| /* Subroutines needed for unwinding stack frames for exception handling.  */ | 
 | /* Copyright (C) 1997-2019 Free Software Foundation, Inc. | 
 |    Contributed by Jason Merrill <jason@cygnus.com>. | 
 |  | 
 | This file is part of GCC. | 
 |  | 
 | GCC is free software; you can redistribute it and/or modify it under | 
 | the terms of the GNU General Public License as published by the Free | 
 | Software Foundation; either version 3, or (at your option) any later | 
 | version. | 
 |  | 
 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
 | for more details. | 
 |  | 
 | Under Section 7 of GPL version 3, you are granted additional | 
 | permissions described in the GCC Runtime Library Exception, version | 
 | 3.1, as published by the Free Software Foundation. | 
 |  | 
 | You should have received a copy of the GNU General Public License and | 
 | a copy of the GCC Runtime Library Exception along with this program; | 
 | see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
 | <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #ifndef _Unwind_Find_FDE | 
 | #include "tconfig.h" | 
 | #include "tsystem.h" | 
 | #include "coretypes.h" | 
 | #include "tm.h" | 
 | #include "libgcc_tm.h" | 
 | #include "dwarf2.h" | 
 | #include "unwind.h" | 
 | #define NO_BASE_OF_ENCODED_VALUE | 
 | #include "unwind-pe.h" | 
 | #include "unwind-dw2-fde.h" | 
 | #include "gthr.h" | 
 | #else | 
 | #if (defined(__GTHREAD_MUTEX_INIT) || defined(__GTHREAD_MUTEX_INIT_FUNCTION)) \ | 
 |     && defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4) | 
 | #define ATOMIC_FDE_FAST_PATH 1 | 
 | #endif | 
 | #endif | 
 |  | 
 | /* The unseen_objects list contains objects that have been registered | 
 |    but not yet categorized in any way.  The seen_objects list has had | 
 |    its pc_begin and count fields initialized at minimum, and is sorted | 
 |    by decreasing value of pc_begin.  */ | 
 | static struct object *unseen_objects; | 
 | static struct object *seen_objects; | 
 | #ifdef ATOMIC_FDE_FAST_PATH | 
 | static int any_objects_registered; | 
 | #endif | 
 |  | 
 | #ifdef __GTHREAD_MUTEX_INIT | 
 | static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT; | 
 | #define init_object_mutex_once() | 
 | #else | 
 | #ifdef __GTHREAD_MUTEX_INIT_FUNCTION | 
 | static __gthread_mutex_t object_mutex; | 
 |  | 
 | static void | 
 | init_object_mutex (void) | 
 | { | 
 |   __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex); | 
 | } | 
 |  | 
 | static void | 
 | init_object_mutex_once (void) | 
 | { | 
 |   static __gthread_once_t once = __GTHREAD_ONCE_INIT; | 
 |   __gthread_once (&once, init_object_mutex); | 
 | } | 
 | #else | 
 | /* ???  Several targets include this file with stubbing parts of gthr.h | 
 |    and expect no locking to be done.  */ | 
 | #define init_object_mutex_once() | 
 | static __gthread_mutex_t object_mutex; | 
 | #endif | 
 | #endif | 
 |  | 
 | /* Called from crtbegin.o to register the unwind info for an object.  */ | 
 |  | 
 | void | 
 | __register_frame_info_bases (const void *begin, struct object *ob, | 
 | 			     void *tbase, void *dbase) | 
 | { | 
 |   /* If .eh_frame is empty, don't register at all.  */ | 
 |   if ((const uword *) begin == 0 || *(const uword *) begin == 0) | 
 |     return; | 
 |  | 
 |   ob->pc_begin = (void *)-1; | 
 |   ob->tbase = tbase; | 
 |   ob->dbase = dbase; | 
 |   ob->u.single = begin; | 
 |   ob->s.i = 0; | 
 |   ob->s.b.encoding = DW_EH_PE_omit; | 
 | #ifdef DWARF2_OBJECT_END_PTR_EXTENSION | 
 |   ob->fde_end = NULL; | 
 | #endif | 
 |  | 
 |   init_object_mutex_once (); | 
 |   __gthread_mutex_lock (&object_mutex); | 
 |  | 
 |   ob->next = unseen_objects; | 
 |   unseen_objects = ob; | 
 | #ifdef ATOMIC_FDE_FAST_PATH | 
 |   /* Set flag that at least one library has registered FDEs. | 
 |      Use relaxed MO here, it is up to the app to ensure that the library | 
 |      loading/initialization happens-before using that library in other | 
 |      threads (in particular unwinding with that library's functions | 
 |      appearing in the backtraces).  Calling that library's functions | 
 |      without waiting for the library to initialize would be racy.  */ | 
 |   if (!any_objects_registered) | 
 |     __atomic_store_n (&any_objects_registered, 1, __ATOMIC_RELAXED); | 
 | #endif | 
 |  | 
 |   __gthread_mutex_unlock (&object_mutex); | 
 | } | 
 |  | 
 | void | 
 | __register_frame_info (const void *begin, struct object *ob) | 
 | { | 
 |   __register_frame_info_bases (begin, ob, 0, 0); | 
 | } | 
 |  | 
 | void | 
 | __register_frame (void *begin) | 
