAT_TYPE_P (type) |
| && !HONOR_NANS (type)) |
| { |
| unsigned int count |
| = tree_vector_builder::binary_encoded_nelts (old_val.value, |
| new_val.value); |
| for (unsigned int i = 0; i < count; ++i) |
| if (!REAL_VALUE_ISNAN |
| (TREE_REAL_CST (VECTOR_CST_ENCODED_ELT (old_val.value, i))) |
| && !operand_equal_p (VECTOR_CST_ENCODED_ELT (old_val.value, i), |
| VECTOR_CST_ENCODED_ELT (new_val.value, i), 0)) |
| return false; |
| return true; |
| } |
| else if (COMPLEX_FLOAT_TYPE_P (type) |
| && !HONOR_NANS (type)) |
| { |
| if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value))) |
| && !operand_equal_p (TREE_REALPART (old_val.value), |
| TREE_REALPART (new_val.value), 0)) |
| return false; |
| if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value))) |
| && !operand_equal_p (TREE_IMAGPART (old_val.value), |
| TREE_IMAGPART (new_val.value), 0)) |
| return false; |
| return true; |
| } |
| return false; |
| } |
| |
| /* Set the value for variable VAR to NEW_VAL. Return true if the new |
| value is different from VAR's previous value. */ |
| |
| static bool |
| set_lattice_value (tree var, ccp_prop_value_t *new_val) |
| { |
| /* We can deal with old UNINITIALIZED values just fine here. */ |
| ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)]; |
| |
| canonicalize_value (new_val); |
| |
| /* We have to be careful to not go up the bitwise lattice |
| represented by the mask. Instead of dropping to VARYING |
| use the meet operator to retain a conservative value. |
| Missed optimizations like PR65851 makes this necessary. |
| It also ensures we converge to a stable lattice solution. */ |
| if (old_val->lattice_val != UNINITIALIZED |
| /* But avoid using meet for constant -> copy transitions. */ |
| && !(old_val->lattice_val == CONSTANT |
| && CONSTANT_CLASS_P (old_val->value) |
| && new_val->lattice_val == CONSTANT |
| && TREE_CODE (new_val->value) == SSA_NAME)) |
| ccp_lattice_meet (new_val, old_val); |
| |
| gcc_checking_assert (valid_lattice_transition (*old_val, *new_val)); |
| |
| /* If *OLD_VAL and NEW_VAL are the same, return false to inform the |
| caller that this was a non-transition. */ |
| if (old_val->lattice_val != new_val->lattice_val |
| || (new_val->lattice_val == CONSTANT |
| && (TREE_CODE (new_val->value) != TREE_CODE (old_val->value) |
| || (TREE_CODE (new_val->value) == INTEGER_CST |
| && (new_val->mask != old_val->mask |
| || (wi::bit_and_not (wi::to_widest (old_val->value), |
| new_val->mask) |
| != wi::bit_and_not (wi::to_widest (new_val->value), |
| new_val->mask)))) |
| || (TREE_CODE (new_val->value) != INTEGER_CST |
| && !operand_equal_p (new_val->value, old_val->value, 0))))) |
| { |
| /* ??? We would like to delay creation of INTEGER_CSTs from |
| partially constants here. */ |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| dump_lattice_value (dump_file, "Lattice value changed to ", *new_val); |
| fprintf (dump_file, ". Adding SSA edges to worklist.\n"); |
| } |
| |
| *old_val = *new_val; |
| |
| gcc_assert (new_val->lattice_val != UNINITIALIZED); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static ccp_prop_value_t get_value_for_expr (tree, bool); |
| static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree); |
| void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *, |
| signop, int, const widest_int &, const widest_int &, |
| signop, int, const widest_int &, const widest_int &); |
| |
| /* Return a widest_int that can be used for bitwise simplifications |
| from VAL. */ |
| |
| static widest_int |
| value_to_wide_int (ccp_prop_value_t val) |
| { |
| if (val.value |
| && TREE_CODE (val.value) == INTEGER_CST) |
| return wi::to_widest (val.value); |
| |
| return 0; |
| } |
| |
| /* Return the value for the address expression EXPR based on alignment |
| information. */ |
| |
| static ccp_prop_value_t |
| get_value_from_alignment (tree expr) |
| { |
| tree type = TREE_TYPE (expr); |
| ccp_prop_value_t val; |
| unsigned HOST_WIDE_INT bitpos; |
| unsigned int align; |
| |
| gcc_assert (TREE_CODE (expr) == ADDR_EXPR); |
| |
| get_pointer_alignment_1 (expr, &align, &bitpos); |
| val.mask = wi::bit_and_not |
| (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type) |
| ? wi::mask <widest_int> (TYPE_PRECISION (type), false) |
| : -1, |
| align / BITS_PER_UNIT - 1); |
| val.lattice_val |
| = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT; |
| if (val.lattice_val == CONSTANT) |
| val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT); |
| else |
| val.value = NULL_TREE; |
| |
| return val; |
| } |
| |
| /* Return the value for the tree operand EXPR. If FOR_BITS_P is true |
| return constant bits extracted from alignment information for |
| invariant addresses. */ |
| |
| static ccp_prop_value_t |
| get_value_for_expr (tree expr, bool for_bits_p) |
| { |
| ccp_prop_value_t val; |
| |
| if (TREE_CODE (expr) == SSA_NAME) |
| { |
| ccp_prop_value_t *val_ = get_value (expr); |
| if (val_) |
| val = *val_; |
| else |
| { |
| val.lattice_val = VARYING; |
| val.value = NULL_TREE; |
| val.mask = -1; |
| } |
| if (for_bits_p |
| && val.lattice_val == CONSTANT) |
| { |
| if (TREE_CODE (val.value) == ADDR_EXPR) |
| val = get_value_from_alignment (val.value); |
| else if (TREE_CODE (val.value) != INTEGER_CST) |
| { |
| val.lattice_val = VARYING; |
| val.value = NULL_TREE; |
| val.mask = -1; |
| } |
| } |
| /* Fall back to a copy value. */ |
| if (!for_bits_p |
| && val.lattice_val == VARYING |
| && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr)) |
| { |
| val.lattice_val = CONSTANT; |
| val.value = expr; |
| val.mask = -1; |
| } |
| } |
| else if (is_gimple_min_invariant (expr) |
| && (!for_bits_p || TREE_CODE (expr) == INTEGER_CST)) |
| { |
| val.lattice_val = CONSTANT; |
| val.value = expr; |
| val.mask = 0; |
| canonicalize_value (&val); |
| } |
| else if (TREE_CODE (expr) == ADDR_EXPR) |
| val = get_value_from_alignment (expr); |
| else |
| { |
| val.lattice_val = VARYING; |
| val.mask = -1; |
| val.value = NULL_TREE; |
| } |
| |
| if (val.lattice_val == VARYING |
| && TYPE_UNSIGNED (TREE_TYPE (expr))) |
| val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr))); |
| |
| return val; |
| } |
| |
| /* Return the likely CCP lattice value for STMT. |
| |
| If STMT has no operands, then return CONSTANT. |
| |
| Else if undefinedness of operands of STMT cause its value to be |
| undefined, then return UNDEFINED. |
| |
| Else if any operands of STMT are constants, then return CONSTANT. |
| |
| Else return VARYING. */ |
| |
| static ccp_lattice_t |
| likely_value (gimple *stmt) |
| { |
| bool has_constant_operand, has_undefined_operand, all_undefined_operands; |
| bool has_nsa_operand; |
| tree use; |
| ssa_op_iter iter; |
| unsigned i; |
| |
| enum gimple_code code = gimple_code (stmt); |
| |
| /* This function appears to be called only for assignments, calls, |
| conditionals, and switches, due to the logic in visit_stmt. */ |
| gcc_assert (code == GIMPLE_ASSIGN |
| || code == GIMPLE_CALL |
| || code == GIMPLE_COND |
| || code == GIMPLE_SWITCH); |
| |
| /* If the statement has volatile operands, it won't fold to a |
| constant value. */ |
| if (gimple_has_volatile_ops (stmt)) |
| return VARYING; |
| |
| /* Arrive here for more complex cases. */ |
| has_constant_operand = false; |
| has_undefined_operand = false; |
| all_undefined_operands = true; |
| has_nsa_operand = false; |
| FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE) |
| { |
| ccp_prop_value_t *val = get_value (use); |
| |
| if (val && val->lattice_val == UNDEFINED) |
| has_undefined_operand = true; |
| else |
| all_undefined_operands = false; |
| |
| if (val && val->lattice_val == CONSTANT) |
| has_constant_operand = true; |
| |
| if (SSA_NAME_IS_DEFAULT_DEF (use) |
| || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use))) |
| has_nsa_operand = true; |
| } |
| |
| /* There may be constants in regular rhs operands. For calls we |
| have to ignore lhs, fndecl and static chain, otherwise only |
| the lhs. */ |
| for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt); |
| i < gimple_num_ops (stmt); ++i) |
| { |
| tree op = gimple_op (stmt, i); |
| if (!op || TREE_CODE (op) == SSA_NAME) |
| continue; |
| if (is_gimple_min_invariant (op)) |
| has_constant_operand = true; |
| } |
| |
| if (has_constant_operand) |
| all_undefined_operands = false; |
| |
| if (has_undefined_operand |
| && code == GIMPLE_CALL |
| && gimple_call_internal_p (stmt)) |
| switch (gimple_call_internal_fn (stmt)) |
| { |
| /* These 3 builtins use the first argument just as a magic |
| way how to find out a decl uid. */ |
| case IFN_GOMP_SIMD_LANE: |
| case IFN_GOMP_SIMD_VF: |
| case IFN_GOMP_SIMD_LAST_LANE: |
| has_undefined_operand = false; |
| break; |
| default: |
| break; |
| } |
| |
| /* If the operation combines operands like COMPLEX_EXPR make sure to |
| not mark the result UNDEFINED if only one part of the result is |
| undefined. */ |
| if (has_undefined_operand && all_undefined_operands) |
| return UNDEFINED; |
| else if (code == GIMPLE_ASSIGN && has_undefined_operand) |
| { |
| switch (gimple_assign_rhs_code (stmt)) |
| { |
| /* Unary operators are handled with all_undefined_operands. */ |
| case PLUS_EXPR: |
| case MINUS_EXPR: |
| case POINTER_PLUS_EXPR: |
| case BIT_XOR_EXPR: |
| /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected. |
| Not bitwise operators, one VARYING operand may specify the |
| result completely. |
| Not logical operators for the same reason, apart from XOR. |
| Not COMPLEX_EXPR as one VARYING operand makes the result partly |
| not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because |
