blob: 2ab337a0f3abe9a1560303b82eb6e71f6abc3f64 [file] [log] [blame]
// <numeric> -*- C++ -*-
// Copyright (C) 2001-2021 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file include/numeric
* This is a Standard C++ Library header.
*/
#ifndef _GLIBCXX_NUMERIC
#define _GLIBCXX_NUMERIC 1
#pragma GCC system_header
#include <bits/c++config.h>
#include <bits/stl_iterator_base_types.h>
#include <bits/stl_numeric.h>
#ifdef _GLIBCXX_PARALLEL
# include <parallel/numeric>
#endif
#if __cplusplus >= 201402L
# include <type_traits>
# include <bit>
#endif
#if __cplusplus >= 201703L
# include <bits/stl_function.h>
#endif
#if __cplusplus > 201703L
# include <limits>
#endif
/**
* @defgroup numerics Numerics
*
* Components for performing numeric operations. Includes support for
* complex number types, random number generation, numeric (n-at-a-time)
* arrays, generalized numeric algorithms, and mathematical special functions.
*/
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
#if __cplusplus >= 201402L
namespace __detail
{
// std::abs is not constexpr, doesn't support unsigned integers,
// and std::abs(std::numeric_limits<T>::min()) is undefined.
template<typename _Up, typename _Tp>
constexpr _Up
__absu(_Tp __val)
{
static_assert(is_unsigned<_Up>::value, "result type must be unsigned");
static_assert(sizeof(_Up) >= sizeof(_Tp),
"result type must be at least as wide as the input type");
return __val < 0 ? -(_Up)__val : (_Up)__val;
}
template<typename _Up> void __absu(bool) = delete;
// GCD implementation, using Stein's algorithm
template<typename _Tp>
constexpr _Tp
__gcd(_Tp __m, _Tp __n)
{
static_assert(is_unsigned<_Tp>::value, "type must be unsigned");
if (__m == 0)
return __n;
if (__n == 0)
return __m;
const int __i = std::__countr_zero(__m);
__m >>= __i;
const int __j = std::__countr_zero(__n);
__n >>= __j;
const int __k = __i < __j ? __i : __j; // min(i, j)
while (true)
{
if (__m > __n)
{
_Tp __tmp = __m;
__m = __n;
__n = __tmp;
}
__n -= __m;
if (__n == 0)
return __m << __k;
__n >>= std::__countr_zero(__n);
}
}
// LCM implementation
template<typename _Tp>
constexpr _Tp
__lcm(_Tp __m, _Tp __n)
{
return (__m != 0 && __n != 0)
? (__m / __detail::__gcd(__m, __n)) * __n
: 0;
}
} // namespace __detail
#if __cplusplus >= 201703L
#define __cpp_lib_gcd_lcm 201606
// These were used in drafts of SD-6:
#define __cpp_lib_gcd 201606
#define __cpp_lib_lcm 201606
/// Greatest common divisor
template<typename _Mn, typename _Nn>
constexpr common_type_t<_Mn, _Nn>
gcd(_Mn __m, _Nn __n) noexcept
{
static_assert(is_integral_v<_Mn>, "std::gcd arguments must be integers");
static_assert(is_integral_v<_Nn>, "std::gcd arguments must be integers");
static_assert(_Mn(2) != _Mn(1), "std::gcd arguments must not be bool");
static_assert(_Nn(2) != _Nn(1), "std::gcd arguments must not be bool");
using _Up = make_unsigned_t<common_type_t<_Mn, _Nn>>;
return __detail::__gcd(__detail::__absu<_Up>(__m),
__detail::__absu<_Up>(__n));
}
/// Least common multiple
template<typename _Mn, typename _Nn>
constexpr common_type_t<_Mn, _Nn>
lcm(_Mn __m, _Nn __n) noexcept
{
static_assert(is_integral_v<_Mn>, "std::lcm arguments must be integers");
static_assert(is_integral_v<_Nn>, "std::lcm arguments must be integers");
static_assert(_Mn(2) == 2, "std::lcm arguments must not be bool");
static_assert(_Nn(2) == 2, "std::lcm arguments must not be bool");
using _Up = make_unsigned_t<common_type_t<_Mn, _Nn>>;
return __detail::__lcm(__detail::__absu<_Up>(__m),
__detail::__absu<_Up>(__n));
}
#endif // C++17
#endif // C++14
#if __cplusplus > 201703L
// midpoint
# define __cpp_lib_interpolate 201902L
template<typename _Tp>
constexpr
enable_if_t<__and_v<is_arithmetic<_Tp>, is_same<remove_cv_t<_Tp>, _Tp>,