 | { | 
 |   struct object *ob; | 
 |  | 
 |   /* If .eh_frame is empty, don't register at all.  */ | 
 |   if (*(uword *) begin == 0) | 
 |     return; | 
 |  | 
 |   ob = malloc (sizeof (struct object)); | 
 |   __register_frame_info (begin, ob); | 
 | } | 
 |  | 
 | /* Similar, but BEGIN is actually a pointer to a table of unwind entries | 
 |    for different translation units.  Called from the file generated by | 
 |    collect2.  */ | 
 |  | 
 | void | 
 | __register_frame_info_table_bases (void *begin, struct object *ob, | 
 | 				   void *tbase, void *dbase) | 
 | { | 
 |   ob->pc_begin = (void *)-1; | 
 |   ob->tbase = tbase; | 
 |   ob->dbase = dbase; | 
 |   ob->u.array = begin; | 
 |   ob->s.i = 0; | 
 |   ob->s.b.from_array = 1; | 
 |   ob->s.b.encoding = DW_EH_PE_omit; | 
 |  | 
 |   init_object_mutex_once (); | 
 |   __gthread_mutex_lock (&object_mutex); | 
 |  | 
 |   ob->next = unseen_objects; | 
 |   unseen_objects = ob; | 
 | #ifdef ATOMIC_FDE_FAST_PATH | 
 |   /* Set flag that at least one library has registered FDEs. | 
 |      Use relaxed MO here, it is up to the app to ensure that the library | 
 |      loading/initialization happens-before using that library in other | 
 |      threads (in particular unwinding with that library's functions | 
 |      appearing in the backtraces).  Calling that library's functions | 
 |      without waiting for the library to initialize would be racy.  */ | 
 |   if (!any_objects_registered) | 
 |     __atomic_store_n (&any_objects_registered, 1, __ATOMIC_RELAXED); | 
 | #endif | 
 |  | 
 |   __gthread_mutex_unlock (&object_mutex); | 
 | } | 
 |  | 
 | void | 
 | __register_frame_info_table (void *begin, struct object *ob) | 
 | { | 
 |   __register_frame_info_table_bases (begin, ob, 0, 0); | 
 | } | 
 |  | 
 | void | 
 | __register_frame_table (void *begin) | 
 | { | 
 |   struct object *ob = malloc (sizeof (struct object)); | 
 |   __register_frame_info_table (begin, ob); | 
 | } | 
 |  | 
 | /* Called from crtbegin.o to deregister the unwind info for an object.  */ | 
 | /* ??? Glibc has for a while now exported __register_frame_info and | 
 |    __deregister_frame_info.  If we call __register_frame_info_bases | 
 |    from crtbegin (wherein it is declared weak), and this object does | 
 |    not get pulled from libgcc.a for other reasons, then the | 
 |    invocation of __deregister_frame_info will be resolved from glibc. | 
 |    Since the registration did not happen there, we'll die. | 
 |  | 
 |    Therefore, declare a new deregistration entry point that does the | 
 |    exact same thing, but will resolve to the same library as | 
 |    implements __register_frame_info_bases.  */ | 
 |  | 
 | void * | 
 | __deregister_frame_info_bases (const void *begin) | 
 | { | 
 |   struct object **p; | 
 |   struct object *ob = 0; | 
 |  | 
 |   /* If .eh_frame is empty, we haven't registered.  */ | 
 |   if ((const uword *) begin == 0 || *(const uword *) begin == 0) | 
 |     return ob; | 
 |  | 
 |   init_object_mutex_once (); | 
 |   __gthread_mutex_lock (&object_mutex); | 
 |  | 
 |   for (p = &unseen_objects; *p ; p = &(*p)->next) | 
 |     if ((*p)->u.single == begin) | 
 |       { | 
 | 	ob = *p; | 
 | 	*p = ob->next; | 
 | 	goto out; | 
 |       } | 
 |  | 
 |   for (p = &seen_objects; *p ; p = &(*p)->next) | 
 |     if ((*p)->s.b.sorted) | 
 |       { | 
 | 	if ((*p)->u.sort->orig_data == begin) | 
 | 	  { | 
 | 	    ob = *p; | 
 | 	    *p = ob->next; | 
 | 	    free (ob->u.sort); | 
 | 	    goto out; | 
 | 	  } | 
 |       } | 
 |     else | 
 |       { | 
 | 	if ((*p)->u.single == begin) | 
 | 	  { | 
 | 	    ob = *p; | 
 | 	    *p = ob->next; | 
 | 	    goto out; | 
 | 	  } | 
 |       } | 
 |  | 
 |  out: | 
 |   __gthread_mutex_unlock (&object_mutex); | 
 |   gcc_assert (ob); | 
 |   return (void *) ob; | 
 | } | 
 |  | 
 | void * | 
 | __deregister_frame_info (const void *begin) | 
 | { | 
 |   return __deregister_frame_info_bases (begin); | 
 | } | 
 |  | 
 | void | 
 | __deregister_frame (void *begin) | 
 | { | 
 |   /* If .eh_frame is empty, we haven't registered.  */ | 
 |   if (*(uword *) begin != 0) | 
 |     free (__deregister_frame_info (begin)); | 
 | } | 
 |  | 
 |  | 
 | /* Like base_of_encoded_value, but take the base from a struct object | 
 |    instead of an _Unwind_Context.  */ | 
 |  | 
 | static _Unwind_Ptr | 
 | base_from_object (unsigned char encoding, struct object *ob) | 
 | { | 
 |   if (encoding == DW_EH_PE_omit) | 
 |     return 0; | 
 |  | 
 |   switch (encoding & 0x70) | 
 |     { | 
 |     case DW_EH_PE_absptr: | 