| the undefined operand may be promoted. */ |
| return UNDEFINED; |
| |
| case ADDR_EXPR: |
| /* If any part of an address is UNDEFINED, like the index |
| of an ARRAY_EXPR, then treat the result as UNDEFINED. */ |
| return UNDEFINED; |
| |
| default: |
| ; |
| } |
| } |
| /* If there was an UNDEFINED operand but the result may be not UNDEFINED |
| fall back to CONSTANT. During iteration UNDEFINED may still drop |
| to CONSTANT. */ |
| if (has_undefined_operand) |
| return CONSTANT; |
| |
| /* We do not consider virtual operands here -- load from read-only |
| memory may have only VARYING virtual operands, but still be |
| constant. Also we can combine the stmt with definitions from |
| operands whose definitions are not simulated again. */ |
| if (has_constant_operand |
| || has_nsa_operand |
| || gimple_references_memory_p (stmt)) |
| return CONSTANT; |
| |
| return VARYING; |
| } |
| |
| /* Returns true if STMT cannot be constant. */ |
| |
| static bool |
| surely_varying_stmt_p (gimple *stmt) |
| { |
| /* If the statement has operands that we cannot handle, it cannot be |
| constant. */ |
| if (gimple_has_volatile_ops (stmt)) |
| return true; |
| |
| /* If it is a call and does not return a value or is not a |
| builtin and not an indirect call or a call to function with |
| assume_aligned/alloc_align attribute, it is varying. */ |
| if (is_gimple_call (stmt)) |
| { |
| tree fndecl, fntype = gimple_call_fntype (stmt); |
| if (!gimple_call_lhs (stmt) |
| || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE |
| && !fndecl_built_in_p (fndecl) |
| && !lookup_attribute ("assume_aligned", |
| TYPE_ATTRIBUTES (fntype)) |
| && !lookup_attribute ("alloc_align", |
| TYPE_ATTRIBUTES (fntype)))) |
| return true; |
| } |
| |
| /* Any other store operation is not interesting. */ |
| else if (gimple_vdef (stmt)) |
| return true; |
| |
| /* Anything other than assignments and conditional jumps are not |
| interesting for CCP. */ |
| if (gimple_code (stmt) != GIMPLE_ASSIGN |
| && gimple_code (stmt) != GIMPLE_COND |
| && gimple_code (stmt) != GIMPLE_SWITCH |
| && gimple_code (stmt) != GIMPLE_CALL) |
| return true; |
| |
| return false; |
| } |
| |
| /* Initialize local data structures for CCP. */ |
| |
| static void |
| ccp_initialize (void) |
| { |
| basic_block bb; |
| |
| n_const_val = num_ssa_names; |
| const_val = XCNEWVEC (ccp_prop_value_t, n_const_val); |
| |
| /* Initialize simulation flags for PHI nodes and statements. */ |
| FOR_EACH_BB_FN (bb, cfun) |
| { |
| gimple_stmt_iterator i; |
| |
| for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i)) |
| { |
| gimple *stmt = gsi_stmt (i); |
| bool is_varying; |
| |
| /* If the statement is a control insn, then we do not |
| want to avoid simulating the statement once. Failure |
| to do so means that those edges will never get added. */ |
| if (stmt_ends_bb_p (stmt)) |
| is_varying = false; |
| else |
| is_varying = surely_varying_stmt_p (stmt); |
| |
| if (is_varying) |
| { |
| tree def; |
| ssa_op_iter iter; |
| |
| /* If the statement will not produce a constant, mark |
| all its outputs VARYING. */ |
| FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS) |
| set_value_varying (def); |
| } |
| prop_set_simulate_again (stmt, !is_varying); |
| } |
| } |
| |
| /* Now process PHI nodes. We never clear the simulate_again flag on |
| phi nodes, since we do not know which edges are executable yet, |
| except for phi nodes for virtual operands when we do not do store ccp. */ |
| FOR_EACH_BB_FN (bb, cfun) |
| { |
| gphi_iterator i; |
| |
| for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i)) |
| { |
| gphi *phi = i.phi (); |
| |
| if (virtual_operand_p (gimple_phi_result (phi))) |
| prop_set_simulate_again (phi, false); |
| else |
| prop_set_simulate_again (phi, true); |
| } |
| } |
| } |
| |
| /* Debug count support. Reset the values of ssa names |
| VARYING when the total number ssa names analyzed is |
| beyond the debug count specified. */ |
| |
| static void |
| do_dbg_cnt (void) |
| { |
| unsigned i; |
| for (i = 0; i < num_ssa_names; i++) |
| { |
| if (!dbg_cnt (ccp)) |
| { |
| const_val[i].lattice_val = VARYING; |
| const_val[i].mask = -1; |
| const_val[i].value = NULL_TREE; |
| } |
| } |
| } |
| |
| |
| /* We want to provide our own GET_VALUE and FOLD_STMT virtual methods. */ |
| class ccp_folder : public substitute_and_fold_engine |
| { |
| public: |
| tree value_of_expr (tree, gimple *) final override; |
| bool fold_stmt (gimple_stmt_iterator *) final override; |
| }; |
| |
| /* This method just wraps GET_CONSTANT_VALUE for now. Over time |
| naked calls to GET_CONSTANT_VALUE should be eliminated in favor |
| of calling member functions. */ |
| |
| tree |
| ccp_folder::value_of_expr (tree op, gimple *) |
| { |
| return get_constant_value (op); |
| } |
| |
| /* Do final substitution of propagated values, cleanup the flowgraph and |
| free allocated storage. If NONZERO_P, record nonzero bits. |
| |
| Return TRUE when something was optimized. */ |
| |
| static bool |
| ccp_finalize (bool nonzero_p) |
| { |
| bool something_changed; |
| unsigned i; |
| tree name; |
| |
| do_dbg_cnt (); |
| |
| /* Derive alignment and misalignment information from partially |
| constant pointers in the lattice or nonzero bits from partially |
| constant integers. */ |
| FOR_EACH_SSA_NAME (i, name, cfun) |
| { |
| ccp_prop_value_t *val; |
| unsigned int tem, align; |
| |
| if (!POINTER_TYPE_P (TREE_TYPE (name)) |
| && (!INTEGRAL_TYPE_P (TREE_TYPE (name)) |
| /* Don't record nonzero bits before IPA to avoid |
| using too much memory. */ |
| || !nonzero_p)) |
| continue; |
| |
| val = get_value (name); |
| if (val->lattice_val != CONSTANT |
| || TREE_CODE (val->value) != INTEGER_CST |
| || val->mask == 0) |
| continue; |
| |
| if (POINTER_TYPE_P (TREE_TYPE (name))) |
| { |
| /* Trailing mask bits specify the alignment, trailing value |
| bits the misalignment. */ |
| tem = val->mask.to_uhwi (); |
| align = least_bit_hwi (tem); |
| if (align > 1) |
| set_ptr_info_alignment (get_ptr_info (name), align, |
| (TREE_INT_CST_LOW (val->value) |
| & (align - 1))); |
| } |
| else |
| { |
| unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value)); |
| wide_int nonzero_bits |
| = (wide_int::from (val->mask, precision, UNSIGNED) |
| | wi::to_wide (val->value)); |
| nonzero_bits &= get_nonzero_bits (name); |
| set_nonzero_bits (name, nonzero_bits); |
| } |
| } |
| |
| /* Perform substitutions based on the known constant values. */ |
| class ccp_folder ccp_folder; |
| something_changed = ccp_folder.substitute_and_fold (); |
| |
| free (const_val); |
| const_val = NULL; |
| return something_changed; |
| } |
| |
| |
| /* Compute the meet operator between *VAL1 and *VAL2. Store the result |
| in VAL1. |
| |
| any M UNDEFINED = any |
| any M VARYING = VARYING |
| Ci M Cj = Ci if (i == j) |
| Ci M Cj = VARYING if (i != j) |
| */ |
| |
| static void |
| ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2) |
| { |
| if (val1->lattice_val == UNDEFINED |
| /* For UNDEFINED M SSA we can't always SSA because its definition |
| may not dominate the PHI node. Doing optimistic copy propagation |
| also causes a lot of gcc.dg/uninit-pred*.c FAILs. */ |
| && (val2->lattice_val != CONSTANT |
| || TREE_CODE (val2->value) != SSA_NAME)) |
| { |
| /* UNDEFINED M any = any */ |
| *val1 = *val2; |
| } |
| else if (val2->lattice_val == UNDEFINED |
| /* See above. */ |
| && (val1->lattice_val != CONSTANT |
| || TREE_CODE (val1->value) != SSA_NAME)) |
| { |
| /* any M UNDEFINED = any |
| Nothing to do. VAL1 already contains the value we want. */ |
| ; |
| } |
| else if (val1->lattice_val == VARYING |
| || val2->lattice_val == VARYING) |
| { |
| /* any M VARYING = VARYING. */ |
| val1->lattice_val = VARYING; |
| val1->mask = -1; |
| val1->value = NULL_TREE; |
| } |
| else if (val1->lattice_val == CONSTANT |
| && val2->lattice_val == CONSTANT |
| && TREE_CODE (val1->value) == INTEGER_CST |
| && TREE_CODE (val2->value) == INTEGER_CST) |
| { |
| /* Ci M Cj = Ci if (i == j) |
| Ci M Cj = VARYING if (i != j) |
| |
| For INTEGER_CSTs mask unequal bits. If no equal bits remain, |
| drop to varying. */ |
| val1->mask = (val1->mask | val2->mask |
| | (wi::to_widest (val1->value) |
| ^ wi::to_widest (val2->value))); |
| if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1) |
| { |
| val1->lattice_val = VARYING; |
| val1->value = NULL_TREE; |
| } |
| } |
| else if (val1->lattice_val == CONSTANT |
| && val2->lattice_val == CONSTANT |
| && operand_equal_p (val1->value, val2->value, 0)) |
| { |
| /* Ci M Cj = Ci if (i == j) |
| Ci M Cj = VARYING if (i != j) |
| |
| VAL1 already contains the value we want for equivalent values. */ |
| } |
| else if (val1->lattice_val == CONSTANT |
| && val2->lattice_val == CONSTANT |
| && (TREE_CODE (val1->value) == ADDR_EXPR |
| || TREE_CODE (val2->value) == ADDR_EXPR)) |
| { |
| /* When not equal addresses are involved try meeting for |
| alignment. */ |
| ccp_prop_value_t tem = *val2; |
| if (TREE_CODE (val1->value) == ADDR_EXPR) |
| *val1 = get_value_for_expr (val1->value, true); |
| if (TREE_CODE (val2->value) == ADDR_EXPR) |
| tem = get_value_for_expr (val2->value, true); |
| ccp_lattice_meet (val1, &tem); |
| } |
| else |
| { |
| /* Any other combination is VARYING. */ |
| val1->lattice_val = VARYING; |
| val1->mask = -1; |
| val1->value = NULL_TREE; |
| } |
| } |
| |
| |
| /* Loop through the PHI_NODE's parameters for BLOCK and compare their |
| lattice values to determine PHI_NODE's lattice value. The value of a |
| PHI node is determined calling ccp_lattice_meet with all the arguments |
