| //=-- lsan_common.cc ------------------------------------------------------===// |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of LeakSanitizer. |
| // Implementation of common leak checking functionality. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "lsan_common.h" |
| |
| #include "sanitizer_common/sanitizer_common.h" |
| #include "sanitizer_common/sanitizer_flags.h" |
| #include "sanitizer_common/sanitizer_flag_parser.h" |
| #include "sanitizer_common/sanitizer_placement_new.h" |
| #include "sanitizer_common/sanitizer_procmaps.h" |
| #include "sanitizer_common/sanitizer_stackdepot.h" |
| #include "sanitizer_common/sanitizer_stacktrace.h" |
| #include "sanitizer_common/sanitizer_suppressions.h" |
| #include "sanitizer_common/sanitizer_report_decorator.h" |
| #include "sanitizer_common/sanitizer_tls_get_addr.h" |
| |
| #if CAN_SANITIZE_LEAKS |
| namespace __lsan { |
| |
| // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and |
| // also to protect the global list of root regions. |
| BlockingMutex global_mutex(LINKER_INITIALIZED); |
| |
| Flags lsan_flags; |
| |
| void DisableCounterUnderflow() { |
| if (common_flags()->detect_leaks) { |
| Report("Unmatched call to __lsan_enable().\n"); |
| Die(); |
| } |
| } |
| |
| void Flags::SetDefaults() { |
| #define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue; |
| #include "lsan_flags.inc" |
| #undef LSAN_FLAG |
| } |
| |
| void RegisterLsanFlags(FlagParser *parser, Flags *f) { |
| #define LSAN_FLAG(Type, Name, DefaultValue, Description) \ |
| RegisterFlag(parser, #Name, Description, &f->Name); |
| #include "lsan_flags.inc" |
| #undef LSAN_FLAG |
| } |
| |
| #define LOG_POINTERS(...) \ |
| do { \ |
| if (flags()->log_pointers) Report(__VA_ARGS__); \ |
| } while (0) |
| |
| #define LOG_THREADS(...) \ |
| do { \ |
| if (flags()->log_threads) Report(__VA_ARGS__); \ |
| } while (0) |
| |
| ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)]; |
| static SuppressionContext *suppression_ctx = nullptr; |
| static const char kSuppressionLeak[] = "leak"; |
| static const char *kSuppressionTypes[] = { kSuppressionLeak }; |
| static const char kStdSuppressions[] = |
| #if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT |
| // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT |
| // definition. |
| "leak:*pthread_exit*\n" |
| #endif // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT |
| #if SANITIZER_MAC |
| // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173 |
| "leak:*_os_trace*\n" |
| #endif |
| // TLS leak in some glibc versions, described in |
| // https://sourceware.org/bugzilla/show_bug.cgi?id=12650. |
| "leak:*tls_get_addr*\n"; |
| |
| void InitializeSuppressions() { |
| CHECK_EQ(nullptr, suppression_ctx); |
| suppression_ctx = new (suppression_placeholder) // NOLINT |
| SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes)); |
| suppression_ctx->ParseFromFile(flags()->suppressions); |
| if (&__lsan_default_suppressions) |
| suppression_ctx->Parse(__lsan_default_suppressions()); |
| suppression_ctx->Parse(kStdSuppressions); |
| } |
| |
| static SuppressionContext *GetSuppressionContext() { |
| CHECK(suppression_ctx); |
| return suppression_ctx; |
| } |
| |
| static InternalMmapVector<RootRegion> *root_regions; |
| |
| InternalMmapVector<RootRegion> const *GetRootRegions() { return root_regions; } |
| |
| void InitializeRootRegions() { |
| CHECK(!root_regions); |
| ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)]; |
| root_regions = new(placeholder) InternalMmapVector<RootRegion>(1); |
| } |
| |
| const char *MaybeCallLsanDefaultOptions() { |
| return (&__lsan_default_options) ? __lsan_default_options() : ""; |
| } |
| |
| void InitCommonLsan() { |
| InitializeRootRegions(); |
| if (common_flags()->detect_leaks) { |
| // Initialization which can fail or print warnings should only be done if |