 |     case DW_EH_PE_pcrel: | 
 |     case DW_EH_PE_aligned: | 
 |       return 0; | 
 |  | 
 |     case DW_EH_PE_textrel: | 
 |       return (_Unwind_Ptr) ob->tbase; | 
 |     case DW_EH_PE_datarel: | 
 |       return (_Unwind_Ptr) ob->dbase; | 
 |     default: | 
 |       gcc_unreachable (); | 
 |     } | 
 | } | 
 |  | 
 | /* Return the FDE pointer encoding from the CIE.  */ | 
 | /* ??? This is a subset of extract_cie_info from unwind-dw2.c.  */ | 
 |  | 
 | static int | 
 | get_cie_encoding (const struct dwarf_cie *cie) | 
 | { | 
 |   const unsigned char *aug, *p; | 
 |   _Unwind_Ptr dummy; | 
 |   _uleb128_t utmp; | 
 |   _sleb128_t stmp; | 
 |  | 
 |   aug = cie->augmentation; | 
 |   p = aug + strlen ((const char *)aug) + 1; /* Skip the augmentation string.  */ | 
 |   if (__builtin_expect (cie->version >= 4, 0)) | 
 |     { | 
 |       if (p[0] != sizeof (void *) || p[1] != 0) | 
 | 	return DW_EH_PE_omit;		/* We are not prepared to handle unexpected | 
 | 					   address sizes or segment selectors.  */ | 
 |       p += 2;				/* Skip address size and segment size.  */ | 
 |     } | 
 |  | 
 |   if (aug[0] != 'z') | 
 |     return DW_EH_PE_absptr; | 
 |  | 
 |   p = read_uleb128 (p, &utmp);		/* Skip code alignment.  */ | 
 |   p = read_sleb128 (p, &stmp);		/* Skip data alignment.  */ | 
 |   if (cie->version == 1)		/* Skip return address column.  */ | 
 |     p++; | 
 |   else | 
 |     p = read_uleb128 (p, &utmp); | 
 |  | 
 |   aug++;				/* Skip 'z' */ | 
 |   p = read_uleb128 (p, &utmp);		/* Skip augmentation length.  */ | 
 |   while (1) | 
 |     { | 
 |       /* This is what we're looking for.  */ | 
 |       if (*aug == 'R') | 
 | 	return *p; | 
 |       /* Personality encoding and pointer.  */ | 
 |       else if (*aug == 'P') | 
 | 	{ | 
 | 	  /* ??? Avoid dereferencing indirect pointers, since we're | 
 | 	     faking the base address.  Gotta keep DW_EH_PE_aligned | 
 | 	     intact, however.  */ | 
 | 	  p = read_encoded_value_with_base (*p & 0x7F, 0, p + 1, &dummy); | 
 | 	} | 
 |       /* LSDA encoding.  */ | 
 |       else if (*aug == 'L') | 
 | 	p++; | 
 |       /* Otherwise end of string, or unknown augmentation.  */ | 
 |       else | 
 | 	return DW_EH_PE_absptr; | 
 |       aug++; | 
 |     } | 
 | } | 
 |  | 
 | static inline int | 
 | get_fde_encoding (const struct dwarf_fde *f) | 
 | { | 
 |   return get_cie_encoding (get_cie (f)); | 
 | } | 
 |  | 
 |  | 
 | /* Sorting an array of FDEs by address. | 
 |    (Ideally we would have the linker sort the FDEs so we don't have to do | 
 |    it at run time. But the linkers are not yet prepared for this.)  */ | 
 |  | 
 | /* Comparison routines.  Three variants of increasing complexity.  */ | 
 |  | 
 | static int | 
 | fde_unencoded_compare (struct object *ob __attribute__((unused)), | 
 | 		       const fde *x, const fde *y) | 
 | { | 
 |   _Unwind_Ptr x_ptr, y_ptr; | 
 |   memcpy (&x_ptr, x->pc_begin, sizeof (_Unwind_Ptr)); | 
 |   memcpy (&y_ptr, y->pc_begin, sizeof (_Unwind_Ptr)); | 
 |  | 
 |   if (x_ptr > y_ptr) | 
 |     return 1; | 
 |   if (x_ptr < y_ptr) | 
 |     return -1; | 
 |   return 0; | 
 | } | 
 |  | 
 | static int | 
 | fde_single_encoding_compare (struct object *ob, const fde *x, const fde *y) | 
 | { | 
 |   _Unwind_Ptr base, x_ptr, y_ptr; | 
 |  | 
 |   base = base_from_object (ob->s.b.encoding, ob); | 
 |   read_encoded_value_with_base (ob->s.b.encoding, base, x->pc_begin, &x_ptr); | 
 |   read_encoded_value_with_base (ob->s.b.encoding, base, y->pc_begin, &y_ptr); | 
 |  | 
 |   if (x_ptr > y_ptr) | 
 |     return 1; | 
 |   if (x_ptr < y_ptr) | 
 |     return -1; | 
 |   return 0; | 
 | } | 
 |  | 
 | static int | 
 | fde_mixed_encoding_compare (struct object *ob, const fde *x, const fde *y) | 
 | { | 
 |   int x_encoding, y_encoding; | 
 |   _Unwind_Ptr x_ptr, y_ptr; | 
 |  | 
 |   x_encoding = get_fde_encoding (x); | 
 |   read_encoded_value_with_base (x_encoding, base_from_object (x_encoding, ob), | 
 | 				x->pc_begin, &x_ptr); | 
 |  | 
 |   y_encoding = get_fde_encoding (y); | 
 |   read_encoded_value_with_base (y_encoding, base_from_object (y_encoding, ob), | 
 | 				y->pc_begin, &y_ptr); | 
 |  | 
 |   if (x_ptr > y_ptr) | 
 |     return 1; | 
 |   if (x_ptr < y_ptr) | 
 |     return -1; | 
 |   return 0; | 
 | } | 
 |  | 
 | typedef int (*fde_compare_t) (struct object *, const fde *, const fde *); | 
 |  | 
 |  | 
 | /* This is a special mix of insertion sort and heap sort, optimized for | 
 |    the data sets that actually occur. They look like | 
 |    101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130. | 