| of the PHI node that are incoming via executable edges. */ |
| |
| enum ssa_prop_result |
| ccp_propagate::visit_phi (gphi *phi) |
| { |
| unsigned i; |
| ccp_prop_value_t new_val; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "\nVisiting PHI node: "); |
| print_gimple_stmt (dump_file, phi, 0, dump_flags); |
| } |
| |
| new_val.lattice_val = UNDEFINED; |
| new_val.value = NULL_TREE; |
| new_val.mask = 0; |
| |
| bool first = true; |
| bool non_exec_edge = false; |
| for (i = 0; i < gimple_phi_num_args (phi); i++) |
| { |
| /* Compute the meet operator over all the PHI arguments flowing |
| through executable edges. */ |
| edge e = gimple_phi_arg_edge (phi, i); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, |
| "\tArgument #%d (%d -> %d %sexecutable)\n", |
| i, e->src->index, e->dest->index, |
| (e->flags & EDGE_EXECUTABLE) ? "" : "not "); |
| } |
| |
| /* If the incoming edge is executable, Compute the meet operator for |
| the existing value of the PHI node and the current PHI argument. */ |
| if (e->flags & EDGE_EXECUTABLE) |
| { |
| tree arg = gimple_phi_arg (phi, i)->def; |
| ccp_prop_value_t arg_val = get_value_for_expr (arg, false); |
| |
| if (first) |
| { |
| new_val = arg_val; |
| first = false; |
| } |
| else |
| ccp_lattice_meet (&new_val, &arg_val); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "\t"); |
| print_generic_expr (dump_file, arg, dump_flags); |
| dump_lattice_value (dump_file, "\tValue: ", arg_val); |
| fprintf (dump_file, "\n"); |
| } |
| |
| if (new_val.lattice_val == VARYING) |
| break; |
| } |
| else |
| non_exec_edge = true; |
| } |
| |
| /* In case there were non-executable edges and the value is a copy |
| make sure its definition dominates the PHI node. */ |
| if (non_exec_edge |
| && new_val.lattice_val == CONSTANT |
| && TREE_CODE (new_val.value) == SSA_NAME |
| && ! SSA_NAME_IS_DEFAULT_DEF (new_val.value) |
| && ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi), |
| gimple_bb (SSA_NAME_DEF_STMT (new_val.value)))) |
| { |
| new_val.lattice_val = VARYING; |
| new_val.value = NULL_TREE; |
| new_val.mask = -1; |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| dump_lattice_value (dump_file, "\n PHI node value: ", new_val); |
| fprintf (dump_file, "\n\n"); |
| } |
| |
| /* Make the transition to the new value. */ |
| if (set_lattice_value (gimple_phi_result (phi), &new_val)) |
| { |
| if (new_val.lattice_val == VARYING) |
| return SSA_PROP_VARYING; |
| else |
| return SSA_PROP_INTERESTING; |
| } |
| else |
| return SSA_PROP_NOT_INTERESTING; |
| } |
| |
| /* Return the constant value for OP or OP otherwise. */ |
| |
| static tree |
| valueize_op (tree op) |
| { |
| if (TREE_CODE (op) == SSA_NAME) |
| { |
| tree tem = get_constant_value (op); |
| if (tem) |
| return tem; |
| } |
| return op; |
| } |
| |
| /* Return the constant value for OP, but signal to not follow SSA |
| edges if the definition may be simulated again. */ |
| |
| static tree |
| valueize_op_1 (tree op) |
| { |
| if (TREE_CODE (op) == SSA_NAME) |
| { |
| /* If the definition may be simulated again we cannot follow |
| this SSA edge as the SSA propagator does not necessarily |
| re-visit the use. */ |
| gimple *def_stmt = SSA_NAME_DEF_STMT (op); |
| if (!gimple_nop_p (def_stmt) |
| && prop_simulate_again_p (def_stmt)) |
| return NULL_TREE; |
| tree tem = get_constant_value (op); |
| if (tem) |
| return tem; |
| } |
| return op; |
| } |
| |
| /* CCP specific front-end to the non-destructive constant folding |
| routines. |
| |
| Attempt to simplify the RHS of STMT knowing that one or more |
| operands are constants. |
| |
| If simplification is possible, return the simplified RHS, |
| otherwise return the original RHS or NULL_TREE. */ |
| |
| static tree |
| ccp_fold (gimple *stmt) |
| { |
| location_t loc = gimple_location (stmt); |
| switch (gimple_code (stmt)) |
| { |
| case GIMPLE_COND: |
| { |
| /* Handle comparison operators that can appear in GIMPLE form. */ |
| tree op0 = valueize_op (gimple_cond_lhs (stmt)); |
| tree op1 = valueize_op (gimple_cond_rhs (stmt)); |
| enum tree_code code = gimple_cond_code (stmt); |
| return fold_binary_loc (loc, code, boolean_type_node, op0, op1); |
| } |
| |
| case GIMPLE_SWITCH: |
| { |
| /* Return the constant switch index. */ |
| return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt))); |
| } |
| |
| case GIMPLE_ASSIGN: |
| case GIMPLE_CALL: |
| return gimple_fold_stmt_to_constant_1 (stmt, |
| valueize_op, valueize_op_1); |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Determine the minimum and maximum values, *MIN and *MAX respectively, |
| represented by the mask pair VAL and MASK with signedness SGN and |
| precision PRECISION. */ |
| |
| void |
| value_mask_to_min_max (widest_int *min, widest_int *max, |
| const widest_int &val, const widest_int &mask, |
| signop sgn, int precision) |
| { |
| *min = wi::bit_and_not (val, mask); |
| *max = val | mask; |
| if (sgn == SIGNED && wi::neg_p (mask)) |
| { |
| widest_int sign_bit = wi::lshift (1, precision - 1); |
| *min ^= sign_bit; |
| *max ^= sign_bit; |
| /* MAX is zero extended, and MIN is sign extended. */ |
| *min = wi::ext (*min, precision, sgn); |
| *max = wi::ext (*max, precision, sgn); |
| } |
| } |
| |
| /* Apply the operation CODE in type TYPE to the value, mask pair |
| RVAL and RMASK representing a value of type RTYPE and set |
| the value, mask pair *VAL and *MASK to the result. */ |
| |
| void |
| bit_value_unop (enum tree_code code, signop type_sgn, int type_precision, |
| widest_int *val, widest_int *mask, |
| signop rtype_sgn, int rtype_precision, |
| const widest_int &rval, const widest_int &rmask) |
| { |
| switch (code) |
| { |
| case BIT_NOT_EXPR: |
| *mask = rmask; |
| *val = ~rval; |
| break; |
| |
| case NEGATE_EXPR: |
| { |
| widest_int temv, temm; |
| /* Return ~rval + 1. */ |
| bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm, |
| type_sgn, type_precision, rval, rmask); |
| bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask, |
| type_sgn, type_precision, temv, temm, |
| type_sgn, type_precision, 1, 0); |
| break; |
| } |
| |
| CASE_CONVERT: |
| { |
| /* First extend mask and value according to the original type. */ |
| *mask = wi::ext (rmask, rtype_precision, rtype_sgn); |
| *val = wi::ext (rval, rtype_precision, rtype_sgn); |
| |
| /* Then extend mask and value according to the target type. */ |
| *mask = wi::ext (*mask, type_precision, type_sgn); |
| *val = wi::ext (*val, type_precision, type_sgn); |
| break; |
| } |
| |
| case ABS_EXPR: |
| case ABSU_EXPR: |
| if (wi::sext (rmask, rtype_precision) == -1) |
| *mask = -1; |
| else if (wi::neg_p (rmask)) |
| { |
| /* Result is either rval or -rval. */ |
| widest_int temv, temm; |
| bit_value_unop (NEGATE_EXPR, rtype_sgn, rtype_precision, &temv, |
| &temm, type_sgn, type_precision, rval, rmask); |
| temm |= (rmask | (rval ^ temv)); |
| /* Extend the result. */ |
| *mask = wi::ext (temm, type_precision, type_sgn); |
| *val = wi::ext (temv, type_precision, type_sgn); |
| } |
| else if (wi::neg_p (rval)) |
| { |
| bit_value_unop (NEGATE_EXPR, type_sgn, type_precision, val, mask, |
| type_sgn, type_precision, rval, rmask); |
| } |
| else |
| { |
| *mask = rmask; |
| *val = rval; |
| } |
| break; |
| |
| default: |
| *mask = -1; |
| break; |
| } |
| } |
| |
| /* Determine the mask pair *VAL and *MASK from multiplying the |
| argument mask pair RVAL, RMASK by the unsigned constant C. */ |
| void |
| bit_value_mult_const (signop sgn, int width, |
| widest_int *val, widest_int *mask, |
| const widest_int &rval, const widest_int &rmask, |
| widest_int c) |
| { |
| widest_int sum_mask = 0; |
| |
| /* Ensure rval_lo only contains known bits. */ |
| widest_int rval_lo = wi::bit_and_not (rval, rmask); |
| |
| if (rval_lo != 0) |
| { |
| /* General case (some bits of multiplicand are known set). */ |
| widest_int sum_val = 0; |
| while (c != 0) |
| { |
| /* Determine the lowest bit set in the multiplier. */ |
| int bitpos = wi::ctz (c); |
| widest_int term_mask = rmask << bitpos; |
| widest_int term_val = rval_lo << bitpos; |
| |
| /* sum += term. */ |
| widest_int lo = sum_val + term_val; |
| widest_int hi = (sum_val | sum_mask) + (term_val | term_mask); |
| sum_mask |= term_mask | (lo ^ hi); |
| sum_val = lo; |
| |
| /* Clear this bit in the multiplier. */ |
| c ^= wi::lshift (1, bitpos); |
| } |
| /* Correctly extend the result value. */ |
| *val = wi::ext (sum_val, width, sgn); |
| } |
| else |
| { |
| /* Special case (no bits of multiplicand are known set). */ |
| while (c != 0) |
| { |
| /* Determine the lowest bit set in the multiplier. */ |
| int bitpos = wi::ctz (c); |
| widest_int term_mask = rmask << bitpos; |
| |
| /* sum += term. */ |
| widest_int hi = sum_mask + term_mask; |
| sum_mask |= term_mask | hi; |
| |
| /* Clear this bit in the multiplier. */ |
| c ^= wi::lshift (1, bitpos); |
| } |
| *val = 0; |
| } |
| |
| /* Correctly extend the result mask. */ |
| *mask = wi::ext (sum_mask, width, sgn); |
| } |
| |
| /* Fill up to MAX values in the BITS array with values representing |
| each of the non-zero bits in the value X. Returns the number of |
| bits in X (capped at the maximum value MAX). For example, an X |
| value 11, places 1, 2 and 8 in BITS and returns the value 3. */ |
| |
| unsigned int |
| get_individual_bits (widest_int *bits, widest_int x, unsigned int max) |
| { |
| unsigned int count = 0; |
| while (count < max && x != 0) |
| { |
| int bitpos = wi::ctz (x); |
| bits[count] = wi::lshift (1, bitpos); |
| x ^= bits[count]; |
| count++; |
| } |
| return count; |
| } |
| |