| // LSan is actually enabled. |
| InitializeSuppressions(); |
| InitializePlatformSpecificModules(); |
| } |
| } |
| |
| class Decorator: public __sanitizer::SanitizerCommonDecorator { |
| public: |
| Decorator() : SanitizerCommonDecorator() { } |
| const char *Error() { return Red(); } |
| const char *Leak() { return Blue(); } |
| }; |
| |
| static inline bool CanBeAHeapPointer(uptr p) { |
| // Since our heap is located in mmap-ed memory, we can assume a sensible lower |
| // bound on heap addresses. |
| const uptr kMinAddress = 4 * 4096; |
| if (p < kMinAddress) return false; |
| #if defined(__x86_64__) |
| // Accept only canonical form user-space addresses. |
| return ((p >> 47) == 0); |
| #elif defined(__mips64) |
| return ((p >> 40) == 0); |
| #elif defined(__aarch64__) |
| unsigned runtimeVMA = |
| (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1); |
| return ((p >> runtimeVMA) == 0); |
| #else |
| return true; |
| #endif |
| } |
| |
| // Scans the memory range, looking for byte patterns that point into allocator |
| // chunks. Marks those chunks with |tag| and adds them to |frontier|. |
| // There are two usage modes for this function: finding reachable chunks |
| // (|tag| = kReachable) and finding indirectly leaked chunks |
| // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill, |
| // so |frontier| = 0. |
| void ScanRangeForPointers(uptr begin, uptr end, |
| Frontier *frontier, |
| const char *region_type, ChunkTag tag) { |
| CHECK(tag == kReachable || tag == kIndirectlyLeaked); |
| const uptr alignment = flags()->pointer_alignment(); |
| LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end); |
| uptr pp = begin; |
| if (pp % alignment) |
| pp = pp + alignment - pp % alignment; |
| for (; pp + sizeof(void *) <= end; pp += alignment) { // NOLINT |
| void *p = *reinterpret_cast<void **>(pp); |
| if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue; |
| uptr chunk = PointsIntoChunk(p); |
| if (!chunk) continue; |
| // Pointers to self don't count. This matters when tag == kIndirectlyLeaked. |
| if (chunk == begin) continue; |
| LsanMetadata m(chunk); |
| if (m.tag() == kReachable || m.tag() == kIgnored) continue; |
| |
| // Do this check relatively late so we can log only the interesting cases. |
| if (!flags()->use_poisoned && WordIsPoisoned(pp)) { |
| LOG_POINTERS( |
| "%p is poisoned: ignoring %p pointing into chunk %p-%p of size " |
| "%zu.\n", |
| pp, p, chunk, chunk + m.requested_size(), m.requested_size()); |
| continue; |
| } |
| |
| m.set_tag(tag); |
| LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p, |
| chunk, chunk + m.requested_size(), m.requested_size()); |
| if (frontier) |
| frontier->push_back(chunk); |
| } |
| } |
| |
| // Scans a global range for pointers |
| void ScanGlobalRange(uptr begin, uptr end, Frontier *frontier) { |
| uptr allocator_begin = 0, allocator_end = 0; |
| GetAllocatorGlobalRange(&allocator_begin, &allocator_end); |
| if (begin <= allocator_begin && allocator_begin < end) { |
| CHECK_LE(allocator_begin, allocator_end); |
| CHECK_LE(allocator_end, end); |
| if (begin < allocator_begin) |
| ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL", |
| kReachable); |
| if (allocator_end < end) |
| ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable); |
| } else { |
| ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable); |
| } |
| } |
| |
| void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) { |
| Frontier *frontier = reinterpret_cast<Frontier *>(arg); |
| ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable); |
| } |
| |
| // Scans thread data (stacks and TLS) for heap pointers. |
| static void ProcessThreads(SuspendedThreadsList const &suspended_threads, |
| Frontier *frontier) { |
| InternalScopedBuffer<uptr> registers(suspended_threads.RegisterCount()); |
| uptr registers_begin = reinterpret_cast<uptr>(registers.data()); |
