blob: 2ba3475f897107817d16c75730d28319ab3915b5 [file] [log] [blame]
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of index/slice expressions.
package types
import (
"go/ast"
"go/constant"
"go/internal/typeparams"
)
// If e is a valid function instantiation, indexExpr returns true.
// In that case x represents the uninstantiated function value and
// it is the caller's responsibility to instantiate the function.
func (check *Checker) indexExpr(x *operand, e *ast.IndexExpr) (isFuncInst bool) {
check.exprOrType(x, e.X)
switch x.mode {
case invalid:
check.use(typeparams.UnpackExpr(e.Index)...)
return false
case typexpr:
// type instantiation
x.mode = invalid
x.typ = check.varType(e)
if x.typ != Typ[Invalid] {
x.mode = typexpr
}
return false
case value:
if sig := asSignature(x.typ); sig != nil && len(sig.tparams) > 0 {
// function instantiation
return true
}
}
valid := false
length := int64(-1) // valid if >= 0
switch typ := optype(x.typ).(type) {
case *Basic:
if isString(typ) {
valid = true
if x.mode == constant_ {
length = int64(len(constant.StringVal(x.val)))
}
// an indexed string always yields a byte value
// (not a constant) even if the string and the
// index are constant
x.mode = value
x.typ = universeByte // use 'byte' name
}
case *Array:
valid = true
length = typ.len
if x.mode != variable {
x.mode = value
}
x.typ = typ.elem
case *Pointer:
if typ := asArray(typ.base); typ != nil {
valid = true
length = typ.len
x.mode = variable
x.typ = typ.elem
}
case *Slice:
valid = true
x.mode = variable
x.typ = typ.elem
case *Map:
index := check.singleIndex(e)
if index == nil {
x.mode = invalid
return
}
var key operand
check.expr(&key, index)
check.assignment(&key, typ.key, "map index")
// ok to continue even if indexing failed - map element type is known
x.mode = mapindex
x.typ = typ.elem
x.expr = e
return
case *_Sum:
// A sum type can be indexed if all of the sum's types
// support indexing and have the same index and element
// type. Special rules apply for maps in the sum type.
var tkey, telem Type // key is for map types only
nmaps := 0 // number of map types in sum type
if typ.is(func(t Type) bool {
var e Type
switch t := under(t).(type) {
case *Basic:
if isString(t) {
e = universeByte
}
case *Array:
e = t.elem
case *Pointer:
if t := asArray(t.base); t != nil {
e = t.elem
}
case *Slice:
e = t.elem
case *Map:
// If there are multiple maps in the sum type,
// they must have identical key types.
// TODO(gri) We may be able to relax this rule
// but it becomes complicated very quickly.
if tkey != nil && !Identical(t.key, tkey) {
return false
}
tkey = t.key
e = t.elem
nmaps++
case *_TypeParam:
check.errorf(x, 0, "type of %s contains a type parameter - cannot index (implementation restriction)", x)
case *instance:
panic("unimplemented")
}
if e == nil || telem != nil && !Identical(e, telem) {
return false
}
telem = e
return true
}) {
// If there are maps, the index expression must be assignable
// to the map key type (as for simple map index expressions).
if nmaps > 0 {
index := check.singleIndex(e)
if index == nil {
x.mode = invalid
return
}
var key operand
check.expr(&key, index)
check.assignment(&key, tkey, "map index")
// ok to continue even if indexing failed - map element type is known
// If there are only maps, we are done.
if nmaps == len(typ.types) {
x.mode = mapindex
x.typ = telem
x.expr = e
return
}
// Otherwise we have mix of maps and other types. For
// now we require that the map key be an integer type.
// TODO(gri) This is probably not good enough.
valid = isInteger(tkey)
// avoid 2nd indexing error if indexing failed above
if !valid && key.mode == invalid {
x.mode = invalid
return
}
x.mode = value // map index expressions are not addressable
} else {
// no maps
valid = true
x.mode = variable
}
x.typ = telem
}
}
if !valid {
check.invalidOp(x, _NonIndexableOperand, "cannot index %s", x)
x.mode = invalid
return
}
index := check.singleIndex(e)
if index == nil {
x.mode = invalid
return
}
// In pathological (invalid) cases (e.g.: type T1 [][[]T1{}[0][0]]T0)
// the element type may be accessed before it's set. Make sure we have
// a valid type.
if x.typ == nil {
x.typ = Typ[Invalid]
}
check.index(index, length)
return false
}
func (check *Checker) sliceExpr(x *operand, e *ast.SliceExpr) {
check.expr(x, e.X)
if x.mode == invalid {
check.use(e.Low, e.High, e.Max)
return
}
valid := false
length := int64(-1) // valid if >= 0
switch typ := optype(x.typ).(type) {
case *Basic:
if isString(typ) {
if e.Slice3 {
check.invalidOp(x, _InvalidSliceExpr, "3-index slice of string")
x.mode = invalid
return
}
valid = true
if x.mode == constant_ {
length = int64(len(constant.StringVal(x.val)))
}
// spec: "For untyped string operands the result
// is a non-constant value of type string."