| /* Array of 2^N - 1 values representing the bits flipped between |
| consecutive Gray codes. This is used to efficiently enumerate |
| all permutations on N bits using XOR. */ |
| static const unsigned char gray_code_bit_flips[63] = { |
| 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, |
| 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, |
| 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, |
| 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 |
| }; |
| |
| /* Apply the operation CODE in type TYPE to the value, mask pairs |
| R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE |
| and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */ |
| |
| void |
| bit_value_binop (enum tree_code code, signop sgn, int width, |
| widest_int *val, widest_int *mask, |
| signop r1type_sgn, int r1type_precision, |
| const widest_int &r1val, const widest_int &r1mask, |
| signop r2type_sgn, int r2type_precision ATTRIBUTE_UNUSED, |
| const widest_int &r2val, const widest_int &r2mask) |
| { |
| bool swap_p = false; |
| |
| /* Assume we'll get a constant result. Use an initial non varying |
| value, we fall back to varying in the end if necessary. */ |
| *mask = -1; |
| /* Ensure that VAL is initialized (to any value). */ |
| *val = 0; |
| |
| switch (code) |
| { |
| case BIT_AND_EXPR: |
| /* The mask is constant where there is a known not |
| set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */ |
| *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask); |
| *val = r1val & r2val; |
| break; |
| |
| case BIT_IOR_EXPR: |
| /* The mask is constant where there is a known |
| set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */ |
| *mask = wi::bit_and_not (r1mask | r2mask, |
| wi::bit_and_not (r1val, r1mask) |
| | wi::bit_and_not (r2val, r2mask)); |
| *val = r1val | r2val; |
| break; |
| |
| case BIT_XOR_EXPR: |
| /* m1 | m2 */ |
| *mask = r1mask | r2mask; |
| *val = r1val ^ r2val; |
| break; |
| |
| case LROTATE_EXPR: |
| case RROTATE_EXPR: |
| if (r2mask == 0) |
| { |
| widest_int shift = r2val; |
| if (shift == 0) |
| { |
| *mask = r1mask; |
| *val = r1val; |
| } |
| else |
| { |
| if (wi::neg_p (shift, r2type_sgn)) |
| { |
| shift = -shift; |
| if (code == RROTATE_EXPR) |
| code = LROTATE_EXPR; |
| else |
| code = RROTATE_EXPR; |
| } |
| if (code == RROTATE_EXPR) |
| { |
| *mask = wi::rrotate (r1mask, shift, width); |
| *val = wi::rrotate (r1val, shift, width); |
| } |
| else |
| { |
| *mask = wi::lrotate (r1mask, shift, width); |
| *val = wi::lrotate (r1val, shift, width); |
| } |
| } |
| } |
| else if (wi::ltu_p (r2val | r2mask, width) |
| && wi::popcount (r2mask) <= 4) |
| { |
| widest_int bits[4]; |
| widest_int res_val, res_mask; |
| widest_int tmp_val, tmp_mask; |
| widest_int shift = wi::bit_and_not (r2val, r2mask); |
| unsigned int bit_count = get_individual_bits (bits, r2mask, 4); |
| unsigned int count = (1 << bit_count) - 1; |
| |
| /* Initialize result to rotate by smallest value of shift. */ |
| if (code == RROTATE_EXPR) |
| { |
| res_mask = wi::rrotate (r1mask, shift, width); |
| res_val = wi::rrotate (r1val, shift, width); |
| } |
| else |
| { |
| res_mask = wi::lrotate (r1mask, shift, width); |
| res_val = wi::lrotate (r1val, shift, width); |
| } |
| |
| /* Iterate through the remaining values of shift. */ |
| for (unsigned int i=0; i<count; i++) |
| { |
| shift ^= bits[gray_code_bit_flips[i]]; |
| if (code == RROTATE_EXPR) |
| { |
| tmp_mask = wi::rrotate (r1mask, shift, width); |
| tmp_val = wi::rrotate (r1val, shift, width); |
| } |
| else |
| { |
| tmp_mask = wi::lrotate (r1mask, shift, width); |
| tmp_val = wi::lrotate (r1val, shift, width); |
| } |
| /* Accumulate the result. */ |
| res_mask |= tmp_mask | (res_val ^ tmp_val); |
| } |
| *val = wi::bit_and_not (res_val, res_mask); |
| *mask = res_mask; |
| } |
| break; |
| |
| case LSHIFT_EXPR: |
| case RSHIFT_EXPR: |
| /* ??? We can handle partially known shift counts if we know |
| its sign. That way we can tell that (x << (y | 8)) & 255 |
| is zero. */ |
| if (r2mask == 0) |
| { |
| widest_int shift = r2val; |
| if (shift == 0) |
| { |
| *mask = r1mask; |
| *val = r1val; |
| } |
| else |
| { |
| if (wi::neg_p (shift, r2type_sgn)) |
| break; |
| if (code == RSHIFT_EXPR) |
| { |
| *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn); |
| *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn); |
| } |
| else |
| { |
| *mask = wi::ext (r1mask << shift, width, sgn); |
| *val = wi::ext (r1val << shift, width, sgn); |
| } |
| } |
| } |
| else if (wi::ltu_p (r2val | r2mask, width)) |
| { |
| if (wi::popcount (r2mask) <= 4) |
| { |
| widest_int bits[4]; |
| widest_int arg_val, arg_mask; |
| widest_int res_val, res_mask; |
| widest_int tmp_val, tmp_mask; |
| widest_int shift = wi::bit_and_not (r2val, r2mask); |
| unsigned int bit_count = get_individual_bits (bits, r2mask, 4); |
| unsigned int count = (1 << bit_count) - 1; |
| |
| /* Initialize result to shift by smallest value of shift. */ |
| if (code == RSHIFT_EXPR) |
| { |
| arg_mask = wi::ext (r1mask, width, sgn); |
| arg_val = wi::ext (r1val, width, sgn); |
| res_mask = wi::rshift (arg_mask, shift, sgn); |
| res_val = wi::rshift (arg_val, shift, sgn); |
| } |
| else |
| { |
| arg_mask = r1mask; |
| arg_val = r1val; |
| res_mask = arg_mask << shift; |
| res_val = arg_val << shift; |
| } |
| |
| /* Iterate through the remaining values of shift. */ |
| for (unsigned int i=0; i<count; i++) |
| { |
| shift ^= bits[gray_code_bit_flips[i]]; |
| if (code == RSHIFT_EXPR) |
| { |
| tmp_mask = wi::rshift (arg_mask, shift, sgn); |
| tmp_val = wi::rshift (arg_val, shift, sgn); |
| } |
| else |
| { |
| tmp_mask = arg_mask << shift; |
| tmp_val = arg_val << shift; |
| } |
| /* Accumulate the result. */ |
| res_mask |= tmp_mask | (res_val ^ tmp_val); |
| } |
| res_mask = wi::ext (res_mask, width, sgn); |
| res_val = wi::ext (res_val, width, sgn); |
| *val = wi::bit_and_not (res_val, res_mask); |
| *mask = res_mask; |
| } |
| else if ((r1val | r1mask) == 0) |
| { |
| /* Handle shifts of zero to avoid undefined wi::ctz below. */ |
| *mask = 0; |
| *val = 0; |
| } |
| else if (code == LSHIFT_EXPR) |
| { |
| widest_int tmp = wi::mask <widest_int> (width, false); |
| tmp <<= wi::ctz (r1val | r1mask); |
| tmp <<= wi::bit_and_not (r2val, r2mask); |
| *mask = wi::ext (tmp, width, sgn); |
| *val = 0; |
| } |
| else if (!wi::neg_p (r1val | r1mask, sgn)) |
| { |
| /* Logical right shift, or zero sign bit. */ |
| widest_int arg = r1val | r1mask; |
| int lzcount = wi::clz (arg); |
| if (lzcount) |
| lzcount -= wi::get_precision (arg) - width; |
| widest_int tmp = wi::mask <widest_int> (width, false); |
| tmp = wi::lrshift (tmp, lzcount); |
| tmp = wi::lrshift (tmp, wi::bit_and_not (r2val, r2mask)); |
| *mask = wi::ext (tmp, width, sgn); |
| *val = 0; |
| } |
| else if (!wi::neg_p (r1mask)) |
| { |
| /* Arithmetic right shift with set sign bit. */ |
| widest_int arg = wi::bit_and_not (r1val, r1mask); |
| int sbcount = wi::clrsb (arg); |
| sbcount -= wi::get_precision (arg) - width; |
| widest_int tmp = wi::mask <widest_int> (width, false); |
| tmp = wi::lrshift (tmp, sbcount); |
| tmp = wi::lrshift (tmp, wi::bit_and_not (r2val, r2mask)); |
| *mask = wi::sext (tmp, width); |
| tmp = wi::bit_not (tmp); |
| *val = wi::sext (tmp, width); |
| } |
| } |
| break; |
| |
| case PLUS_EXPR: |
| case POINTER_PLUS_EXPR: |
| { |
| /* Do the addition with unknown bits set to zero, to give carry-ins of |
| zero wherever possible. */ |
| widest_int lo = (wi::bit_and_not (r1val, r1mask) |
| + wi::bit_and_not (r2val, r2mask)); |
| lo = wi::ext (lo, width, sgn); |
| /* Do the addition with unknown bits set to one, to give carry-ins of |
| one wherever possible. */ |
| widest_int hi = (r1val | r1mask) + (r2val | r2mask); |
| hi = wi::ext (hi, width, sgn); |
| /* Each bit in the result is known if (a) the corresponding bits in |
| both inputs are known, and (b) the carry-in to that bit position |
| is known. We can check condition (b) by seeing if we got the same |
| result with minimised carries as with maximised carries. */ |
| *mask = r1mask | r2mask | (lo ^ hi); |
| *mask = wi::ext (*mask, width, sgn); |
| /* It shouldn't matter whether we choose lo or hi here. */ |
| *val = lo; |
| break; |
| } |
| |
| case MINUS_EXPR: |
| case POINTER_DIFF_EXPR: |
| { |
| /* Subtraction is derived from the addition algorithm above. */ |
| widest_int lo = wi::bit_and_not (r1val, r1mask) - (r2val | r2mask); |
| lo = wi::ext (lo, width, sgn); |
| widest_int hi = (r1val | r1mask) - wi::bit_and_not (r2val, r2mask); |
| hi = wi::ext (hi, width, sgn); |
| *mask = r1mask | r2mask | (lo ^ hi); |
| *mask = wi::ext (*mask, width, sgn); |
| *val = lo; |
| break; |
| } |
| |
| case MULT_EXPR: |
| if (r2mask == 0 |
| && !wi::neg_p (r2val, sgn) |
| && (flag_expensive_optimizations || wi::popcount (r2val) < 8)) |
| bit_value_mult_const (sgn, width, val, mask, r1val, r1mask, r2val); |
| else if (r1mask == 0 |
| && !wi::neg_p (r1val, sgn) |
| && (flag_expensive_optimizations || wi::popcount (r1val) < 8)) |
| bit_value_mult_const (sgn, width, val, mask, r2val, r2mask, r1val); |
| else |
| { |
| /* Just track trailing zeros in both operands and transfer |
| them to the other. */ |
| int r1tz = wi::ctz (r1val | r1mask); |
| int r2tz = wi::ctz (r2val | r2mask); |
| if (r1tz + r2tz >= width) |
| { |
| *mask = 0; |
| *val = 0; |
| } |
| else if (r1tz + r2tz > 0) |
| { |
| *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true), |
| width, sgn); |
| *val = 0; |
| } |
| } |
| break; |
| |
| case EQ_EXPR: |
| case NE_EXPR: |
| { |
| widest_int m = r1mask | r2mask; |