| uptr registers_end = registers_begin + registers.size(); |
| for (uptr i = 0; i < suspended_threads.ThreadCount(); i++) { |
| tid_t os_id = static_cast<tid_t>(suspended_threads.GetThreadID(i)); |
| LOG_THREADS("Processing thread %d.\n", os_id); |
| uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end; |
| DTLS *dtls; |
| bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end, |
| &tls_begin, &tls_end, |
| &cache_begin, &cache_end, &dtls); |
| if (!thread_found) { |
| // If a thread can't be found in the thread registry, it's probably in the |
| // process of destruction. Log this event and move on. |
| LOG_THREADS("Thread %d not found in registry.\n", os_id); |
| continue; |
| } |
| uptr sp; |
| PtraceRegistersStatus have_registers = |
| suspended_threads.GetRegistersAndSP(i, registers.data(), &sp); |
| if (have_registers != REGISTERS_AVAILABLE) { |
| Report("Unable to get registers from thread %d.\n", os_id); |
| // If unable to get SP, consider the entire stack to be reachable unless |
| // GetRegistersAndSP failed with ESRCH. |
| if (have_registers == REGISTERS_UNAVAILABLE_FATAL) continue; |
| sp = stack_begin; |
| } |
| |
| if (flags()->use_registers && have_registers) |
| ScanRangeForPointers(registers_begin, registers_end, frontier, |
| "REGISTERS", kReachable); |
| |
| if (flags()->use_stacks) { |
| LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp); |
| if (sp < stack_begin || sp >= stack_end) { |
| // SP is outside the recorded stack range (e.g. the thread is running a |
| // signal handler on alternate stack, or swapcontext was used). |
| // Again, consider the entire stack range to be reachable. |
| LOG_THREADS("WARNING: stack pointer not in stack range.\n"); |
| uptr page_size = GetPageSizeCached(); |
| int skipped = 0; |
| while (stack_begin < stack_end && |
| !IsAccessibleMemoryRange(stack_begin, 1)) { |
| skipped++; |
| stack_begin += page_size; |
| } |
| LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n", |
| skipped, stack_begin, stack_end); |
| } else { |
| // Shrink the stack range to ignore out-of-scope values. |
| stack_begin = sp; |
| } |
| ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK", |
| kReachable); |
| ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier); |
| } |
| |
| if (flags()->use_tls) { |
| if (tls_begin) { |
| LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end); |
| // If the tls and cache ranges don't overlap, scan full tls range, |
| // otherwise, only scan the non-overlapping portions |
| if (cache_begin == cache_end || tls_end < cache_begin || |
| tls_begin > cache_end) { |
| ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable); |
| } else { |
| if (tls_begin < cache_begin) |
| ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS", |
| kReachable); |
| if (tls_end > cache_end) |
| ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", |
| kReachable); |
| } |
| } |
| if (dtls && !DTLSInDestruction(dtls)) { |
| for (uptr j = 0; j < dtls->dtv_size; ++j) { |
| uptr dtls_beg = dtls->dtv[j].beg; |
| uptr dtls_end = dtls_beg + dtls->dtv[j].size; |
| if (dtls_beg < dtls_end) { |
| LOG_THREADS("DTLS %zu at %p-%p.\n", j, dtls_beg, dtls_end); |
| ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS", |
| kReachable); |
| } |
| } |
| } else { |
| // We are handling a thread with DTLS under destruction. Log about |
| // this and continue. |
| LOG_THREADS("Thread %d has DTLS under destruction.\n", os_id); |
| } |
| } |
| } |
| } |
| |
| void ScanRootRegion(Frontier *frontier, const RootRegion &root_region, |
| uptr region_begin, uptr region_end, bool is_readable) { |
| uptr intersection_begin = Max(root_region.begin, region_begin); |
| uptr intersection_end = Min(region_end, root_region.begin + root_region.size); |
| if (intersection_begin >= intersection_end) return; |
| LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n", |
