| /* Implementation of the MINLOC intrinsic | 
 |    Copyright (C) 2002-2025 Free Software Foundation, Inc. | 
 |    Contributed by Paul Brook <paul@nowt.org> | 
 |  | 
 | This file is part of the GNU Fortran 95 runtime library (libgfortran). | 
 |  | 
 | Libgfortran is free software; you can redistribute it and/or | 
 | modify it under the terms of the GNU General Public | 
 | License as published by the Free Software Foundation; either | 
 | version 3 of the License, or (at your option) any later version. | 
 |  | 
 | Libgfortran is distributed in the hope that it will be useful, | 
 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | GNU General Public License for more details. | 
 |  | 
 | Under Section 7 of GPL version 3, you are granted additional | 
 | permissions described in the GCC Runtime Library Exception, version | 
 | 3.1, as published by the Free Software Foundation. | 
 |  | 
 | You should have received a copy of the GNU General Public License and | 
 | a copy of the GCC Runtime Library Exception along with this program; | 
 | see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
 | <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include "libgfortran.h" | 
 | #include <assert.h> | 
 |  | 
 |  | 
 | #if defined (HAVE_GFC_REAL_16) && defined (HAVE_GFC_INTEGER_4) | 
 |  | 
 |  | 
 | extern void minloc0_4_r16 (gfc_array_i4 * const restrict retarray,  | 
 | 	gfc_array_r16 * const restrict array, GFC_LOGICAL_4); | 
 | export_proto(minloc0_4_r16); | 
 |  | 
 | void | 
 | minloc0_4_r16 (gfc_array_i4 * const restrict retarray,  | 
 | 	gfc_array_r16 * const restrict array, GFC_LOGICAL_4 back) | 
 | { | 
 |   index_type count[GFC_MAX_DIMENSIONS]; | 
 |   index_type extent[GFC_MAX_DIMENSIONS]; | 
 |   index_type sstride[GFC_MAX_DIMENSIONS]; | 
 |   index_type dstride; | 
 |   const GFC_REAL_16 *base; | 
 |   GFC_INTEGER_4 * restrict dest; | 
 |   index_type rank; | 
 |   index_type n; | 
 |  | 
 |   rank = GFC_DESCRIPTOR_RANK (array); | 
 |   if (rank <= 0) | 
 |     runtime_error ("Rank of array needs to be > 0"); | 
 |  | 
 |   if (retarray->base_addr == NULL) | 
 |     { | 
 |       GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1); | 
 |       retarray->dtype.rank = 1; | 
 |       retarray->offset = 0; | 
 |       retarray->base_addr = xmallocarray (rank, sizeof (GFC_INTEGER_4)); | 
 |     } | 
 |   else | 
 |     { | 
 |       if (unlikely (compile_options.bounds_check)) | 
 | 	bounds_iforeach_return ((array_t *) retarray, (array_t *) array, | 
 | 				"MINLOC"); | 
 |     } | 
 |  | 
 |   dstride = GFC_DESCRIPTOR_STRIDE(retarray,0); | 
 |   dest = retarray->base_addr; | 
 |   for (n = 0; n < rank; n++) | 
 |     { | 
 |       sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); | 
 |       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); | 
 |       count[n] = 0; | 
 |       if (extent[n] <= 0) | 
 | 	{ | 
 | 	  /* Set the return value.  */ | 
 | 	  for (n = 0; n < rank; n++) | 
 | 	    dest[n * dstride] = 0; | 
 | 	  return; | 
 | 	} | 
 |     } | 
 |  | 
 |   base = array->base_addr; | 
 |  | 
 |   /* Initialize the return value.  */ | 
 |   for (n = 0; n < rank; n++) | 
 |     dest[n * dstride] = 1; | 
 |   { | 
 |  | 
 |     GFC_REAL_16 minval; | 
 | #if defined(GFC_REAL_16_QUIET_NAN) | 
 |     int fast = 0; | 
 | #endif | 
 |  | 
 | #if defined(GFC_REAL_16_INFINITY) | 
 |     minval = GFC_REAL_16_INFINITY; | 
 | #else | 
 |     minval = GFC_REAL_16_HUGE; | 
 | #endif | 