| if (wi::bit_and_not (r1val, m) != wi::bit_and_not (r2val, m)) |
| { |
| *mask = 0; |
| *val = ((code == EQ_EXPR) ? 0 : 1); |
| } |
| else |
| { |
| /* We know the result of a comparison is always one or zero. */ |
| *mask = 1; |
| *val = 0; |
| } |
| break; |
| } |
| |
| case GE_EXPR: |
| case GT_EXPR: |
| swap_p = true; |
| code = swap_tree_comparison (code); |
| /* Fall through. */ |
| case LT_EXPR: |
| case LE_EXPR: |
| { |
| widest_int min1, max1, min2, max2; |
| int minmax, maxmin; |
| |
| const widest_int &o1val = swap_p ? r2val : r1val; |
| const widest_int &o1mask = swap_p ? r2mask : r1mask; |
| const widest_int &o2val = swap_p ? r1val : r2val; |
| const widest_int &o2mask = swap_p ? r1mask : r2mask; |
| |
| value_mask_to_min_max (&min1, &max1, o1val, o1mask, |
| r1type_sgn, r1type_precision); |
| value_mask_to_min_max (&min2, &max2, o2val, o2mask, |
| r1type_sgn, r1type_precision); |
| |
| /* For comparisons the signedness is in the comparison operands. */ |
| /* Do a cross comparison of the max/min pairs. */ |
| maxmin = wi::cmp (max1, min2, r1type_sgn); |
| minmax = wi::cmp (min1, max2, r1type_sgn); |
| if (maxmin < (code == LE_EXPR ? 1: 0)) /* o1 < or <= o2. */ |
| { |
| *mask = 0; |
| *val = 1; |
| } |
| else if (minmax > (code == LT_EXPR ? -1 : 0)) /* o1 >= or > o2. */ |
| { |
| *mask = 0; |
| *val = 0; |
| } |
| else if (maxmin == minmax) /* o1 and o2 are equal. */ |
| { |
| /* This probably should never happen as we'd have |
| folded the thing during fully constant value folding. */ |
| *mask = 0; |
| *val = (code == LE_EXPR ? 1 : 0); |
| } |
| else |
| { |
| /* We know the result of a comparison is always one or zero. */ |
| *mask = 1; |
| *val = 0; |
| } |
| break; |
| } |
| |
| case MIN_EXPR: |
| case MAX_EXPR: |
| { |
| widest_int min1, max1, min2, max2; |
| |
| value_mask_to_min_max (&min1, &max1, r1val, r1mask, sgn, width); |
| value_mask_to_min_max (&min2, &max2, r2val, r2mask, sgn, width); |
| |
| if (wi::cmp (max1, min2, sgn) <= 0) /* r1 is less than r2. */ |
| { |
| if (code == MIN_EXPR) |
| { |
| *mask = r1mask; |
| *val = r1val; |
| } |
| else |
| { |
| *mask = r2mask; |
| *val = r2val; |
| } |
| } |
| else if (wi::cmp (min1, max2, sgn) >= 0) /* r2 is less than r1. */ |
| { |
| if (code == MIN_EXPR) |
| { |
| *mask = r2mask; |
| *val = r2val; |
| } |
| else |
| { |
| *mask = r1mask; |
| *val = r1val; |
| } |
| } |
| else |
| { |
| /* The result is either r1 or r2. */ |
| *mask = r1mask | r2mask | (r1val ^ r2val); |
| *val = r1val; |
| } |
| break; |
| } |
| |
| case TRUNC_MOD_EXPR: |
| { |
| widest_int r1max = r1val | r1mask; |
| widest_int r2max = r2val | r2mask; |
| if (sgn == UNSIGNED |
| || (!wi::neg_p (r1max) && !wi::neg_p (r2max))) |
| { |
| /* Confirm R2 has some bits set, to avoid division by zero. */ |
| widest_int r2min = wi::bit_and_not (r2val, r2mask); |
| if (r2min != 0) |
| { |
| /* R1 % R2 is R1 if R1 is always less than R2. */ |
| if (wi::ltu_p (r1max, r2min)) |
| { |
| *mask = r1mask; |
| *val = r1val; |
| } |
| else |
| { |
| /* R1 % R2 is always less than the maximum of R2. */ |
| unsigned int lzcount = wi::clz (r2max); |
| unsigned int bits = wi::get_precision (r2max) - lzcount; |
| if (r2max == wi::lshift (1, bits)) |
| bits--; |
| *mask = wi::mask <widest_int> (bits, false); |
| *val = 0; |
| } |
| } |
| } |
| } |
| break; |
| |
| case TRUNC_DIV_EXPR: |
| { |
| widest_int r1max = r1val | r1mask; |
| widest_int r2max = r2val | r2mask; |
| if (r2mask == 0 && !wi::neg_p (r1max)) |
| { |
| widest_int shift = wi::exact_log2 (r2val); |
| if (shift != -1) |
| { |
| // Handle division by a power of 2 as an rshift. |
| bit_value_binop (RSHIFT_EXPR, sgn, width, val, mask, |
| r1type_sgn, r1type_precision, r1val, r1mask, |
| r2type_sgn, r2type_precision, shift, r2mask); |
| return; |
| } |
| } |
| if (sgn == UNSIGNED |
| || (!wi::neg_p (r1max) && !wi::neg_p (r2max))) |
| { |
| /* Confirm R2 has some bits set, to avoid division by zero. */ |
| widest_int r2min = wi::bit_and_not (r2val, r2mask); |
| if (r2min != 0) |
| { |
| /* R1 / R2 is zero if R1 is always less than R2. */ |
| if (wi::ltu_p (r1max, r2min)) |
| { |
| *mask = 0; |
| *val = 0; |
| } |
| else |
| { |
| widest_int upper = wi::udiv_trunc (r1max, r2min); |
| unsigned int lzcount = wi::clz (upper); |
| unsigned int bits = wi::get_precision (upper) - lzcount; |
| *mask = wi::mask <widest_int> (bits, false); |
| *val = 0; |
| } |
| } |
| } |
| } |
| break; |
| |
| default:; |
| } |
| } |
| |
| /* Return the propagation value when applying the operation CODE to |
| the value RHS yielding type TYPE. */ |
| |
| static ccp_prop_value_t |
| bit_value_unop (enum tree_code code, tree type, tree rhs) |
| { |
| ccp_prop_value_t rval = get_value_for_expr (rhs, true); |
| widest_int value, mask; |
| ccp_prop_value_t val; |
| |
| if (rval.lattice_val == UNDEFINED) |
| return rval; |
| |
| gcc_assert ((rval.lattice_val == CONSTANT |
| && TREE_CODE (rval.value) == INTEGER_CST) |
| || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1); |
| bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask, |
| TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)), |
| value_to_wide_int (rval), rval.mask); |
| if (wi::sext (mask, TYPE_PRECISION (type)) != -1) |
| { |
| val.lattice_val = CONSTANT; |
| val.mask = mask; |
| /* ??? Delay building trees here. */ |
| val.value = wide_int_to_tree (type, value); |
| } |
| else |
| { |
| val.lattice_val = VARYING; |
| val.value = NULL_TREE; |
| val.mask = -1; |
| } |
| return val; |
| } |
| |
| /* Return the propagation value when applying the operation CODE to |
| the values RHS1 and RHS2 yielding type TYPE. */ |
| |
| static ccp_prop_value_t |
| bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2) |
| { |
| ccp_prop_value_t r1val = get_value_for_expr (rhs1, true); |
| ccp_prop_value_t r2val = get_value_for_expr (rhs2, true); |
| widest_int value, mask; |
| ccp_prop_value_t val; |
| |
| if (r1val.lattice_val == UNDEFINED |
| || r2val.lattice_val == UNDEFINED) |
| { |
| val.lattice_val = VARYING; |
| val.value = NULL_TREE; |
| val.mask = -1; |
| return val; |
| } |
| |
| gcc_assert ((r1val.lattice_val == CONSTANT |
| && TREE_CODE (r1val.value) == INTEGER_CST) |
| || wi::sext (r1val.mask, |
| TYPE_PRECISION (TREE_TYPE (rhs1))) == -1); |
| gcc_assert ((r2val.lattice_val == CONSTANT |
| && TREE_CODE (r2val.value) == INTEGER_CST) |
| || wi::sext (r2val.mask, |
| TYPE_PRECISION (TREE_TYPE (rhs2))) == -1); |
| bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask, |
| TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)), |
| value_to_wide_int (r1val), r1val.mask, |
| TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)), |
| value_to_wide_int (r2val), r2val.mask); |
| |
| /* (x * x) & 2 == 0. */ |
| if (code == MULT_EXPR && rhs1 == rhs2 && TYPE_PRECISION (type) > 1) |
| { |
| widest_int m = 2; |
| if (wi::sext (mask, TYPE_PRECISION (type)) != -1) |
| value = wi::bit_and_not (value, m); |
| else |
| value = 0; |
| mask = wi::bit_and_not (mask, m); |
| } |
| |
| if (wi::sext (mask, TYPE_PRECISION (type)) != -1) |
| { |
| val.lattice_val = CONSTANT; |
| val.mask = mask; |
| /* ??? Delay building trees here. */ |
| val.value = wide_int_to_tree (type, value); |
| } |
| else |
| { |
| val.lattice_val = VARYING; |
| val.value = NULL_TREE; |
| val.mask = -1; |
| } |
| return val; |
| } |
| |
| /* Return the propagation value for __builtin_assume_aligned |
| and functions with assume_aligned or alloc_aligned attribute. |
| For __builtin_assume_aligned, ATTR is NULL_TREE, |
| for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED |
| is false, for alloc_aligned attribute ATTR is non-NULL and |
| ALLOC_ALIGNED is true. */ |
| |
| static ccp_prop_value_t |
| bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval, |
| bool alloc_aligned) |
| { |
| tree align, misalign = NULL_TREE, type; |
| unsigned HOST_WIDE_INT aligni, misaligni = 0; |
| ccp_prop_value_t alignval; |
| widest_int value, mask; |
| ccp_prop_value_t val; |
| |
| if (attr == NULL_TREE) |
| { |
| tree ptr = gimple_call_arg (stmt, 0); |
| type = TREE_TYPE (ptr); |
| ptrval = get_value_for_expr (ptr, true); |
| } |
| else |
| { |
| tree lhs = gimple_call_lhs (stmt); |
| type = TREE_TYPE (lhs); |
| } |
| |
| if (ptrval.lattice_val == UNDEFINED) |
| return ptrval; |
| gcc_assert ((ptrval.lattice_val == CONSTANT |
| && TREE_CODE (ptrval.value) == INTEGER_CST) |
| || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1); |
| if (attr == NULL_TREE) |
| { |
| /* Get aligni and misaligni from __builtin_assume_aligned. */ |
| align = gimple_call_arg (stmt, 1); |
| if (!tree_fits_uhwi_p (align)) |
| return ptrval; |
| aligni = tree_to_uhwi (align); |
| if (gimple_call_num_args (stmt) > 2) |
| { |
| misalign = gimple_call_arg (stmt, 2); |
| if (!tree_fits_uhwi_p (misalign)) |
| return ptrval; |
| misaligni = tree_to_uhwi (misalign); |
| } |
| } |
| else |
| { |
| /* Get aligni and misaligni from assume_aligned or |
| alloc_align attributes. */ |
| if (TREE_VALUE (attr) == NULL_TREE) |
| return ptrval; |
| attr = TREE_VALUE (attr); |
| align = TREE_VALUE (attr); |
| if (!tree_fits_uhwi_p (align)) |
| return ptrval; |
| aligni = tree_to_uhwi (align); |
| if (alloc_aligned) |
| { |
| if (aligni == 0 || aligni > gimple_call_num_args (stmt)) |
| return ptrval; |
| align = gimple_call_arg (stmt, aligni - 1); |
| if (!tree_fits_uhwi_p (align)) |
| return ptrval; |
| aligni = tree_to_uhwi (align); |
| } |
| else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr))) |
| { |
| misalign = TREE_VALUE (TREE_CHAIN (attr)); |
| if (!tree_fits_uhwi_p (misalign)) |
| return ptrval; |