 |    I.e. a linearly increasing sequence (coming from functions in the text | 
 |    section), with additionally a few unordered elements (coming from functions | 
 |    in gnu_linkonce sections) whose values are higher than the values in the | 
 |    surrounding linear sequence (but not necessarily higher than the values | 
 |    at the end of the linear sequence!). | 
 |    The worst-case total run time is O(N) + O(n log (n)), where N is the | 
 |    total number of FDEs and n is the number of erratic ones.  */ | 
 |  | 
 | struct fde_accumulator | 
 | { | 
 |   struct fde_vector *linear; | 
 |   struct fde_vector *erratic; | 
 | }; | 
 |  | 
 | static inline int | 
 | start_fde_sort (struct fde_accumulator *accu, size_t count) | 
 | { | 
 |   size_t size; | 
 |   if (! count) | 
 |     return 0; | 
 |  | 
 |   size = sizeof (struct fde_vector) + sizeof (const fde *) * count; | 
 |   if ((accu->linear = malloc (size))) | 
 |     { | 
 |       accu->linear->count = 0; | 
 |       if ((accu->erratic = malloc (size))) | 
 | 	accu->erratic->count = 0; | 
 |       return 1; | 
 |     } | 
 |   else | 
 |     return 0; | 
 | } | 
 |  | 
 | static inline void | 
 | fde_insert (struct fde_accumulator *accu, const fde *this_fde) | 
 | { | 
 |   if (accu->linear) | 
 |     accu->linear->array[accu->linear->count++] = this_fde; | 
 | } | 
 |  | 
 | /* Split LINEAR into a linear sequence with low values and an erratic | 
 |    sequence with high values, put the linear one (of longest possible | 
 |    length) into LINEAR and the erratic one into ERRATIC. This is O(N). | 
 |  | 
 |    Because the longest linear sequence we are trying to locate within the | 
 |    incoming LINEAR array can be interspersed with (high valued) erratic | 
 |    entries.  We construct a chain indicating the sequenced entries. | 
 |    To avoid having to allocate this chain, we overlay it onto the space of | 
 |    the ERRATIC array during construction.  A final pass iterates over the | 
 |    chain to determine what should be placed in the ERRATIC array, and | 
 |    what is the linear sequence.  This overlay is safe from aliasing.  */ | 
 |  | 
 | static inline void | 
 | fde_split (struct object *ob, fde_compare_t fde_compare, | 
 | 	   struct fde_vector *linear, struct fde_vector *erratic) | 
 | { | 
 |   static const fde *marker; | 
 |   size_t count = linear->count; | 
 |   const fde *const *chain_end = ▮ | 
 |   size_t i, j, k; | 
 |  | 
 |   /* This should optimize out, but it is wise to make sure this assumption | 
 |      is correct. Should these have different sizes, we cannot cast between | 
 |      them and the overlaying onto ERRATIC will not work.  */ | 
 |   gcc_assert (sizeof (const fde *) == sizeof (const fde **)); | 
 |  | 
 |   for (i = 0; i < count; i++) | 
 |     { | 
 |       const fde *const *probe; | 
 |  | 
 |       for (probe = chain_end; | 
 | 	   probe != &marker && fde_compare (ob, linear->array[i], *probe) < 0; | 
 | 	   probe = chain_end) | 
 | 	{ | 
 | 	  chain_end = (const fde *const*) erratic->array[probe - linear->array]; | 
 | 	  erratic->array[probe - linear->array] = NULL; | 
 | 	} | 
 |       erratic->array[i] = (const fde *) chain_end; | 
 |       chain_end = &linear->array[i]; | 
 |     } | 
 |  | 
 |   /* Each entry in LINEAR which is part of the linear sequence we have | 
 |      discovered will correspond to a non-NULL entry in the chain we built in | 
 |      the ERRATIC array.  */ | 
 |   for (i = j = k = 0; i < count; i++) | 
 |     if (erratic->array[i]) | 
 |       linear->array[j++] = linear->array[i]; | 
 |     else | 
 |       erratic->array[k++] = linear->array[i]; | 
 |   linear->count = j; | 
 |   erratic->count = k; | 
 | } | 
 |  | 
 | #define SWAP(x,y) do { const fde * tmp = x; x = y; y = tmp; } while (0) | 
 |  | 
 | /* Convert a semi-heap to a heap.  A semi-heap is a heap except possibly | 
 |    for the first (root) node; push it down to its rightful place.  */ | 
 |  | 
 | static void | 
 | frame_downheap (struct object *ob, fde_compare_t fde_compare, const fde **a, | 
 | 		int lo, int hi) | 
 | { | 
 |   int i, j; | 
 |  | 
 |   for (i = lo, j = 2*i+1; | 
 |        j < hi; | 
 |        j = 2*i+1) | 
 |     { | 
 |       if (j+1 < hi && fde_compare (ob, a[j], a[j+1]) < 0) | 
 | 	++j; | 
 |  | 
 |       if (fde_compare (ob, a[i], a[j]) < 0) | 
 | 	{ | 
 | 	  SWAP (a[i], a[j]); | 
 | 	  i = j; | 
 | 	} | 
 |       else | 
 | 	break; | 
 |     } | 
 | } | 
 |  | 
 | /* This is O(n log(n)).  BSD/OS defines heapsort in stdlib.h, so we must | 
 |    use a name that does not conflict.  */ | 