__not_<is_same<_Tp, bool>>>,
_Tp>
midpoint(_Tp __a, _Tp __b) noexcept
{
if constexpr (is_integral_v<_Tp>)
{
using _Up = make_unsigned_t<_Tp>;
int __k = 1;
_Up __m = __a;
_Up __M = __b;
if (__a > __b)
{
__k = -1;
__m = __b;
__M = __a;
}
return __a + __k * _Tp(_Up(__M - __m) / 2);
}
else // is_floating
{
constexpr _Tp __lo = numeric_limits<_Tp>::min() * 2;
constexpr _Tp __hi = numeric_limits<_Tp>::max() / 2;
const _Tp __abs_a = __a < 0 ? -__a : __a;
const _Tp __abs_b = __b < 0 ? -__b : __b;
if (__abs_a <= __hi && __abs_b <= __hi) [[likely]]
return (__a + __b) / 2; // always correctly rounded
if (__abs_a < __lo) // not safe to halve __a
return __a + __b/2;
if (__abs_b < __lo) // not safe to halve __b
return __a/2 + __b;
return __a/2 + __b/2; // otherwise correctly rounded
}
}
template<typename _Tp>
constexpr enable_if_t<is_object_v<_Tp>, _Tp*>
midpoint(_Tp* __a, _Tp* __b) noexcept
{
static_assert( sizeof(_Tp) != 0, "type must be complete" );
return __a + (__b - __a) / 2;
}
#endif // C++20
#if __cplusplus >= 201703L
#if __cplusplus > 201703L
#define __cpp_lib_constexpr_numeric 201911L
#endif
/// @addtogroup numeric_ops
/// @{
/**
* @brief Calculate reduction of values in a range.
*
* @param __first Start of range.
* @param __last End of range.
* @param __init Starting value to add other values to.
* @param __binary_op A binary function object.
* @return The final sum.
*
* Reduce the values in the range `[first,last)` using a binary operation.
* The initial value is `init`. The values are not necessarily processed
* in order.
*
* This algorithm is similar to `std::accumulate` but is not required to
* perform the operations in order from first to last. For operations
* that are commutative and associative the result will be the same as
* for `std::accumulate`, but for other operations (such as floating point
* arithmetic) the result can be different.
*/
template<typename _InputIterator, typename _Tp, typename _BinaryOperation>
_GLIBCXX20_CONSTEXPR
_Tp
reduce(_InputIterator __first, _InputIterator __last, _Tp __init,
_BinaryOperation __binary_op)
{
using __ref = typename iterator_traits<_InputIterator>::reference;
static_assert(is_invocable_r_v<_Tp, _BinaryOperation&, _Tp&, __ref>);
static_assert(is_invocable_r_v<_Tp, _BinaryOperation&, __ref, _Tp&>);
static_assert(is_invocable_r_v<_Tp, _BinaryOperation&, _Tp&, _Tp&>);
static_assert(is_invocable_r_v<_Tp, _BinaryOperation&, __ref, __ref>);
if constexpr (__is_random_access_iter<_InputIterator>::value)
{
while ((__last - __first) >= 4)
{
_Tp __v1 = __binary_op(__first[0], __first[1]);
_Tp __v2 = __binary_op(__first[2], __first[3]);
_Tp __v3 = __binary_op(__v1, __v2);
__init = __binary_op(__init, __v3);
__first += 4;
}
}
for (; __first != __last; ++__first)
__init = __binary_op(__init, *__first);
return __init;
}
/**
* @brief Calculate reduction of values in a range.
*
* @param __first Start of range.
* @param __last End of range.
* @param __init Starting value to add other values to.
* @return The final sum.
*
* Reduce the values in the range `[first,last)` using addition.
* Equivalent to calling `std::reduce(first, last, init, std::plus<>())`.
*/
template<typename _InputIterator, typename _Tp>
_GLIBCXX20_CONSTEXPR
inline _Tp
reduce(_InputIterator __first, _InputIterator __last, _Tp __init)
{ return std::reduce(__first, __last, std::move(__init), plus<>()); }
/**
* @brief Calculate reduction of values in a range.
*
* @param __first Start of range.
* @param __last End of range.
* @return The final sum.
*
* Reduce the values in the range `[first,last)` using addition, with
* an initial value of `T{}`, where `T` is the iterator's value type.