| root_region.begin, root_region.begin + root_region.size, |
| region_begin, region_end, |
| is_readable ? "readable" : "unreadable"); |
| if (is_readable) |
| ScanRangeForPointers(intersection_begin, intersection_end, frontier, "ROOT", |
| kReachable); |
| } |
| |
| static void ProcessRootRegion(Frontier *frontier, |
| const RootRegion &root_region) { |
| MemoryMappingLayout proc_maps(/*cache_enabled*/ true); |
| MemoryMappedSegment segment; |
| while (proc_maps.Next(&segment)) { |
| ScanRootRegion(frontier, root_region, segment.start, segment.end, |
| segment.IsReadable()); |
| } |
| } |
| |
| // Scans root regions for heap pointers. |
| static void ProcessRootRegions(Frontier *frontier) { |
| if (!flags()->use_root_regions) return; |
| CHECK(root_regions); |
| for (uptr i = 0; i < root_regions->size(); i++) { |
| ProcessRootRegion(frontier, (*root_regions)[i]); |
| } |
| } |
| |
| static void FloodFillTag(Frontier *frontier, ChunkTag tag) { |
| while (frontier->size()) { |
| uptr next_chunk = frontier->back(); |
| frontier->pop_back(); |
| LsanMetadata m(next_chunk); |
| ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier, |
| "HEAP", tag); |
| } |
| } |
| |
| // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks |
| // which are reachable from it as indirectly leaked. |
| static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) { |
| chunk = GetUserBegin(chunk); |
| LsanMetadata m(chunk); |
| if (m.allocated() && m.tag() != kReachable) { |
| ScanRangeForPointers(chunk, chunk + m.requested_size(), |
| /* frontier */ nullptr, "HEAP", kIndirectlyLeaked); |
| } |
| } |
| |
| // ForEachChunk callback. If chunk is marked as ignored, adds its address to |
| // frontier. |
| static void CollectIgnoredCb(uptr chunk, void *arg) { |
| CHECK(arg); |
| chunk = GetUserBegin(chunk); |
| LsanMetadata m(chunk); |
| if (m.allocated() && m.tag() == kIgnored) { |
| LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n", |
| chunk, chunk + m.requested_size(), m.requested_size()); |
| reinterpret_cast<Frontier *>(arg)->push_back(chunk); |
| } |
| } |
| |
| static uptr GetCallerPC(u32 stack_id, StackDepotReverseMap *map) { |
| CHECK(stack_id); |
| StackTrace stack = map->Get(stack_id); |
| // The top frame is our malloc/calloc/etc. The next frame is the caller. |
| if (stack.size >= 2) |
| return stack.trace[1]; |
| return 0; |
| } |
| |
| struct InvalidPCParam { |
| Frontier *frontier; |
| StackDepotReverseMap *stack_depot_reverse_map; |
| bool skip_linker_allocations; |
| }; |
| |
| // ForEachChunk callback. If the caller pc is invalid or is within the linker, |
| // mark as reachable. Called by ProcessPlatformSpecificAllocations. |
| static void MarkInvalidPCCb(uptr chunk, void *arg) { |
| CHECK(arg); |
| InvalidPCParam *param = reinterpret_cast<InvalidPCParam *>(arg); |
| chunk = GetUserBegin(chunk); |
| LsanMetadata m(chunk); |
| if (m.allocated() && m.tag() != kReachable && m.tag() != kIgnored) { |
| u32 stack_id = m.stack_trace_id(); |
| uptr caller_pc = 0; |
| if (stack_id > 0) |
| caller_pc = GetCallerPC(stack_id, param->stack_depot_reverse_map); |
| // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark |
| // it as reachable, as we can't properly report its allocation stack anyway. |
| if (caller_pc == 0 || (param->skip_linker_allocations && |
| GetLinker()->containsAddress(caller_pc))) { |
| m.set_tag(kReachable); |
| param->frontier->push_back(chunk); |
| } |
| } |
| } |
| |
| // On Linux, handles dynamically allocated TLS blocks by treating all chunks |
| // allocated from ld-linux.so as reachable. |
| // Dynamic TLS blocks contain the TLS variables of dynamically loaded modules. |
| // They are allocated with a __libc_memalign() call in allocate_and_init() |
| // (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those |