 |  | 
 | static void | 
 | frame_heapsort (struct object *ob, fde_compare_t fde_compare, | 
 | 		struct fde_vector *erratic) | 
 | { | 
 |   /* For a description of this algorithm, see: | 
 |      Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed., | 
 |      p. 60-61.  */ | 
 |   const fde ** a = erratic->array; | 
 |   /* A portion of the array is called a "heap" if for all i>=0: | 
 |      If i and 2i+1 are valid indices, then a[i] >= a[2i+1]. | 
 |      If i and 2i+2 are valid indices, then a[i] >= a[2i+2].  */ | 
 |   size_t n = erratic->count; | 
 |   int m; | 
 |  | 
 |   /* Expand our heap incrementally from the end of the array, heapifying | 
 |      each resulting semi-heap as we go.  After each step, a[m] is the top | 
 |      of a heap.  */ | 
 |   for (m = n/2-1; m >= 0; --m) | 
 |     frame_downheap (ob, fde_compare, a, m, n); | 
 |  | 
 |   /* Shrink our heap incrementally from the end of the array, first | 
 |      swapping out the largest element a[0] and then re-heapifying the | 
 |      resulting semi-heap.  After each step, a[0..m) is a heap.  */ | 
 |   for (m = n-1; m >= 1; --m) | 
 |     { | 
 |       SWAP (a[0], a[m]); | 
 |       frame_downheap (ob, fde_compare, a, 0, m); | 
 |     } | 
 | #undef SWAP | 
 | } | 
 |  | 
 | /* Merge V1 and V2, both sorted, and put the result into V1.  */ | 
 | static inline void | 
 | fde_merge (struct object *ob, fde_compare_t fde_compare, | 
 | 	   struct fde_vector *v1, struct fde_vector *v2) | 
 | { | 
 |   size_t i1, i2; | 
 |   const fde * fde2; | 
 |  | 
 |   i2 = v2->count; | 
 |   if (i2 > 0) | 
 |     { | 
 |       i1 = v1->count; | 
 |       do | 
 | 	{ | 
 | 	  i2--; | 
 | 	  fde2 = v2->array[i2]; | 
 | 	  while (i1 > 0 && fde_compare (ob, v1->array[i1-1], fde2) > 0) | 
 | 	    { | 
 | 	      v1->array[i1+i2] = v1->array[i1-1]; | 
 | 	      i1--; | 
 | 	    } | 
 | 	  v1->array[i1+i2] = fde2; | 
 | 	} | 
 |       while (i2 > 0); | 
 |       v1->count += v2->count; | 
 |     } | 
 | } | 
 |  | 
 | static inline void | 
 | end_fde_sort (struct object *ob, struct fde_accumulator *accu, size_t count) | 
 | { | 
 |   fde_compare_t fde_compare; | 
 |  | 
 |   gcc_assert (!accu->linear || accu->linear->count == count); | 
 |  | 
 |   if (ob->s.b.mixed_encoding) | 
 |     fde_compare = fde_mixed_encoding_compare; | 
 |   else if (ob->s.b.encoding == DW_EH_PE_absptr) | 
 |     fde_compare = fde_unencoded_compare; | 
 |   else | 
 |     fde_compare = fde_single_encoding_compare; | 
 |  | 
 |   if (accu->erratic) | 
 |     { | 
 |       fde_split (ob, fde_compare, accu->linear, accu->erratic); | 
 |       gcc_assert (accu->linear->count + accu->erratic->count == count); | 
 |       frame_heapsort (ob, fde_compare, accu->erratic); | 
 |       fde_merge (ob, fde_compare, accu->linear, accu->erratic); | 
 |       free (accu->erratic); | 
 |     } | 
 |   else | 
 |     { | 
 |       /* We've not managed to malloc an erratic array, | 
 | 	 so heap sort in the linear one.  */ | 
 |       frame_heapsort (ob, fde_compare, accu->linear); | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | /* Update encoding, mixed_encoding, and pc_begin for OB for the | 
 |    fde array beginning at THIS_FDE.  Return the number of fdes | 
 |    encountered along the way.  */ | 
 |  | 
 | static size_t | 
 | classify_object_over_fdes (struct object *ob, const fde *this_fde) | 
 | { | 
 |   const struct dwarf_cie *last_cie = 0; | 
 |   size_t count = 0; | 
 |   int encoding = DW_EH_PE_absptr; | 
 |   _Unwind_Ptr base = 0; | 
 |  | 
 |   for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde)) | 
 |     { | 
 |       const struct dwarf_cie *this_cie; | 
 |       _Unwind_Ptr mask, pc_begin; | 
 |  | 
 |       /* Skip CIEs.  */ | 
 |       if (this_fde->CIE_delta == 0) | 
 | 	continue; | 
 |  | 
 |       /* Determine the encoding for this FDE.  Note mixed encoded | 
 | 	 objects for later.  */ | 
 |       this_cie = get_cie (this_fde); | 
 |       if (this_cie != last_cie) | 
 | 	{ | 
 | 	  last_cie = this_cie; | 
 | 	  encoding = get_cie_encoding (this_cie); | 
 | 	  if (encoding == DW_EH_PE_omit) | 
 | 	    return -1; | 
 | 	  base = base_from_object (encoding, ob); | 
 | 	  if (ob->s.b.encoding == DW_EH_PE_omit) | 
 | 	    ob->s.b.encoding = encoding; | 
 | 	  else if (ob->s.b.encoding != encoding) | 
 | 	    ob->s.b.mixed_encoding = 1; | 
 | 	} | 
 |  | 
 |       read_encoded_value_with_base (encoding, base, this_fde->pc_begin, | 
 | 				    &pc_begin); | 
 |  | 
 |       /* Take care to ignore link-once functions that were removed. | 