if typ.kind == UntypedString {
x.typ = Typ[String]
}
}
case *Array:
valid = true
length = typ.len
if x.mode != variable {
check.invalidOp(x, _NonSliceableOperand, "cannot slice %s (value not addressable)", x)
x.mode = invalid
return
}
x.typ = &Slice{elem: typ.elem}
case *Pointer:
if typ := asArray(typ.base); typ != nil {
valid = true
length = typ.len
x.typ = &Slice{elem: typ.elem}
}
case *Slice:
valid = true
// x.typ doesn't change
case *_Sum, *_TypeParam:
check.errorf(x, 0, "generic slice expressions not yet implemented")
x.mode = invalid
return
}
if !valid {
check.invalidOp(x, _NonSliceableOperand, "cannot slice %s", x)
x.mode = invalid
return
}
x.mode = value
// spec: "Only the first index may be omitted; it defaults to 0."
if e.Slice3 && (e.High == nil || e.Max == nil) {
check.invalidAST(inNode(e, e.Rbrack), "2nd and 3rd index required in 3-index slice")
x.mode = invalid
return
}
// check indices
var ind [3]int64
for i, expr := range []ast.Expr{e.Low, e.High, e.Max} {
x := int64(-1)
switch {
case expr != nil:
// The "capacity" is only known statically for strings, arrays,
// and pointers to arrays, and it is the same as the length for
// those types.
max := int64(-1)
if length >= 0 {
max = length + 1
}
if _, v := check.index(expr, max); v >= 0 {
x = v
}
case i == 0:
// default is 0 for the first index
x = 0
case length >= 0:
// default is length (== capacity) otherwise
x = length
}
ind[i] = x
}
// constant indices must be in range
// (check.index already checks that existing indices >= 0)
L:
for i, x := range ind[:len(ind)-1] {
if x > 0 {
for _, y := range ind[i+1:] {
if y >= 0 && x > y {
check.errorf(inNode(e, e.Rbrack), _SwappedSliceIndices, "swapped slice indices: %d > %d", x, y)
break L // only report one error, ok to continue
}
}
}
}
}
// singleIndex returns the (single) index from the index expression e.
// If the index is missing, or if there are multiple indices, an error
// is reported and the result is nil.
func (check *Checker) singleIndex(e *ast.IndexExpr) ast.Expr {
index := e.Index
if index == nil {
check.invalidAST(e, "missing index for %s", e)
return nil
}
indexes := typeparams.UnpackExpr(index)
if len(indexes) == 0 {
check.invalidAST(index, "index expression %v with 0 indices", index)
return nil
}
if len(indexes) > 1 {
// TODO(rFindley) should this get a distinct error code?
check.invalidOp(indexes[1], _InvalidIndex, "more than one index")
}
return indexes[0]
}
// index checks an index expression for validity.
// If max >= 0, it is the upper bound for index.
// If the result typ is != Typ[Invalid], index is valid and typ is its (possibly named) integer type.
// If the result val >= 0, index is valid and val is its constant int value.
func (check *Checker) index(index ast.Expr, max int64) (typ Type, val int64) {
typ = Typ[Invalid]
val = -1
var x operand
check.expr(&x, index)
if !check.isValidIndex(&x, _InvalidIndex, "index", false) {
return
}
if x.mode != constant_ {
return x.typ, -1
}
if x.val.Kind() == constant.Unknown {
return
}
v, ok := constant.Int64Val(x.val)
assert(ok)
if max >= 0 && v >= max {
check.invalidArg(&x, _InvalidIndex, "index %s is out of bounds", &x)
return
}
// 0 <= v [ && v < max ]
return x.typ, v
}
func (check *Checker) isValidIndex(x *operand, code errorCode, what string, allowNegative bool) bool {
if x.mode == invalid {
return false
}
// spec: "a constant index that is untyped is given type int"
check.convertUntyped(x, Typ[Int])
if x.mode == invalid {
return false
}
// spec: "the index x must be of integer type or an untyped constant"
if !isInteger(x.typ) {
check.invalidArg(x, code, "%s %s must be integer", what, x)
return false
}
if x.mode == constant_ {
// spec: "a constant index must be non-negative ..."
if !allowNegative && constant.Sign(x.val) < 0 {
check.invalidArg(x, code, "%s %s must not be negative", what, x)
return false
}
// spec: "... and representable by a value of type int"
if !representableConst(x.val, check, Typ[Int], &x.val) {
check.invalidArg(x, code, "%s %s overflows int", what, x)
return false
}
}
return true
}
// indexElts checks the elements (elts) of an array or slice composite literal
// against the literal's element type (typ), and the element indices against
// the literal length if known (length >= 0). It returns the length of the
// literal (maximum index value + 1).
//
func (check *Checker) indexedElts(elts []ast.Expr, typ Type, length int64) int64 {
visited := make(map[int64]bool, len(elts))
var index, max int64
for _, e := range elts {
// determine and check index
validIndex := false
eval := e
if kv, _ := e.(*ast.KeyValueExpr); kv != nil {
if typ, i := check.index(kv.Key, length); typ != Typ[Invalid] {
if i >= 0 {
index = i
validIndex = true
} else {
check.errorf(e, _InvalidLitIndex, "index %s must be integer constant", kv.Key)
}
}
eval = kv.Value
} else if length >= 0 && index >= length {
check.errorf(e, _OversizeArrayLit, "index %d is out of bounds (>= %d)", index, length)
} else {
validIndex = true
}
// if we have a valid index, check for duplicate entries
if validIndex {
if visited[index] {
check.errorf(e, _DuplicateLitKey, "duplicate index %d in array or slice literal", index)
}
visited[index] = true
}
index++
if index > max {
max = index
}
// check element against composite literal element type
var x operand
check.exprWithHint(&x, eval, typ)
check.assignment(&x, typ, "array or slice literal")
}
return max
}