| misaligni = tree_to_uhwi (misalign); |
| } |
| } |
| if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni) |
| return ptrval; |
| |
| align = build_int_cst_type (type, -aligni); |
| alignval = get_value_for_expr (align, true); |
| bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask, |
| TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask, |
| TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask); |
| |
| if (wi::sext (mask, TYPE_PRECISION (type)) != -1) |
| { |
| val.lattice_val = CONSTANT; |
| val.mask = mask; |
| gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0); |
| gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0); |
| value |= misaligni; |
| /* ??? Delay building trees here. */ |
| val.value = wide_int_to_tree (type, value); |
| } |
| else |
| { |
| val.lattice_val = VARYING; |
| val.value = NULL_TREE; |
| val.mask = -1; |
| } |
| return val; |
| } |
| |
| /* Evaluate statement STMT. |
| Valid only for assignments, calls, conditionals, and switches. */ |
| |
| static ccp_prop_value_t |
| evaluate_stmt (gimple *stmt) |
| { |
| ccp_prop_value_t val; |
| tree simplified = NULL_TREE; |
| ccp_lattice_t likelyvalue = likely_value (stmt); |
| bool is_constant = false; |
| unsigned int align; |
| bool ignore_return_flags = false; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "which is likely "); |
| switch (likelyvalue) |
| { |
| case CONSTANT: |
| fprintf (dump_file, "CONSTANT"); |
| break; |
| case UNDEFINED: |
| fprintf (dump_file, "UNDEFINED"); |
| break; |
| case VARYING: |
| fprintf (dump_file, "VARYING"); |
| break; |
| default:; |
| } |
| fprintf (dump_file, "\n"); |
| } |
| |
| /* If the statement is likely to have a CONSTANT result, then try |
| to fold the statement to determine the constant value. */ |
| /* FIXME. This is the only place that we call ccp_fold. |
| Since likely_value never returns CONSTANT for calls, we will |
| not attempt to fold them, including builtins that may profit. */ |
| if (likelyvalue == CONSTANT) |
| { |
| fold_defer_overflow_warnings (); |
| simplified = ccp_fold (stmt); |
| if (simplified |
| && TREE_CODE (simplified) == SSA_NAME) |
| { |
| /* We may not use values of something that may be simulated again, |
| see valueize_op_1. */ |
| if (SSA_NAME_IS_DEFAULT_DEF (simplified) |
| || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (simplified))) |
| { |
| ccp_prop_value_t *val = get_value (simplified); |
| if (val && val->lattice_val != VARYING) |
| { |
| fold_undefer_overflow_warnings (true, stmt, 0); |
| return *val; |
| } |
| } |
| else |
| /* We may also not place a non-valueized copy in the lattice |
| as that might become stale if we never re-visit this stmt. */ |
| simplified = NULL_TREE; |
| } |
| is_constant = simplified && is_gimple_min_invariant (simplified); |
| fold_undefer_overflow_warnings (is_constant, stmt, 0); |
| if (is_constant) |
| { |
| /* The statement produced a constant value. */ |
| val.lattice_val = CONSTANT; |
| val.value = simplified; |
| val.mask = 0; |
| return val; |
| } |
| } |
| /* If the statement is likely to have a VARYING result, then do not |
| bother folding the statement. */ |
| else if (likelyvalue == VARYING) |
| { |
| enum gimple_code code = gimple_code (stmt); |
| if (code == GIMPLE_ASSIGN) |
| { |
| enum tree_code subcode = gimple_assign_rhs_code (stmt); |
| |
| /* Other cases cannot satisfy is_gimple_min_invariant |
| without folding. */ |
| if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS) |
| simplified = gimple_assign_rhs1 (stmt); |
| } |
| else if (code == GIMPLE_SWITCH) |
| simplified = gimple_switch_index (as_a <gswitch *> (stmt)); |
| else |
| /* These cannot satisfy is_gimple_min_invariant without folding. */ |
| gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND); |
| is_constant = simplified && is_gimple_min_invariant (simplified); |
| if (is_constant) |
| { |
| /* The statement produced a constant value. */ |
| val.lattice_val = CONSTANT; |
| val.value = simplified; |
| val.mask = 0; |
| } |
| } |
| /* If the statement result is likely UNDEFINED, make it so. */ |
| else if (likelyvalue == UNDEFINED) |
| { |
| val.lattice_val = UNDEFINED; |
| val.value = NULL_TREE; |
| val.mask = 0; |
| return val; |
| } |
| |
| /* Resort to simplification for bitwise tracking. */ |
| if (flag_tree_bit_ccp |
| && (likelyvalue == CONSTANT || is_gimple_call (stmt) |
| || (gimple_assign_single_p (stmt) |
| && gimple_assign_rhs_code (stmt) == ADDR_EXPR)) |
| && !is_constant) |
| { |
| enum gimple_code code = gimple_code (stmt); |
| val.lattice_val = VARYING; |
| val.value = NULL_TREE; |
| val.mask = -1; |
| if (code == GIMPLE_ASSIGN) |
| { |
| enum tree_code subcode = gimple_assign_rhs_code (stmt); |
| tree rhs1 = gimple_assign_rhs1 (stmt); |
| tree lhs = gimple_assign_lhs (stmt); |
| if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs)) |
| || POINTER_TYPE_P (TREE_TYPE (lhs))) |
| && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)) |
| || POINTER_TYPE_P (TREE_TYPE (rhs1)))) |
| switch (get_gimple_rhs_class (subcode)) |
| { |
| case GIMPLE_SINGLE_RHS: |
| val = get_value_for_expr (rhs1, true); |
| break; |
| |
| case GIMPLE_UNARY_RHS: |
| val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1); |
| break; |
| |
| case GIMPLE_BINARY_RHS: |
| val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1, |
| gimple_assign_rhs2 (stmt)); |
| break; |
| |
| default:; |
| } |
| } |
| else if (code == GIMPLE_COND) |
| { |
| enum tree_code code = gimple_cond_code (stmt); |
| tree rhs1 = gimple_cond_lhs (stmt); |
| tree rhs2 = gimple_cond_rhs (stmt); |
| if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)) |
| || POINTER_TYPE_P (TREE_TYPE (rhs1))) |
| val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2); |
| } |
| else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)) |
| { |
| tree fndecl = gimple_call_fndecl (stmt); |
| switch (DECL_FUNCTION_CODE (fndecl)) |
| { |
| case BUILT_IN_MALLOC: |
| case BUILT_IN_REALLOC: |
| case BUILT_IN_CALLOC: |
| case BUILT_IN_STRDUP: |
| case BUILT_IN_STRNDUP: |
| val.lattice_val = CONSTANT; |
| val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0); |
| val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT |
| / BITS_PER_UNIT - 1); |
| break; |
| |
| CASE_BUILT_IN_ALLOCA: |
| align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA |
| ? BIGGEST_ALIGNMENT |
| : TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))); |
| val.lattice_val = CONSTANT; |
| val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0); |
| val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1); |
| break; |
| |
| case BUILT_IN_ASSUME_ALIGNED: |
| val = bit_value_assume_aligned (stmt, NULL_TREE, val, false); |
| ignore_return_flags = true; |
| break; |
| |
| case BUILT_IN_ALIGNED_ALLOC: |
| case BUILT_IN_GOMP_ALLOC: |
| { |
| tree align = get_constant_value (gimple_call_arg (stmt, 0)); |
| if (align |
| && tree_fits_uhwi_p (align)) |
| { |
| unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align); |
| if (aligni > 1 |
| /* align must be power-of-two */ |
| && (aligni & (aligni - 1)) == 0) |
| { |
| val.lattice_val = CONSTANT; |
| val.value = build_int_cst (ptr_type_node, 0); |
| val.mask = -aligni; |
| } |
| } |
| break; |
| } |
| |
| case BUILT_IN_BSWAP16: |
| case BUILT_IN_BSWAP32: |
| case BUILT_IN_BSWAP64: |
| case BUILT_IN_BSWAP128: |
| val = get_value_for_expr (gimple_call_arg (stmt, 0), true); |
| if (val.lattice_val == UNDEFINED) |
| break; |
| else if (val.lattice_val == CONSTANT |
| && val.value |
| && TREE_CODE (val.value) == INTEGER_CST) |
| { |
| tree type = TREE_TYPE (gimple_call_lhs (stmt)); |
| int prec = TYPE_PRECISION (type); |
| wide_int wval = wi::to_wide (val.value); |
| val.value |
| = wide_int_to_tree (type, |
| wide_int::from (wval, prec, |
| UNSIGNED).bswap ()); |
| val.mask |
| = widest_int::from (wide_int::from (val.mask, prec, |
| UNSIGNED).bswap (), |
| UNSIGNED); |
| if (wi::sext (val.mask, prec) != -1) |
| break; |
| } |
| val.lattice_val = VARYING; |
| val.value = NULL_TREE; |
| val.mask = -1; |
| break; |
| |
| default:; |
| } |
| } |
| if (is_gimple_call (stmt) && gimple_call_lhs (stmt)) |
| { |
| tree fntype = gimple_call_fntype (stmt); |
| if (fntype) |
| { |
| tree attrs = lookup_attribute ("assume_aligned", |
| TYPE_ATTRIBUTES (fntype)); |
| if (attrs) |
| val = bit_value_assume_aligned (stmt, attrs, val, false); |
| attrs = lookup_attribute ("alloc_align", |
| TYPE_ATTRIBUTES (fntype)); |
| if (attrs) |
| val = bit_value_assume_aligned (stmt, attrs, val, true); |
| } |
| int flags = ignore_return_flags |
| ? 0 : gimple_call_return_flags (as_a <gcall *> (stmt)); |
| if (flags & ERF_RETURNS_ARG |
| && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt)) |
| { |
| val = get_value_for_expr |
| (gimple_call_arg (stmt, |
| flags & ERF_RETURN_ARG_MASK), true); |
| } |
| } |
| is_constant = (val.lattice_val == CONSTANT); |
| } |
| |
| if (flag_tree_bit_ccp |
| && ((is_constant && TREE_CODE (val.value) == INTEGER_CST) |
| || !is_constant) |
| && gimple_get_lhs (stmt) |
| && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME) |
| { |
| tree lhs = gimple_get_lhs (stmt); |
| wide_int nonzero_bits = get_nonzero_bits (lhs); |
| if (nonzero_bits != -1) |
| { |
| if (!is_constant) |
| { |
| val.lattice_val = CONSTANT; |
| val.value = build_zero_cst (TREE_TYPE (lhs)); |
| val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs))); |
| is_constant = true; |
| } |
| else |
| { |
| if (wi::bit_and_not (wi::to_wide (val.value), nonzero_bits) != 0) |
| val.value = wide_int_to_tree (TREE_TYPE (lhs), |
| nonzero_bits |