 | 	 In these cases, the function address will be NULL, but if | 
 | 	 the encoding is smaller than a pointer a true NULL may not | 
 | 	 be representable.  Assume 0 in the representable bits is NULL.  */ | 
 |       mask = size_of_encoded_value (encoding); | 
 |       if (mask < sizeof (void *)) | 
 | 	mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1; | 
 |       else | 
 | 	mask = -1; | 
 |  | 
 |       if ((pc_begin & mask) == 0) | 
 | 	continue; | 
 |  | 
 |       count += 1; | 
 |       if ((void *) pc_begin < ob->pc_begin) | 
 | 	ob->pc_begin = (void *) pc_begin; | 
 |     } | 
 |  | 
 |   return count; | 
 | } | 
 |  | 
 | static void | 
 | add_fdes (struct object *ob, struct fde_accumulator *accu, const fde *this_fde) | 
 | { | 
 |   const struct dwarf_cie *last_cie = 0; | 
 |   int encoding = ob->s.b.encoding; | 
 |   _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob); | 
 |  | 
 |   for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde)) | 
 |     { | 
 |       const struct dwarf_cie *this_cie; | 
 |  | 
 |       /* Skip CIEs.  */ | 
 |       if (this_fde->CIE_delta == 0) | 
 | 	continue; | 
 |  | 
 |       if (ob->s.b.mixed_encoding) | 
 | 	{ | 
 | 	  /* Determine the encoding for this FDE.  Note mixed encoded | 
 | 	     objects for later.  */ | 
 | 	  this_cie = get_cie (this_fde); | 
 | 	  if (this_cie != last_cie) | 
 | 	    { | 
 | 	      last_cie = this_cie; | 
 | 	      encoding = get_cie_encoding (this_cie); | 
 | 	      base = base_from_object (encoding, ob); | 
 | 	    } | 
 | 	} | 
 |  | 
 |       if (encoding == DW_EH_PE_absptr) | 
 | 	{ | 
 | 	  _Unwind_Ptr ptr; | 
 | 	  memcpy (&ptr, this_fde->pc_begin, sizeof (_Unwind_Ptr)); | 
 | 	  if (ptr == 0) | 
 | 	    continue; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  _Unwind_Ptr pc_begin, mask; | 
 |  | 
 | 	  read_encoded_value_with_base (encoding, base, this_fde->pc_begin, | 
 | 					&pc_begin); | 
 |  | 
 | 	  /* Take care to ignore link-once functions that were removed. | 
 | 	     In these cases, the function address will be NULL, but if | 
 | 	     the encoding is smaller than a pointer a true NULL may not | 
 | 	     be representable.  Assume 0 in the representable bits is NULL.  */ | 
 | 	  mask = size_of_encoded_value (encoding); | 
 | 	  if (mask < sizeof (void *)) | 
 | 	    mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1; | 
 | 	  else | 
 | 	    mask = -1; | 
 |  | 
 | 	  if ((pc_begin & mask) == 0) | 
 | 	    continue; | 
 | 	} | 
 |  | 
 |       fde_insert (accu, this_fde); | 
 |     } | 
 | } | 
 |  | 
 | /* Set up a sorted array of pointers to FDEs for a loaded object.  We | 
 |    count up the entries before allocating the array because it's likely to | 
 |    be faster.  We can be called multiple times, should we have failed to | 
 |    allocate a sorted fde array on a previous occasion.  */ | 
 |  | 
 | static inline void | 
 | init_object (struct object* ob) | 
 | { | 
 |   struct fde_accumulator accu; | 
 |   size_t count; | 
 |  | 
 |   count = ob->s.b.count; | 
 |   if (count == 0) | 
 |     { | 
 |       if (ob->s.b.from_array) | 
 | 	{ | 
 | 	  fde **p = ob->u.array; | 
 | 	  for (count = 0; *p; ++p) | 
 | 	    { | 
 | 	      size_t cur_count = classify_object_over_fdes (ob, *p); | 
 | 	      if (cur_count == (size_t) -1) | 
 | 		goto unhandled_fdes; | 
 | 	      count += cur_count; | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  count = classify_object_over_fdes (ob, ob->u.single); | 
 | 	  if (count == (size_t) -1) | 
 | 	    { | 
 | 	      static const fde terminator; | 
 | 	    unhandled_fdes: | 
 | 	      ob->s.i = 0; | 
 | 	      ob->s.b.encoding = DW_EH_PE_omit; | 
 | 	      ob->u.single = &terminator; | 
 | 	      return; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       /* The count field we have in the main struct object is somewhat | 
 | 	 limited, but should suffice for virtually all cases.  If the | 
 | 	 counted value doesn't fit, re-write a zero.  The worst that | 
 | 	 happens is that we re-count next time -- admittedly non-trivial | 
 | 	 in that this implies some 2M fdes, but at least we function.  */ | 
 |       ob->s.b.count = count; | 
 |       if (ob->s.b.count != count) | 
 | 	ob->s.b.count = 0; | 
 |     } | 
 |  | 
 |   if (!start_fde_sort (&accu, count)) | 
 |     return; | 
 |  | 
 |   if (ob->s.b.from_array) | 
 |     { | 
 |       fde **p; | 
 |       for (p = ob->u.array; *p; ++p) | 
 | 	add_fdes (ob, &accu, *p); | 
 |     } | 
 |   else | 
 |     add_fdes (ob, &accu, ob->u.single); | 
 |  | 
 |   end_fde_sort (ob, &accu, count); | 
 |  | 