* Equivalent to calling `std::reduce(first, last, T{}, std::plus<>())`.
*/
template<typename _InputIterator>
_GLIBCXX20_CONSTEXPR
inline typename iterator_traits<_InputIterator>::value_type
reduce(_InputIterator __first, _InputIterator __last)
{
using value_type = typename iterator_traits<_InputIterator>::value_type;
return std::reduce(__first, __last, value_type{}, plus<>());
}
/**
* @brief Combine elements from two ranges and reduce
*
* @param __first1 Start of first range.
* @param __last1 End of first range.
* @param __first2 Start of second range.
* @param __init Starting value to add other values to.
* @param __binary_op1 The function used to perform reduction.
* @param __binary_op2 The function used to combine values from the ranges.
* @return The final sum.
*
* Call `binary_op2(first1[n],first2[n])` for each `n` in `[0,last1-first1)`
* and then use `binary_op1` to reduce the values returned by `binary_op2`
* to a single value of type `T`.
*
* The range beginning at `first2` must contain at least `last1-first1`
* elements.
*/
template<typename _InputIterator1, typename _InputIterator2, typename _Tp,
typename _BinaryOperation1, typename _BinaryOperation2>
_GLIBCXX20_CONSTEXPR
_Tp
transform_reduce(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _Tp __init,
_BinaryOperation1 __binary_op1,
_BinaryOperation2 __binary_op2)
{
if constexpr (__and_v<__is_random_access_iter<_InputIterator1>,
__is_random_access_iter<_InputIterator2>>)
{
while ((__last1 - __first1) >= 4)
{
_Tp __v1 = __binary_op1(__binary_op2(__first1[0], __first2[0]),
__binary_op2(__first1[1], __first2[1]));
_Tp __v2 = __binary_op1(__binary_op2(__first1[2], __first2[2]),
__binary_op2(__first1[3], __first2[3]));
_Tp __v3 = __binary_op1(__v1, __v2);
__init = __binary_op1(__init, __v3);
__first1 += 4;
__first2 += 4;
}
}
for (; __first1 != __last1; ++__first1, (void) ++__first2)
__init = __binary_op1(__init, __binary_op2(*__first1, *__first2));
return __init;
}
/**
* @brief Combine elements from two ranges and reduce
*
* @param __first1 Start of first range.
* @param __last1 End of first range.
* @param __first2 Start of second range.
* @param __init Starting value to add other values to.
* @return The final sum.
*
* Call `first1[n]*first2[n]` for each `n` in `[0,last1-first1)` and then
* use addition to sum those products to a single value of type `T`.
*
* The range beginning at `first2` must contain at least `last1-first1`
* elements.
*/
template<typename _InputIterator1, typename _InputIterator2, typename _Tp>
_GLIBCXX20_CONSTEXPR
inline _Tp
transform_reduce(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _Tp __init)
{
return std::transform_reduce(__first1, __last1, __first2,
std::move(__init),
plus<>(), multiplies<>());
}
/**
* @brief Transform the elements of a range and reduce
*
* @param __first Start of range.
* @param __last End of range.
* @param __init Starting value to add other values to.
* @param __binary_op The function used to perform reduction.
* @param __unary_op The function used to transform values from the range.
* @return The final sum.
*
* Call `unary_op(first[n])` for each `n` in `[0,last-first)` and then
* use `binary_op` to reduce the values returned by `unary_op`
* to a single value of type `T`.
*/
template<typename _InputIterator, typename _Tp,
typename _BinaryOperation, typename _UnaryOperation>
_GLIBCXX20_CONSTEXPR
_Tp
transform_reduce(_InputIterator __first, _InputIterator __last, _Tp __init,
_BinaryOperation __binary_op, _UnaryOperation __unary_op)
{
if constexpr (__is_random_access_iter<_InputIterator>::value)
{
while ((__last - __first) >= 4)
{
_Tp __v1 = __binary_op(__unary_op(__first[0]),
__unary_op(__first[1]));
_Tp __v2 = __binary_op(__unary_op(__first[2]),
__unary_op(__first[3]));
_Tp __v3 = __binary_op(__v1, __v2);
__init = __binary_op(__init, __v3);
__first += 4;
}
}
for (; __first != __last; ++__first)
__init = __binary_op(__init, __unary_op(*__first));
return __init;
}
/** @brief Output the cumulative sum of one range to a second range
*
* @param __first Start of input range.
* @param __last End of input range.