 |   while (base) | 
 |     { | 
 | 	  /* Implementation start.  */ | 
 |  | 
 | #if defined(GFC_REAL_16_QUIET_NAN) | 
 |       if (unlikely (!fast)) | 
 | 	{ | 
 | 	  do | 
 | 	    { | 
 | 	      if (*base <= minval) | 
 | 		{ | 
 | 		  fast = 1; | 
 | 		  minval = *base; | 
 | 		  for (n = 0; n < rank; n++) | 
 | 		    dest[n * dstride] = count[n] + 1; | 
 | 		  break; | 
 | 		} | 
 | 	      base += sstride[0]; | 
 | 	    } | 
 | 	  while (++count[0] != extent[0]); | 
 | 	  if (likely (fast)) | 
 | 	    continue; | 
 | 	} | 
 |       else | 
 | #endif | 
 |       if (back) | 
 | 	do | 
 | 	  { | 
 | 	    if (unlikely (*base <= minval)) | 
 | 	      { | 
 | 		minval = *base; | 
 | 		for (n = 0; n < rank; n++) | 
 | 		  dest[n * dstride] = count[n] + 1; | 
 | 	      } | 
 | 	    base += sstride[0]; | 
 | 	  } | 
 | 	while (++count[0] != extent[0]); | 
 |       else | 
 | 	do | 
 | 	  { | 
 | 	    if (unlikely (*base < minval)) | 
 | 	      { | 
 | 		minval = *base; | 
 | 		for (n = 0; n < rank; n++) | 
 | 		  dest[n * dstride] = count[n] + 1; | 
 | 	      } | 
 | 	  /* Implementation end.  */ | 
 | 	  /* Advance to the next element.  */ | 
 | 	  base += sstride[0]; | 
 | 	} | 
 |       while (++count[0] != extent[0]); | 
 |       n = 0; | 
 |       do | 
 | 	{ | 
 | 	  /* When we get to the end of a dimension, reset it and increment | 
 | 	     the next dimension.  */ | 
 | 	  count[n] = 0; | 
 | 	  /* We could precalculate these products, but this is a less | 
 | 	     frequently used path so probably not worth it.  */ | 
 | 	  base -= sstride[n] * extent[n]; | 
 | 	  n++; | 
 | 	  if (n >= rank) | 
 | 	    { | 
 | 	      /* Break out of the loop.  */ | 
 | 	      base = NULL; | 
 | 	      break; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      count[n]++; | 
 | 	      base += sstride[n]; | 
 | 	    } | 
 | 	} | 
 |       while (count[n] == extent[n]); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | extern void mminloc0_4_r16 (gfc_array_i4 * const restrict,  | 
 | 	gfc_array_r16 * const restrict, gfc_array_l1 * const restrict, | 
 | 	GFC_LOGICAL_4); | 
 | export_proto(mminloc0_4_r16); | 
 |  | 
 | void | 
 | mminloc0_4_r16 (gfc_array_i4 * const restrict retarray,  | 
 | 	gfc_array_r16 * const restrict array, | 
 | 	gfc_array_l1 * const restrict mask, GFC_LOGICAL_4 back) | 
 | { | 
 |   index_type count[GFC_MAX_DIMENSIONS]; | 
 |   index_type extent[GFC_MAX_DIMENSIONS]; | 
 |   index_type sstride[GFC_MAX_DIMENSIONS]; | 
 |   index_type mstride[GFC_MAX_DIMENSIONS]; | 
 |   index_type dstride; | 
 |   GFC_INTEGER_4 *dest; | 
 |   const GFC_REAL_16 *base; | 
 |   GFC_LOGICAL_1 *mbase; | 
 |   int rank; | 
 |   index_type n; | 
 |   int mask_kind; | 
 |  | 
 |  | 
 |   if (mask == NULL) | 
 |     { | 
 |       minloc0_4_r16 (retarray, array, back); | 
 |       return; | 
 |     } | 
 |  | 
 |   rank = GFC_DESCRIPTOR_RANK (array); | 
 |   if (rank <= 0) | 
 |     runtime_error ("Rank of array needs to be > 0"); | 
 |  | 
 |   if (retarray->base_addr == NULL) | 
 |     { | 
 |       GFC_DIMENSION_SET(retarray->dim[0], 0, rank - 1, 1); | 
 |       retarray->dtype.rank = 1; | 
 |       retarray->offset = 0; | 
 |       retarray->base_addr = xmallocarray (rank, sizeof (GFC_INTEGER_4)); | 
 |     } | 
 |   else | 
 |     { | 
 |       if (unlikely (compile_options.bounds_check)) | 
 | 	{ | 
 |  | 
 | 	  bounds_iforeach_return ((array_t *) retarray, (array_t *) array, | 
 | 				  "MINLOC"); | 