 |   /* Save the original fde pointer, since this is the key by which the | 
 |      DSO will deregister the object.  */ | 
 |   accu.linear->orig_data = ob->u.single; | 
 |   ob->u.sort = accu.linear; | 
 |  | 
 |   ob->s.b.sorted = 1; | 
 | } | 
 |  | 
 | /* A linear search through a set of FDEs for the given PC.  This is | 
 |    used when there was insufficient memory to allocate and sort an | 
 |    array.  */ | 
 |  | 
 | static const fde * | 
 | linear_search_fdes (struct object *ob, const fde *this_fde, void *pc) | 
 | { | 
 |   const struct dwarf_cie *last_cie = 0; | 
 |   int encoding = ob->s.b.encoding; | 
 |   _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob); | 
 |  | 
 |   for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde)) | 
 |     { | 
 |       const struct dwarf_cie *this_cie; | 
 |       _Unwind_Ptr pc_begin, pc_range; | 
 |  | 
 |       /* Skip CIEs.  */ | 
 |       if (this_fde->CIE_delta == 0) | 
 | 	continue; | 
 |  | 
 |       if (ob->s.b.mixed_encoding) | 
 | 	{ | 
 | 	  /* Determine the encoding for this FDE.  Note mixed encoded | 
 | 	     objects for later.  */ | 
 | 	  this_cie = get_cie (this_fde); | 
 | 	  if (this_cie != last_cie) | 
 | 	    { | 
 | 	      last_cie = this_cie; | 
 | 	      encoding = get_cie_encoding (this_cie); | 
 | 	      base = base_from_object (encoding, ob); | 
 | 	    } | 
 | 	} | 
 |  | 
 |       if (encoding == DW_EH_PE_absptr) | 
 | 	{ | 
 | 	  const _Unwind_Ptr *pc_array = (const _Unwind_Ptr *) this_fde->pc_begin; | 
 | 	  pc_begin = pc_array[0]; | 
 | 	  pc_range = pc_array[1]; | 
 | 	  if (pc_begin == 0) | 
 | 	    continue; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  _Unwind_Ptr mask; | 
 | 	  const unsigned char *p; | 
 |  | 
 | 	  p = read_encoded_value_with_base (encoding, base, | 
 | 					    this_fde->pc_begin, &pc_begin); | 
 | 	  read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range); | 
 |  | 
 | 	  /* Take care to ignore link-once functions that were removed. | 
 | 	     In these cases, the function address will be NULL, but if | 
 | 	     the encoding is smaller than a pointer a true NULL may not | 
 | 	     be representable.  Assume 0 in the representable bits is NULL.  */ | 
 | 	  mask = size_of_encoded_value (encoding); | 
 | 	  if (mask < sizeof (void *)) | 
 | 	    mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1; | 
 | 	  else | 
 | 	    mask = -1; | 
 |  | 
 | 	  if ((pc_begin & mask) == 0) | 
 | 	    continue; | 
 | 	} | 
 |  | 
 |       if ((_Unwind_Ptr) pc - pc_begin < pc_range) | 
 | 	return this_fde; | 
 |     } | 
 |  | 
 |   return NULL; | 
 | } | 
 |  | 
 | /* Binary search for an FDE containing the given PC.  Here are three | 
 |    implementations of increasing complexity.  */ | 
 |  | 
 | static inline const fde * | 
 | binary_search_unencoded_fdes (struct object *ob, void *pc) | 
 | { | 
 |   struct fde_vector *vec = ob->u.sort; | 
 |   size_t lo, hi; | 
 |  | 
 |   for (lo = 0, hi = vec->count; lo < hi; ) | 
 |     { | 
 |       size_t i = (lo + hi) / 2; | 
 |       const fde *const f = vec->array[i]; | 
 |       void *pc_begin; | 
 |       uaddr pc_range; | 
 |       memcpy (&pc_begin, (const void * const *) f->pc_begin, sizeof (void *)); | 
 |       memcpy (&pc_range, (const uaddr *) f->pc_begin + 1, sizeof (uaddr)); | 
 |  | 
 |       if (pc < pc_begin) | 
 | 	hi = i; | 
 |       else if (pc >= pc_begin + pc_range) | 
 | 	lo = i + 1; | 
 |       else | 
 | 	return f; | 
 |     } | 
 |  | 
 |   return NULL; | 
 | } | 
 |  | 
 | static inline const fde * | 
 | binary_search_single_encoding_fdes (struct object *ob, void *pc) | 
 | { | 
 |   struct fde_vector *vec = ob->u.sort; | 
 |   int encoding = ob->s.b.encoding; | 
 |   _Unwind_Ptr base = base_from_object (encoding, ob); | 
 |   size_t lo, hi; | 
 |  | 
 |   for (lo = 0, hi = vec->count; lo < hi; ) | 
 |     { | 
 |       size_t i = (lo + hi) / 2; | 
 |       const fde *f = vec->array[i]; | 
 |       _Unwind_Ptr pc_begin, pc_range; | 
 |       const unsigned char *p; | 
 |  | 
 |       p = read_encoded_value_with_base (encoding, base, f->pc_begin, | 
 | 					&pc_begin); | 
 |       read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range); | 
 |  | 
 |       if ((_Unwind_Ptr) pc < pc_begin) | 
 | 	hi = i; | 
 |       else if ((_Unwind_Ptr) pc >= pc_begin + pc_range) | 
 | 	lo = i + 1; | 
 |       else | 
 | 	return f; | 
 |     } | 
 |  | 
 |   return NULL; | 
 | } | 
 |  | 
 | static inline const fde * | 
 | binary_search_mixed_encoding_fdes (struct object *ob, void *pc) | 
 | { | 
 |   struct fde_vector *vec = ob->u.sort; | 