* @param __result Start of output range.
* @param __init Initial value.
* @param __binary_op Function to perform summation.
* @return The end of the output range.
*
* Write the cumulative sum (aka prefix sum, aka scan) of the input range
* to the output range. Each element of the output range contains the
* running total of all earlier elements (and the initial value),
* using `binary_op` for summation.
*
* This function generates an "exclusive" scan, meaning the Nth element
* of the output range is the sum of the first N-1 input elements,
* so the Nth input element is not included.
*/
template<typename _InputIterator, typename _OutputIterator, typename _Tp,
typename _BinaryOperation>
_GLIBCXX20_CONSTEXPR
_OutputIterator
exclusive_scan(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, _Tp __init,
_BinaryOperation __binary_op)
{
while (__first != __last)
{
auto __v = __init;
__init = __binary_op(__init, *__first);
++__first;
*__result++ = std::move(__v);
}
return __result;
}
/** @brief Output the cumulative sum of one range to a second range
*
* @param __first Start of input range.
* @param __last End of input range.
* @param __result Start of output range.
* @param __init Initial value.
* @return The end of the output range.
*
* Write the cumulative sum (aka prefix sum, aka scan) of the input range
* to the output range. Each element of the output range contains the
* running total of all earlier elements (and the initial value),
* using `std::plus<>` for summation.
*
* This function generates an "exclusive" scan, meaning the Nth element
* of the output range is the sum of the first N-1 input elements,
* so the Nth input element is not included.
*/
template<typename _InputIterator, typename _OutputIterator, typename _Tp>
_GLIBCXX20_CONSTEXPR
inline _OutputIterator
exclusive_scan(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, _Tp __init)
{
return std::exclusive_scan(__first, __last, __result, std::move(__init),
plus<>());
}
/** @brief Output the cumulative sum of one range to a second range
*
* @param __first Start of input range.
* @param __last End of input range.
* @param __result Start of output range.
* @param __binary_op Function to perform summation.
* @param __init Initial value.
* @return The end of the output range.
*
* Write the cumulative sum (aka prefix sum, aka scan) of the input range
* to the output range. Each element of the output range contains the
* running total of all earlier elements (and the initial value),
* using `binary_op` for summation.
*
* This function generates an "inclusive" scan, meaning the Nth element
* of the output range is the sum of the first N input elements,
* so the Nth input element is included.
*/
template<typename _InputIterator, typename _OutputIterator,
typename _BinaryOperation, typename _Tp>
_GLIBCXX20_CONSTEXPR
_OutputIterator
inclusive_scan(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, _BinaryOperation __binary_op,
_Tp __init)
{
for (; __first != __last; ++__first)
*__result++ = __init = __binary_op(__init, *__first);
return __result;
}
/** @brief Output the cumulative sum of one range to a second range
*
* @param __first Start of input range.
* @param __last End of input range.
* @param __result Start of output range.
* @param __binary_op Function to perform summation.
* @return The end of the output range.
*
* Write the cumulative sum (aka prefix sum, aka scan) of the input range
* to the output range. Each element of the output range contains the
* running total of all earlier elements, using `binary_op` for summation.
*
* This function generates an "inclusive" scan, meaning the Nth element
* of the output range is the sum of the first N input elements,
* so the Nth input element is included.
*/
template<typename _InputIterator, typename _OutputIterator,
typename _BinaryOperation>
_GLIBCXX20_CONSTEXPR
_OutputIterator
inclusive_scan(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, _BinaryOperation __binary_op)
{
if (__first != __last)
{
auto __init = *__first;
*__result++ = __init;
++__first;
if (__first != __last)
__result = std::inclusive_scan(__first, __last, __result,
__binary_op, std::move(__init));
}
return __result;
}
/** @brief Output the cumulative sum of one range to a second range
*
* @param __first Start of input range.
* @param __last End of input range.
* @param __result Start of output range.
* @return The end of the output range.
*
* Write the cumulative sum (aka prefix sum, aka scan) of the input range
* to the output range. Each element of the output range contains the
* running total of all earlier elements, using `std::plus<>` for summation.
*
* This function generates an "inclusive" scan, meaning the Nth element
* of the output range is the sum of the first N input elements,
* so the Nth input element is included.
*/
template<typename _InputIterator, typename _OutputIterator>
_GLIBCXX20_CONSTEXPR
inline _OutputIterator
inclusive_scan(_InputIterator __first, _InputIterator __last,
_OutputIterator __result)
{ return std::inclusive_scan(__first, __last, __result, plus<>()); }
/** @brief Output the cumulative sum of one range to a second range
*
* @param __first Start of input range.