| & wi::to_wide (val.value)); |
| if (nonzero_bits == 0) |
| val.mask = 0; |
| else |
| val.mask = val.mask & extend_mask (nonzero_bits, |
| TYPE_SIGN (TREE_TYPE (lhs))); |
| } |
| } |
| } |
| |
| /* The statement produced a nonconstant value. */ |
| if (!is_constant) |
| { |
| /* The statement produced a copy. */ |
| if (simplified && TREE_CODE (simplified) == SSA_NAME |
| && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified)) |
| { |
| val.lattice_val = CONSTANT; |
| val.value = simplified; |
| val.mask = -1; |
| } |
| /* The statement is VARYING. */ |
| else |
| { |
| val.lattice_val = VARYING; |
| val.value = NULL_TREE; |
| val.mask = -1; |
| } |
| } |
| |
| return val; |
| } |
| |
| typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab; |
| |
| /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before |
| each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */ |
| |
| static void |
| insert_clobber_before_stack_restore (tree saved_val, tree var, |
| gimple_htab **visited) |
| { |
| gimple *stmt; |
| gassign *clobber_stmt; |
| tree clobber; |
| imm_use_iterator iter; |
| gimple_stmt_iterator i; |
| gimple **slot; |
| |
| FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val) |
| if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE)) |
| { |
| clobber = build_clobber (TREE_TYPE (var), CLOBBER_EOL); |
| clobber_stmt = gimple_build_assign (var, clobber); |
| |
| i = gsi_for_stmt (stmt); |
| gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT); |
| } |
| else if (gimple_code (stmt) == GIMPLE_PHI) |
| { |
| if (!*visited) |
| *visited = new gimple_htab (10); |
| |
| slot = (*visited)->find_slot (stmt, INSERT); |
| if (*slot != NULL) |
| continue; |
| |
| *slot = stmt; |
| insert_clobber_before_stack_restore (gimple_phi_result (stmt), var, |
| visited); |
| } |
| else if (gimple_assign_ssa_name_copy_p (stmt)) |
| insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var, |
| visited); |
| } |
| |
| /* Advance the iterator to the previous non-debug gimple statement in the same |
| or dominating basic block. */ |
| |
| static inline void |
| gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i) |
| { |
| basic_block dom; |
| |
| gsi_prev_nondebug (i); |
| while (gsi_end_p (*i)) |
| { |
| dom = get_immediate_dominator (CDI_DOMINATORS, gsi_bb (*i)); |
| if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun)) |
| return; |
| |
| *i = gsi_last_bb (dom); |
| } |
| } |
| |
| /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert |
| a clobber of VAR before each matching BUILT_IN_STACK_RESTORE. |
| |
| It is possible that BUILT_IN_STACK_SAVE cannot be found in a dominator when |
| a previous pass (such as DOM) duplicated it along multiple paths to a BB. |
| In that case the function gives up without inserting the clobbers. */ |
| |
| static void |
| insert_clobbers_for_var (gimple_stmt_iterator i, tree var) |
| { |
| gimple *stmt; |
| tree saved_val; |
| gimple_htab *visited = NULL; |
| |
| for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i)) |
| { |
| stmt = gsi_stmt (i); |
| |
| if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE)) |
| continue; |
| |
| saved_val = gimple_call_lhs (stmt); |
| if (saved_val == NULL_TREE) |
| continue; |
| |
| insert_clobber_before_stack_restore (saved_val, var, &visited); |
| break; |
| } |
| |
| delete visited; |
| } |
| |
| /* Detects a __builtin_alloca_with_align with constant size argument. Declares |
| fixed-size array and returns the address, if found, otherwise returns |
| NULL_TREE. */ |
| |
| static tree |
| fold_builtin_alloca_with_align (gimple *stmt) |
| { |
| unsigned HOST_WIDE_INT size, threshold, n_elem; |
| tree lhs, arg, block, var, elem_type, array_type; |
| |
| /* Get lhs. */ |
| lhs = gimple_call_lhs (stmt); |
| if (lhs == NULL_TREE) |
| return NULL_TREE; |
| |
| /* Detect constant argument. */ |
| arg = get_constant_value (gimple_call_arg (stmt, 0)); |
| if (arg == NULL_TREE |
| || TREE_CODE (arg) != INTEGER_CST |
| || !tree_fits_uhwi_p (arg)) |
| return NULL_TREE; |
| |
| size = tree_to_uhwi (arg); |
| |
| /* Heuristic: don't fold large allocas. */ |
| threshold = (unsigned HOST_WIDE_INT)param_large_stack_frame; |
| /* In case the alloca is located at function entry, it has the same lifetime |
| as a declared array, so we allow a larger size. */ |
| block = gimple_block (stmt); |
| if (!(cfun->after_inlining |
| && block |
| && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL)) |
| threshold /= 10; |
| if (size > threshold) |
| return NULL_TREE; |
| |
| /* We have to be able to move points-to info. We used to assert |
| that we can but IPA PTA might end up with two UIDs here |
| as it might need to handle more than one instance being |
| live at the same time. Instead of trying to detect this case |
| (using the first UID would be OK) just give up for now. */ |
| struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs); |
| unsigned uid = 0; |
| if (pi != NULL |
| && !pi->pt.anything |
| && !pt_solution_singleton_or_null_p (&pi->pt, &uid)) |
| return NULL_TREE; |
| |
| /* Declare array. */ |
| elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1); |
| n_elem = size * 8 / BITS_PER_UNIT; |
| array_type = build_array_type_nelts (elem_type, n_elem); |
| |
| if (tree ssa_name = SSA_NAME_IDENTIFIER (lhs)) |
| { |
| /* Give the temporary a name derived from the name of the VLA |
| declaration so it can be referenced in diagnostics. */ |
| const char *name = IDENTIFIER_POINTER (ssa_name); |
| var = create_tmp_var (array_type, name); |
| } |
| else |
| var = create_tmp_var (array_type); |
| |
| if (gimple *lhsdef = SSA_NAME_DEF_STMT (lhs)) |
| { |
| /* Set the temporary's location to that of the VLA declaration |
| so it can be pointed to in diagnostics. */ |
| location_t loc = gimple_location (lhsdef); |
| DECL_SOURCE_LOCATION (var) = loc; |
| } |
| |
| SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))); |
| if (uid != 0) |
| SET_DECL_PT_UID (var, uid); |
| |
| /* Fold alloca to the address of the array. */ |
| return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var)); |
| } |
| |
| /* Fold the stmt at *GSI with CCP specific information that propagating |
| and regular folding does not catch. */ |
| |
| bool |
| ccp_folder::fold_stmt (gimple_stmt_iterator *gsi) |
| { |
| gimple *stmt = gsi_stmt (*gsi); |
| |
| switch (gimple_code (stmt)) |
| { |
| case GIMPLE_COND: |
| { |
| gcond *cond_stmt = as_a <gcond *> (stmt); |
| ccp_prop_value_t val; |
| /* Statement evaluation will handle type mismatches in constants |
| more gracefully than the final propagation. This allows us to |
| fold more conditionals here. */ |
| val = evaluate_stmt (stmt); |
| if (val.lattice_val != CONSTANT |
| || val.mask != 0) |
| return false; |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "Folding predicate "); |
| print_gimple_expr (dump_file, stmt, 0); |
| fprintf (dump_file, " to "); |
| print_generic_expr (dump_file, val.value); |
| fprintf (dump_file, "\n"); |
| } |
| |
| if (integer_zerop (val.value)) |
| gimple_cond_make_false (cond_stmt); |
| else |
| gimple_cond_make_true (cond_stmt); |
| |
| return true; |
| } |
| |
| case GIMPLE_CALL: |
| { |
| tree lhs = gimple_call_lhs (stmt); |
| int flags = gimple_call_flags (stmt); |
| tree val; |
| tree argt; |
| bool changed = false; |
| unsigned i; |
| |
| /* If the call was folded into a constant make sure it goes |
| away even if we cannot propagate into all uses because of |
| type issues. */ |
| if (lhs |
| && TREE_CODE (lhs) == SSA_NAME |
| && (val = get_constant_value (lhs)) |
| /* Don't optimize away calls that have side-effects. */ |
| && (flags & (ECF_CONST|ECF_PURE)) != 0 |
| && (flags & ECF_LOOPING_CONST_OR_PURE) == 0) |
| { |
| tree new_rhs = unshare_expr (val); |
| if (!useless_type_conversion_p (TREE_TYPE (lhs), |
| TREE_TYPE (new_rhs))) |
| new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs); |
| gimplify_and_update_call_from_tree (gsi, new_rhs); |
| return true; |
| } |
| |
| /* Internal calls provide no argument types, so the extra laxity |
| for normal calls does not apply. */ |
| if (gimple_call_internal_p (stmt)) |
| return false; |
| |
| /* The heuristic of fold_builtin_alloca_with_align differs before and |
| after inlining, so we don't require the arg to be changed into a |
| constant for folding, but just to be constant. */ |
| if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN) |
| || gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX)) |
| { |
| tree new_rhs = fold_builtin_alloca_with_align (stmt); |
| if (new_rhs) |
| { |
| gimplify_and_update_call_from_tree (gsi, new_rhs); |
| tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0); |
| insert_clobbers_for_var (*gsi, var); |
| return true; |
| } |
| } |
| |
| /* If there's no extra info from an assume_aligned call, |
| drop it so it doesn't act as otherwise useless dataflow |
| barrier. */ |
| if (gimple_call_builtin_p (stmt, BUILT_IN_ASSUME_ALIGNED)) |
| { |
| tree ptr = gimple_call_arg (stmt, 0); |
| ccp_prop_value_t ptrval = get_value_for_expr (ptr, true); |
| if (ptrval.lattice_val == CONSTANT |
| && TREE_CODE (ptrval.value) == INTEGER_CST |
| && ptrval.mask != 0) |
| { |
| ccp_prop_value_t val |
| = bit_value_assume_aligned (stmt, NULL_TREE, ptrval, false); |
| unsigned int ptralign = least_bit_hwi (ptrval.mask.to_uhwi ()); |
| unsigned int align = least_bit_hwi (val.mask.to_uhwi ()); |
| if (ptralign == align |
| && ((TREE_INT_CST_LOW (ptrval.value) & (align - 1)) |
| == (TREE_INT_CST_LOW (val.value) & (align - 1)))) |
| { |
| replace_call_with_value (gsi, ptr); |
| return true; |