 |   size_t lo, hi; | 
 |  | 
 |   for (lo = 0, hi = vec->count; lo < hi; ) | 
 |     { | 
 |       size_t i = (lo + hi) / 2; | 
 |       const fde *f = vec->array[i]; | 
 |       _Unwind_Ptr pc_begin, pc_range; | 
 |       const unsigned char *p; | 
 |       int encoding; | 
 |  | 
 |       encoding = get_fde_encoding (f); | 
 |       p = read_encoded_value_with_base (encoding, | 
 | 					base_from_object (encoding, ob), | 
 | 					f->pc_begin, &pc_begin); | 
 |       read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range); | 
 |  | 
 |       if ((_Unwind_Ptr) pc < pc_begin) | 
 | 	hi = i; | 
 |       else if ((_Unwind_Ptr) pc >= pc_begin + pc_range) | 
 | 	lo = i + 1; | 
 |       else | 
 | 	return f; | 
 |     } | 
 |  | 
 |   return NULL; | 
 | } | 
 |  | 
 | static const fde * | 
 | search_object (struct object* ob, void *pc) | 
 | { | 
 |   /* If the data hasn't been sorted, try to do this now.  We may have | 
 |      more memory available than last time we tried.  */ | 
 |   if (! ob->s.b.sorted) | 
 |     { | 
 |       init_object (ob); | 
 |  | 
 |       /* Despite the above comment, the normal reason to get here is | 
 | 	 that we've not processed this object before.  A quick range | 
 | 	 check is in order.  */ | 
 |       if (pc < ob->pc_begin) | 
 | 	return NULL; | 
 |     } | 
 |  | 
 |   if (ob->s.b.sorted) | 
 |     { | 
 |       if (ob->s.b.mixed_encoding) | 
 | 	return binary_search_mixed_encoding_fdes (ob, pc); | 
 |       else if (ob->s.b.encoding == DW_EH_PE_absptr) | 
 | 	return binary_search_unencoded_fdes (ob, pc); | 
 |       else | 
 | 	return binary_search_single_encoding_fdes (ob, pc); | 
 |     } | 
 |   else | 
 |     { | 
 |       /* Long slow laborious linear search, cos we've no memory.  */ | 
 |       if (ob->s.b.from_array) | 
 | 	{ | 
 | 	  fde **p; | 
 | 	  for (p = ob->u.array; *p ; p++) | 
 | 	    { | 
 | 	      const fde *f = linear_search_fdes (ob, *p, pc); | 
 | 	      if (f) | 
 | 		return f; | 
 | 	    } | 
 | 	  return NULL; | 
 | 	} | 
 |       else | 
 | 	return linear_search_fdes (ob, ob->u.single, pc); | 
 |     } | 
 | } | 
 |  | 
 | const fde * | 
 | _Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases) | 
 | { | 
 |   struct object *ob; | 
 |   const fde *f = NULL; | 
 |  | 
 | #ifdef ATOMIC_FDE_FAST_PATH | 
 |   /* For targets where unwind info is usually not registered through these | 
 |      APIs anymore, avoid taking a global lock. | 
 |      Use relaxed MO here, it is up to the app to ensure that the library | 
 |      loading/initialization happens-before using that library in other | 
 |      threads (in particular unwinding with that library's functions | 
 |      appearing in the backtraces).  Calling that library's functions | 
 |      without waiting for the library to initialize would be racy.  */ | 
 |   if (__builtin_expect (!__atomic_load_n (&any_objects_registered, | 
 | 					  __ATOMIC_RELAXED), 1)) | 
 |     return NULL; | 
 | #endif | 
 |  | 
 |   init_object_mutex_once (); | 
 |   __gthread_mutex_lock (&object_mutex); | 
 |  | 
 |   /* Linear search through the classified objects, to find the one | 
 |      containing the pc.  Note that pc_begin is sorted descending, and | 
 |      we expect objects to be non-overlapping.  */ | 
 |   for (ob = seen_objects; ob; ob = ob->next) | 
 |     if (pc >= ob->pc_begin) | 
 |       { | 
 | 	f = search_object (ob, pc); | 
 | 	if (f) | 
 | 	  goto fini; | 
 | 	break; | 
 |       } | 
 |  | 
 |   /* Classify and search the objects we've not yet processed.  */ | 
 |   while ((ob = unseen_objects)) | 
 |     { | 
 |       struct object **p; | 
 |  | 
 |       unseen_objects = ob->next; | 
 |       f = search_object (ob, pc); | 
 |  | 
 |       /* Insert the object into the classified list.  */ | 
 |       for (p = &seen_objects; *p ; p = &(*p)->next) | 
 | 	if ((*p)->pc_begin < ob->pc_begin) | 
 | 	  break; | 
 |       ob->next = *p; | 
 |       *p = ob; | 
 |  | 
 |       if (f) | 
 | 	goto fini; | 
 |     } | 
 |  | 
 |  fini: | 
 |   __gthread_mutex_unlock (&object_mutex); | 
 |  | 
 |   if (f) | 
 |     { | 
 |       int encoding; | 
 |       _Unwind_Ptr func; | 
 |  | 
 |       bases->tbase = ob->tbase; | 
 |       bases->dbase = ob->dbase; | 
 |  | 
 |       encoding = ob->s.b.encoding; | 
 |       if (ob->s.b.mixed_encoding) | 
 | 	encoding = get_fde_encoding (f); | 
 |       read_encoded_value_with_base (encoding, base_from_object (encoding, ob), | 
 | 				    f->pc_begin, &func); | 
 |       bases->func = (void *) func; | 
 |     } | 
 |  | 
 |   return f; | 
 | } |