| // blocks, but we can make sure they come from our own allocator by intercepting |
| // __libc_memalign(). On top of that, there is no easy way to reach them. Their |
| // addresses are stored in a dynamically allocated array (the DTV) which is |
| // referenced from the static TLS. Unfortunately, we can't just rely on the DTV |
| // being reachable from the static TLS, and the dynamic TLS being reachable from |
| // the DTV. This is because the initial DTV is allocated before our interception |
| // mechanism kicks in, and thus we don't recognize it as allocated memory. We |
| // can't special-case it either, since we don't know its size. |
| // Our solution is to include in the root set all allocations made from |
| // ld-linux.so (which is where allocate_and_init() is implemented). This is |
| // guaranteed to include all dynamic TLS blocks (and possibly other allocations |
| // which we don't care about). |
| // On all other platforms, this simply checks to ensure that the caller pc is |
| // valid before reporting chunks as leaked. |
| void ProcessPC(Frontier *frontier) { |
| StackDepotReverseMap stack_depot_reverse_map; |
| InvalidPCParam arg; |
| arg.frontier = frontier; |
| arg.stack_depot_reverse_map = &stack_depot_reverse_map; |
| arg.skip_linker_allocations = |
| flags()->use_tls && flags()->use_ld_allocations && GetLinker() != nullptr; |
| ForEachChunk(MarkInvalidPCCb, &arg); |
| } |
| |
| // Sets the appropriate tag on each chunk. |
| static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) { |
| // Holds the flood fill frontier. |
| Frontier frontier(1); |
| |
| ForEachChunk(CollectIgnoredCb, &frontier); |
| ProcessGlobalRegions(&frontier); |
| ProcessThreads(suspended_threads, &frontier); |
| ProcessRootRegions(&frontier); |
| FloodFillTag(&frontier, kReachable); |
| |
| CHECK_EQ(0, frontier.size()); |
| ProcessPC(&frontier); |
| |
| // The check here is relatively expensive, so we do this in a separate flood |
| // fill. That way we can skip the check for chunks that are reachable |
| // otherwise. |
| LOG_POINTERS("Processing platform-specific allocations.\n"); |
| ProcessPlatformSpecificAllocations(&frontier); |
| FloodFillTag(&frontier, kReachable); |
| |
| // Iterate over leaked chunks and mark those that are reachable from other |
| // leaked chunks. |
| LOG_POINTERS("Scanning leaked chunks.\n"); |
| ForEachChunk(MarkIndirectlyLeakedCb, nullptr); |
| } |
| |
| // ForEachChunk callback. Resets the tags to pre-leak-check state. |
| static void ResetTagsCb(uptr chunk, void *arg) { |
| (void)arg; |
| chunk = GetUserBegin(chunk); |
| LsanMetadata m(chunk); |
| if (m.allocated() && m.tag() != kIgnored) |
| m.set_tag(kDirectlyLeaked); |
| } |
| |
| static void PrintStackTraceById(u32 stack_trace_id) { |
| CHECK(stack_trace_id); |
| StackDepotGet(stack_trace_id).Print(); |
| } |
| |
| // ForEachChunk callback. Aggregates information about unreachable chunks into |
| // a LeakReport. |
| static void CollectLeaksCb(uptr chunk, void *arg) { |
| CHECK(arg); |
| LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg); |
| chunk = GetUserBegin(chunk); |
| LsanMetadata m(chunk); |
| if (!m.allocated()) return; |
| if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) { |
| u32 resolution = flags()->resolution; |
| u32 stack_trace_id = 0; |
| if (resolution > 0) { |
| StackTrace stack = StackDepotGet(m.stack_trace_id()); |
| stack.size = Min(stack.size, resolution); |
| stack_trace_id = StackDepotPut(stack); |
| } else { |
| stack_trace_id = m.stack_trace_id(); |
| } |
| leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(), |
| m.tag()); |
| } |
| } |
| |
| static void PrintMatchedSuppressions() { |
| InternalMmapVector<Suppression *> matched(1); |
| GetSuppressionContext()->GetMatched(&matched); |
| if (!matched.size()) |
| return; |
| const char *line = "-----------------------------------------------------"; |