| } |
| } |
| } |
| |
| /* Propagate into the call arguments. Compared to replace_uses_in |
| this can use the argument slot types for type verification |
| instead of the current argument type. We also can safely |
| drop qualifiers here as we are dealing with constants anyway. */ |
| argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt)); |
| for (i = 0; i < gimple_call_num_args (stmt) && argt; |
| ++i, argt = TREE_CHAIN (argt)) |
| { |
| tree arg = gimple_call_arg (stmt, i); |
| if (TREE_CODE (arg) == SSA_NAME |
| && (val = get_constant_value (arg)) |
| && useless_type_conversion_p |
| (TYPE_MAIN_VARIANT (TREE_VALUE (argt)), |
| TYPE_MAIN_VARIANT (TREE_TYPE (val)))) |
| { |
| gimple_call_set_arg (stmt, i, unshare_expr (val)); |
| changed = true; |
| } |
| } |
| |
| return changed; |
| } |
| |
| case GIMPLE_ASSIGN: |
| { |
| tree lhs = gimple_assign_lhs (stmt); |
| tree val; |
| |
| /* If we have a load that turned out to be constant replace it |
| as we cannot propagate into all uses in all cases. */ |
| if (gimple_assign_single_p (stmt) |
| && TREE_CODE (lhs) == SSA_NAME |
| && (val = get_constant_value (lhs))) |
| { |
| tree rhs = unshare_expr (val); |
| if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs))) |
| rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs); |
| gimple_assign_set_rhs_from_tree (gsi, rhs); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| default: |
| return false; |
| } |
| } |
| |
| /* Visit the assignment statement STMT. Set the value of its LHS to the |
| value computed by the RHS and store LHS in *OUTPUT_P. If STMT |
| creates virtual definitions, set the value of each new name to that |
| of the RHS (if we can derive a constant out of the RHS). |
| Value-returning call statements also perform an assignment, and |
| are handled here. */ |
| |
| static enum ssa_prop_result |
| visit_assignment (gimple *stmt, tree *output_p) |
| { |
| ccp_prop_value_t val; |
| enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING; |
| |
| tree lhs = gimple_get_lhs (stmt); |
| if (TREE_CODE (lhs) == SSA_NAME) |
| { |
| /* Evaluate the statement, which could be |
| either a GIMPLE_ASSIGN or a GIMPLE_CALL. */ |
| val = evaluate_stmt (stmt); |
| |
| /* If STMT is an assignment to an SSA_NAME, we only have one |
| value to set. */ |
| if (set_lattice_value (lhs, &val)) |
| { |
| *output_p = lhs; |
| if (val.lattice_val == VARYING) |
| retval = SSA_PROP_VARYING; |
| else |
| retval = SSA_PROP_INTERESTING; |
| } |
| } |
| |
| return retval; |
| } |
| |
| |
| /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING |
| if it can determine which edge will be taken. Otherwise, return |
| SSA_PROP_VARYING. */ |
| |
| static enum ssa_prop_result |
| visit_cond_stmt (gimple *stmt, edge *taken_edge_p) |
| { |
| ccp_prop_value_t val; |
| basic_block block; |
| |
| block = gimple_bb (stmt); |
| val = evaluate_stmt (stmt); |
| if (val.lattice_val != CONSTANT |
| || val.mask != 0) |
| return SSA_PROP_VARYING; |
| |
| /* Find which edge out of the conditional block will be taken and add it |
| to the worklist. If no single edge can be determined statically, |
| return SSA_PROP_VARYING to feed all the outgoing edges to the |
| propagation engine. */ |
| *taken_edge_p = find_taken_edge (block, val.value); |
| if (*taken_edge_p) |
| return SSA_PROP_INTERESTING; |
| else |
| return SSA_PROP_VARYING; |
| } |
| |
| |
| /* Evaluate statement STMT. If the statement produces an output value and |
| its evaluation changes the lattice value of its output, return |
| SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the |
| output value. |
| |
| If STMT is a conditional branch and we can determine its truth |
| value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying |
| value, return SSA_PROP_VARYING. */ |
| |
| enum ssa_prop_result |
| ccp_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p) |
| { |
| tree def; |
| ssa_op_iter iter; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "\nVisiting statement:\n"); |
| print_gimple_stmt (dump_file, stmt, 0, dump_flags); |
| } |
| |
| switch (gimple_code (stmt)) |
| { |
| case GIMPLE_ASSIGN: |
| /* If the statement is an assignment that produces a single |
| output value, evaluate its RHS to see if the lattice value of |
| its output has changed. */ |
| return visit_assignment (stmt, output_p); |
| |
| case GIMPLE_CALL: |
| /* A value-returning call also performs an assignment. */ |
| if (gimple_call_lhs (stmt) != NULL_TREE) |
| return visit_assignment (stmt, output_p); |
| break; |
| |
| case GIMPLE_COND: |
| case GIMPLE_SWITCH: |
| /* If STMT is a conditional branch, see if we can determine |
| which branch will be taken. */ |
| /* FIXME. It appears that we should be able to optimize |
| computed GOTOs here as well. */ |
| return visit_cond_stmt (stmt, taken_edge_p); |
| |
| default: |
| break; |
| } |
| |
| /* Any other kind of statement is not interesting for constant |
| propagation and, therefore, not worth simulating. */ |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "No interesting values produced. Marked VARYING.\n"); |
| |
| /* Definitions made by statements other than assignments to |
| SSA_NAMEs represent unknown modifications to their outputs. |
| Mark them VARYING. */ |
| FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS) |
| set_value_varying (def); |
| |
| return SSA_PROP_VARYING; |
| } |
| |
| |
| /* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P, |
| record nonzero bits. */ |
| |
| static unsigned int |
| do_ssa_ccp (bool nonzero_p) |
| { |
| unsigned int todo = 0; |
| calculate_dominance_info (CDI_DOMINATORS); |
| |
| ccp_initialize (); |
| class ccp_propagate ccp_propagate; |
| ccp_propagate.ssa_propagate (); |
| if (ccp_finalize (nonzero_p || flag_ipa_bit_cp)) |
| { |
| todo = (TODO_cleanup_cfg | TODO_update_ssa); |
| |
| /* ccp_finalize does not preserve loop-closed ssa. */ |
| loops_state_clear (LOOP_CLOSED_SSA); |
| } |
| |
| free_dominance_info (CDI_DOMINATORS); |
| return todo; |
| } |
| |
| |
| namespace { |
| |
| const pass_data pass_data_ccp = |
| { |
| GIMPLE_PASS, /* type */ |
| "ccp", /* name */ |
| OPTGROUP_NONE, /* optinfo_flags */ |
| TV_TREE_CCP, /* tv_id */ |
| ( PROP_cfg | PROP_ssa ), /* properties_required */ |
| 0, /* properties_provided */ |
| 0, /* properties_destroyed */ |
| 0, /* todo_flags_start */ |
| TODO_update_address_taken, /* todo_flags_finish */ |
| }; |
| |
| class pass_ccp : public gimple_opt_pass |
| { |
| public: |
| pass_ccp (gcc::context *ctxt) |
| : gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false) |
| {} |
| |
| /* opt_pass methods: */ |
| opt_pass * clone () final override { return new pass_ccp (m_ctxt); } |
| void set_pass_param (unsigned int n, bool param) final override |
| { |
| gcc_assert (n == 0); |
| nonzero_p = param; |
| } |
| bool gate (function *) final override { return flag_tree_ccp != 0; } |
| unsigned int execute (function *) final override |
| { |
| return do_ssa_ccp (nonzero_p); |
| } |
| |
| private: |
| /* Determines whether the pass instance records nonzero bits. */ |
| bool nonzero_p; |
| }; // class pass_ccp |
| |
| } // anon namespace |
| |
| gimple_opt_pass * |
| make_pass_ccp (gcc::context *ctxt) |
| { |
| return new pass_ccp (ctxt); |
| } |
| |
| |
| |
| /* Try to optimize out __builtin_stack_restore. Optimize it out |
| if there is another __builtin_stack_restore in the same basic |
| block and no calls or ASM_EXPRs are in between, or if this block's |
| only outgoing edge is to EXIT_BLOCK and there are no calls or |
| ASM_EXPRs after this __builtin_stack_restore. */ |
| |
| static tree |
| optimize_stack_restore (gimple_stmt_iterator i) |
| { |
| tree callee; |
| gimple *stmt; |
| |
| basic_block bb = gsi_bb (i); |
| gimple *call = gsi_stmt (i); |
| |
| if (gimple_code (call) != GIMPLE_CALL |
| || gimple_call_num_args (call) != 1 |
| || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME |
| || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0)))) |
| return NULL_TREE; |
| |
| for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i)) |
| { |
| stmt = gsi_stmt (i); |
| if (gimple_code (stmt) == GIMPLE_ASM) |
| return NULL_TREE; |
| if (gimple_code (stmt) != GIMPLE_CALL) |
| continue; |
| |
| callee = gimple_call_fndecl (stmt); |
| if (!callee |
| || !fndecl_built_in_p (callee, BUILT_IN_NORMAL) |
| /* All regular builtins are ok, just obviously not alloca. */ |
| || ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callee))) |
| return NULL_TREE; |
| |
| if (fndecl_built_in_p (callee, BUILT_IN_STACK_RESTORE)) |
| goto second_stack_restore; |
| } |
| |
| if (!gsi_end_p (i)) |
| return NULL_TREE; |
| |
| /* Allow one successor of the exit block, or zero successors. */ |
| switch (EDGE_COUNT (bb->succs)) |
| { |
| case 0: |
| break; |
| case 1: |
| if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)) |
| return NULL_TREE; |
| break; |
| default: |
| return NULL_TREE; |
| } |
| second_stack_restore: |
| |
| /* If there's exactly one use, then zap the call to __builtin_stack_save. |
| If there are multiple uses, then the last one should remove the call. |
| In any case, whether the call to __builtin_stack_save can be removed |
| or not is irrelevant to removing the call to __builtin_stack_restore. */ |
| if (has_single_use (gimple_call_arg (call, 0))) |
| { |
| gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0)); |
| if (is_gimple_call (stack_save)) |
| { |
| callee = gimple_call_fndecl (stack_save); |
| if (callee && fndecl_built_in_p (callee, BUILT_IN_STACK_SAVE)) |
| { |
| gimple_stmt_iterator stack_save_gsi; |
| tree rhs |