* @param __last End of input range.
* @param __result Start of output range.
* @param __init Initial value.
* @param __binary_op Function to perform summation.
* @param __unary_op Function to transform elements of the input range.
* @return The end of the output range.
*
* Write the cumulative sum (aka prefix sum, aka scan) of the input range
* to the output range. Each element of the output range contains the
* running total of all earlier elements (and the initial value),
* using `__unary_op` to transform the input elements
* and using `__binary_op` for summation.
*
* This function generates an "exclusive" scan, meaning the Nth element
* of the output range is the sum of the first N-1 input elements,
* so the Nth input element is not included.
*/
template<typename _InputIterator, typename _OutputIterator, typename _Tp,
typename _BinaryOperation, typename _UnaryOperation>
_GLIBCXX20_CONSTEXPR
_OutputIterator
transform_exclusive_scan(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, _Tp __init,
_BinaryOperation __binary_op,
_UnaryOperation __unary_op)
{
while (__first != __last)
{
auto __v = __init;
__init = __binary_op(__init, __unary_op(*__first));
++__first;
*__result++ = std::move(__v);
}
return __result;
}
/** @brief Output the cumulative sum of one range to a second range
*
* @param __first Start of input range.
* @param __last End of input range.
* @param __result Start of output range.
* @param __binary_op Function to perform summation.
* @param __unary_op Function to transform elements of the input range.
* @param __init Initial value.
* @return The end of the output range.
*
* Write the cumulative sum (aka prefix sum, aka scan) of the input range
* to the output range. Each element of the output range contains the
* running total of all earlier elements (and the initial value),
* using `__unary_op` to transform the input elements
* and using `__binary_op` for summation.
*
* This function generates an "inclusive" scan, meaning the Nth element
* of the output range is the sum of the first N input elements,
* so the Nth input element is included.
*/
template<typename _InputIterator, typename _OutputIterator,
typename _BinaryOperation, typename _UnaryOperation, typename _Tp>
_GLIBCXX20_CONSTEXPR
_OutputIterator
transform_inclusive_scan(_InputIterator __first, _InputIterator __last,
_OutputIterator __result,
_BinaryOperation __binary_op,
_UnaryOperation __unary_op,
_Tp __init)
{
for (; __first != __last; ++__first)
*__result++ = __init = __binary_op(__init, __unary_op(*__first));
return __result;
}
/** @brief Output the cumulative sum of one range to a second range
*
* @param __first Start of input range.
* @param __last End of input range.
* @param __result Start of output range.
* @param __binary_op Function to perform summation.
* @param __unary_op Function to transform elements of the input range.
* @return The end of the output range.
*
* Write the cumulative sum (aka prefix sum, aka scan) of the input range
* to the output range. Each element of the output range contains the
* running total of all earlier elements,
* using `__unary_op` to transform the input elements
* and using `__binary_op` for summation.
*
* This function generates an "inclusive" scan, meaning the Nth element
* of the output range is the sum of the first N input elements,
* so the Nth input element is included.
*/
template<typename _InputIterator, typename _OutputIterator,
typename _BinaryOperation, typename _UnaryOperation>
_GLIBCXX20_CONSTEXPR
_OutputIterator
transform_inclusive_scan(_InputIterator __first, _InputIterator __last,
_OutputIterator __result,
_BinaryOperation __binary_op,
_UnaryOperation __unary_op)
{
if (__first != __last)
{
auto __init = __unary_op(*__first);
*__result++ = __init;
++__first;
if (__first != __last)
__result = std::transform_inclusive_scan(__first, __last, __result,
__binary_op, __unary_op,
std::move(__init));
}
return __result;
}
/// @} group numeric_ops
#endif // C++17
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std
#if __cplusplus >= 201703L
// Parallel STL algorithms
# if _PSTL_EXECUTION_POLICIES_DEFINED
// If <execution> has already been included, pull in implementations
# include <pstl/glue_numeric_impl.h>
# else
// Otherwise just pull in forward declarations
# include <pstl/glue_numeric_defs.h>
# define _PSTL_NUMERIC_FORWARD_DECLARED 1
# endif
// Feature test macro for parallel algorithms
# define __cpp_lib_parallel_algorithm 201603L
#endif // C++17
#endif /* _GLIBCXX_NUMERIC */