| Printf("%s\n", line); |
| Printf("Suppressions used:\n"); |
| Printf(" count bytes template\n"); |
| for (uptr i = 0; i < matched.size(); i++) |
| Printf("%7zu %10zu %s\n", static_cast<uptr>(atomic_load_relaxed( |
| &matched[i]->hit_count)), matched[i]->weight, matched[i]->templ); |
| Printf("%s\n\n", line); |
| } |
| |
| struct CheckForLeaksParam { |
| bool success; |
| LeakReport leak_report; |
| }; |
| |
| static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads, |
| void *arg) { |
| CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg); |
| CHECK(param); |
| CHECK(!param->success); |
| ClassifyAllChunks(suspended_threads); |
| ForEachChunk(CollectLeaksCb, ¶m->leak_report); |
| // Clean up for subsequent leak checks. This assumes we did not overwrite any |
| // kIgnored tags. |
| ForEachChunk(ResetTagsCb, nullptr); |
| param->success = true; |
| } |
| |
| static bool CheckForLeaks() { |
| if (&__lsan_is_turned_off && __lsan_is_turned_off()) |
| return false; |
| EnsureMainThreadIDIsCorrect(); |
| CheckForLeaksParam param; |
| param.success = false; |
| LockThreadRegistry(); |
| LockAllocator(); |
| DoStopTheWorld(CheckForLeaksCallback, ¶m); |
| UnlockAllocator(); |
| UnlockThreadRegistry(); |
| |
| if (!param.success) { |
| Report("LeakSanitizer has encountered a fatal error.\n"); |
| Report( |
| "HINT: For debugging, try setting environment variable " |
| "LSAN_OPTIONS=verbosity=1:log_threads=1\n"); |
| Report( |
| "HINT: LeakSanitizer does not work under ptrace (strace, gdb, etc)\n"); |
| Die(); |
| } |
| param.leak_report.ApplySuppressions(); |
| uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount(); |
| if (unsuppressed_count > 0) { |
| Decorator d; |
| Printf("\n" |
| "=================================================================" |
| "\n"); |
| Printf("%s", d.Error()); |
| Report("ERROR: LeakSanitizer: detected memory leaks\n"); |
| Printf("%s", d.Default()); |
| param.leak_report.ReportTopLeaks(flags()->max_leaks); |
| } |
| if (common_flags()->print_suppressions) |
| PrintMatchedSuppressions(); |
| if (unsuppressed_count > 0) { |
| param.leak_report.PrintSummary(); |
| return true; |
| } |
| return false; |
| } |
| |
| static bool has_reported_leaks = false; |
| bool HasReportedLeaks() { return has_reported_leaks; } |
| |
| void DoLeakCheck() { |
| BlockingMutexLock l(&global_mutex); |
| static bool already_done; |
| if (already_done) return; |
| already_done = true; |
| has_reported_leaks = CheckForLeaks(); |
| if (has_reported_leaks) HandleLeaks(); |
| } |
| |
| static int DoRecoverableLeakCheck() { |
| BlockingMutexLock l(&global_mutex); |
| bool have_leaks = CheckForLeaks(); |
| return have_leaks ? 1 : 0; |
| } |
| |
| void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); } |
| |
| static Suppression *GetSuppressionForAddr(uptr addr) { |
| Suppression *s = nullptr; |
| |
| // Suppress by module name. |
| SuppressionContext *suppressions = GetSuppressionContext(); |
| if (const char *module_name = |
| Symbolizer::GetOrInit()->GetModuleNameForPc(addr)) |
| if (suppressions->Match(module_name, kSuppressionLeak, &s)) |
| return s; |
| |
| // Suppress by file or function name. |
| SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr); |
| for (SymbolizedStack *cur = frames; cur; cur = cur->next) { |
| if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) || |
| suppressions->Match(cur->info.file, kSuppressionLeak, &s)) { |
| break; |
| } |
| } |
| frames->ClearAll(); |
| return s; |
| } |
| |
| static Suppression *GetSuppressionForStack(u32 stack_trace_id) { |
| StackTrace stack = StackDepotGet(stack_trace_id); |
| for (uptr i = 0; i < stack.size; i++) { |
| Suppression *s = GetSuppressionForAddr( |
| StackTrace::GetPreviousInstructionPc(stack.trace[i])); |
| if (s) return s; |
| } |
| return nullptr; |
| } |
| |
| ///// LeakReport implementation. ///// |
| |
| // A hard limit on the number of distinct leaks, to avoid quadratic complexity |
| // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks |
| // in real-world applications. |
| // FIXME: Get rid of this limit by changing the implementation of LeakReport to |
| // use a hash table. |
| const uptr kMaxLeaksConsidered = 5000; |
| |
| void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id, |
| uptr leaked_size, ChunkTag tag) { |
| CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked); |
| bool is_directly_leaked = (tag == kDirectlyLeaked); |
| uptr i; |
| for (i = 0; i < leaks_.size(); i++) { |
| if (leaks_[i].stack_trace_id == stack_trace_id && |
| leaks_[i].is_directly_leaked == is_directly_leaked) { |
| leaks_[i].hit_count++; |
| leaks_[i].total_size += leaked_size; |
| break; |
| } |
| } |
| if (i == leaks_.size()) { |
| if (leaks_.size() == kMaxLeaksConsidered) return; |
| Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id, |
| is_directly_leaked, /* is_suppressed */ false }; |
| leaks_.push_back(leak); |
| } |
| if (flags()->report_objects) { |
| LeakedObject obj = {leaks_[i].id, chunk, leaked_size}; |
| leaked_objects_.push_back(obj); |
| } |
| } |
| |
| static bool LeakComparator(const Leak &leak1, const Leak &leak2) { |
| if (leak1.is_directly_leaked == leak2.is_directly_leaked) |
| return leak1.total_size > leak2.total_size; |
| else |
| return leak1.is_directly_leaked; |
| } |
| |
| void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) { |
| CHECK(leaks_.size() <= kMaxLeaksConsidered); |
| Printf("\n"); |
| if (leaks_.size() == kMaxLeaksConsidered) |
| Printf("Too many leaks! Only the first %zu leaks encountered will be " |
| "reported.\n", |
| kMaxLeaksConsidered); |
| |
| uptr unsuppressed_count = UnsuppressedLeakCount(); |
| if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count) |
| Printf("The %zu top leak(s):\n", num_leaks_to_report); |
| InternalSort(&leaks_, leaks_.size(), LeakComparator); |
| uptr leaks_reported = 0; |
| for (uptr i = 0; i < leaks_.size(); i++) { |
| if (leaks_[i].is_suppressed) continue; |
| PrintReportForLeak(i); |
| leaks_reported++; |
| if (leaks_reported == num_leaks_to_report) break; |
| } |
| if (leaks_reported < unsuppressed_count) { |
| uptr remaining = unsuppressed_count - leaks_reported; |
| Printf("Omitting %zu more leak(s).\n", remaining); |
| } |
| } |
| |
| void LeakReport::PrintReportForLeak(uptr index) { |
| Decorator d; |
| Printf("%s", d.Leak()); |
| Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n", |
| leaks_[index].is_directly_leaked ? "Direct" : "Indirect", |
| leaks_[index].total_size, leaks_[index].hit_count); |
| Printf("%s", d.Default()); |
| |
| PrintStackTraceById(leaks_[index].stack_trace_id); |
| |
| if (flags()->report_objects) { |
| Printf("Objects leaked above:\n"); |
| PrintLeakedObjectsForLeak(index); |
| Printf("\n"); |
| } |
| } |
| |
| void LeakReport::PrintLeakedObjectsForLeak(uptr index) { |
| u32 leak_id = leaks_[index].id; |
| for (uptr j = 0; j < leaked_objects_.size(); j++) { |
| if (leaked_objects_[j].leak_id == leak_id) |
| Printf("%p (%zu bytes)\n", leaked_objects_[j].addr, |
| leaked_objects_[j].size); |
| } |
| } |
| |
| void LeakReport::PrintSummary() { |
| CHECK(leaks_.size() <= kMaxLeaksConsidered); |
| uptr bytes = 0, allocations = 0; |
| for (uptr i = 0; i < leaks_.size(); i++) { |
| if (leaks_[i].is_suppressed) continue; |
| bytes += leaks_[i].total_size; |
| allocations += leaks_[i].hit_count; |
| } |
| InternalScopedString summary(kMaxSummaryLength); |
| summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes, |
| allocations); |
| ReportErrorSummary(summary.data()); |
| } |
| |
| void LeakReport::ApplySuppressions() { |
| for (uptr i = 0; i < leaks_.size(); i++) { |
| Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id); |
| if (s) { |
| s->weight += leaks_[i].total_size; |
| atomic_store_relaxed(&s->hit_count, atomic_load_relaxed(&s->hit_count) + |
| leaks_[i].hit_count); |
| leaks_[i].is_suppressed = true; |
| } |
| } |
| } |
| |
| uptr LeakReport::UnsuppressedLeakCount() { |
| uptr result = 0; |
| for (uptr i = 0; i < leaks_.size(); i++) |
| if (!leaks_[i].is_suppressed) result++; |
| return result; |
| } |
| |
| } // namespace __lsan |
| #else // CAN_SANITIZE_LEAKS |
| namespace __lsan { |
| void InitCommonLsan() { } |
| void DoLeakCheck() { } |
| void DoRecoverableLeakCheckVoid() { } |
| void DisableInThisThread() { } |
| void EnableInThisThread() { } |
| } |
| #endif // CAN_SANITIZE_LEAKS |
| |
| using namespace __lsan; // NOLINT |
| |
| extern "C" { |
| SANITIZER_INTERFACE_ATTRIBUTE |
| void __lsan_ignore_object(const void *p) { |
| #if CAN_SANITIZE_LEAKS |
| if (!common_flags()->detect_leaks) |
| return; |
| // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not |
| // locked. |
| BlockingMutexLock l(&global_mutex); |
| IgnoreObjectResult res = IgnoreObjectLocked(p); |
| if (res == kIgnoreObjectInvalid) |
| VReport(1, "__lsan_ignore_object(): no heap object found at %p", p); |
| if (res == kIgnoreObjectAlreadyIgnored) |
| VReport(1, "__lsan_ignore_object(): " |
| "heap object at %p is already being ignored\n", p); |
| if (res == kIgnoreObjectSuccess) |
| VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p); |
| #endif // CAN_SANITIZE_LEAKS |
| } |
| |
| SANITIZER_INTERFACE_ATTRIBUTE |
| void __lsan_register_root_region(const void *begin, uptr size) { |
| #if CAN_SANITIZE_LEAKS |
| BlockingMutexLock l(&global_mutex); |
| CHECK(root_regions); |
| RootRegion region = {reinterpret_cast<uptr>(begin), size}; |
| root_regions->push_back(region); |
| VReport(1, "Registered root region at %p of size %llu\n", begin, size); |
| #endif // CAN_SANITIZE_LEAKS |
| } |
| |
| SANITIZER_INTERFACE_ATTRIBUTE |
| void __lsan_unregister_root_region(const void *begin, uptr size) { |
| #if CAN_SANITIZE_LEAKS |
| BlockingMutexLock l(&global_mutex); |
| CHECK(root_regions); |
| bool removed = false; |
| for (uptr i = 0; i < root_regions->size(); i++) { |
| RootRegion region = (*root_regions)[i]; |
| if (region.begin == reinterpret_cast<uptr>(begin) && region.size == size) { |
| removed = true; |
| uptr last_index = root_regions->size() - 1; |
| (*root_regions)[i] = (*root_regions)[last_index]; |
| root_regions->pop_back(); |
| VReport(1, "Unregistered root region at %p of size %llu\n", begin, size); |
| break; |
| } |
| } |
| if (!removed) { |
| Report( |
| "__lsan_unregister_root_region(): region at %p of size %llu has not " |
| "been registered.\n", |
| begin, size); |
| Die(); |
| } |
| #endif // CAN_SANITIZE_LEAKS |
| } |
| |
| SANITIZER_INTERFACE_ATTRIBUTE |
| void __lsan_disable() { |
| #if CAN_SANITIZE_LEAKS |
| __lsan::DisableInThisThread(); |
| #endif |
| } |
| |
| SANITIZER_INTERFACE_ATTRIBUTE |
| void __lsan_enable() { |
| #if CAN_SANITIZE_LEAKS |
| __lsan::EnableInThisThread(); |
| #endif |
| } |
| |
| SANITIZER_INTERFACE_ATTRIBUTE |
| void __lsan_do_leak_check() { |
| #if CAN_SANITIZE_LEAKS |
| if (common_flags()->detect_leaks) |
| __lsan::DoLeakCheck(); |
| #endif // CAN_SANITIZE_LEAKS |
| } |
| |
| SANITIZER_INTERFACE_ATTRIBUTE |
| int __lsan_do_recoverable_leak_check() { |
| #if CAN_SANITIZE_LEAKS |
| if (common_flags()->detect_leaks) |
| return __lsan::DoRecoverableLeakCheck(); |
| #endif // CAN_SANITIZE_LEAKS |
| return 0; |
| } |
| |
| #if !SANITIZER_SUPPORTS_WEAK_HOOKS |
| SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE |
| const char * __lsan_default_options() { |
| return ""; |
| } |
| |
| SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE |
| int __lsan_is_turned_off() { |
| return 0; |
| } |
| |
| SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE |
| const char *__lsan_default_suppressions() { |
| return ""; |
| } |
| #endif |
| } // extern "C" |