 | 	  bounds_equal_extents ((array_t *) mask, (array_t *) array, | 
 | 				  "MASK argument", "MINLOC"); | 
 | 	} | 
 |     } | 
 |  | 
 |   mask_kind = GFC_DESCRIPTOR_SIZE (mask); | 
 |  | 
 |   mbase = mask->base_addr; | 
 |  | 
 |   if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 | 
 | #ifdef HAVE_GFC_LOGICAL_16 | 
 |       || mask_kind == 16 | 
 | #endif | 
 |       ) | 
 |     mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); | 
 |   else | 
 |     runtime_error ("Funny sized logical array"); | 
 |  | 
 |   dstride = GFC_DESCRIPTOR_STRIDE(retarray,0); | 
 |   dest = retarray->base_addr; | 
 |   for (n = 0; n < rank; n++) | 
 |     { | 
 |       sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); | 
 |       mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); | 
 |       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); | 
 |       count[n] = 0; | 
 |       if (extent[n] <= 0) | 
 | 	{ | 
 | 	  /* Set the return value.  */ | 
 | 	  for (n = 0; n < rank; n++) | 
 | 	    dest[n * dstride] = 0; | 
 | 	  return; | 
 | 	} | 
 |     } | 
 |  | 
 |   base = array->base_addr; | 
 |  | 
 |   /* Initialize the return value.  */ | 
 |   for (n = 0; n < rank; n++) | 
 |     dest[n * dstride] = 0; | 
 |   { | 
 |  | 
 |   GFC_REAL_16 minval; | 
 |    int fast = 0; | 
 |  | 
 | #if defined(GFC_REAL_16_INFINITY) | 
 |     minval = GFC_REAL_16_INFINITY; | 
 | #else | 
 |     minval = GFC_REAL_16_HUGE; | 
 | #endif | 
 |   while (base) | 
 |     { | 
 | 	  /* Implementation start.  */ | 
 |  | 
 |       if (unlikely (!fast)) | 
 | 	{ | 
 | 	  do | 
 | 	    { | 
 | 	      if (*mbase) | 
 | 		{ | 
 | #if defined(GFC_REAL_16_QUIET_NAN) | 
 | 		  if (unlikely (dest[0] == 0)) | 
 | 		    for (n = 0; n < rank; n++) | 
 | 		      dest[n * dstride] = count[n] + 1; | 
 | 		  if (*base <= minval) | 
 | #endif | 
 | 		    { | 
 | 		      fast = 1; | 
 | 		      minval = *base; | 
 | 		      for (n = 0; n < rank; n++) | 
 | 			dest[n * dstride] = count[n] + 1; | 
 | 		      break; | 
 | 		    } | 
 | 		} | 
 | 	      base += sstride[0]; | 
 | 	      mbase += mstride[0]; | 
 | 	    } | 
 | 	  while (++count[0] != extent[0]); | 
 | 	  if (likely (fast)) | 
 | 	    continue; | 
 | 	} | 
 |         else | 
 |         if (back) | 
 | 	  do | 
 | 	    { | 
 | 	      if (unlikely (*mbase && (*base <= minval))) | 
 | 	        { | 
 | 	      	  minval = *base; | 
 | 	      	  for (n = 0; n < rank; n++) | 
 | 		    dest[n * dstride] = count[n] + 1; | 
 | 	    	} | 
 | 		base += sstride[0]; | 
 | 	    } | 
 | 	    while (++count[0] != extent[0]); | 
 | 	else | 
 | 	  do | 
 | 	    { | 
 | 	      if (unlikely (*mbase && (*base < minval))) | 
 | 		{ | 
 | 		  minval = *base; | 
 | 		  for (n = 0; n < rank; n++) | 
 | 		    dest[n * dstride] = count[n] + 1; | 
 | 		} | 
 | 	  /* Implementation end.  */ | 
 | 	  /* Advance to the next element.  */ | 
 | 	  base += sstride[0]; | 
 | 	  mbase += mstride[0]; | 
 | 	} | 
 |       while (++count[0] != extent[0]); | 
 |       n = 0; | 
 |       do | 
 | 	{ | 
 | 	  /* When we get to the end of a dimension, reset it and increment | 
 | 	     the next dimension.  */ | 
 | 	  count[n] = 0; | 
 | 	  /* We could precalculate these products, but this is a less | 
 | 	     frequently used path so probably not worth it.  */ | 
 | 	  base -= sstride[n] * extent[n]; | 
 | 	  mbase -= mstride[n] * extent[n]; | 
 | 	  n++; | 
 | 	  if (n >= rank) | 
 | 	    { | 
 | 	      /* Break out of the loop.  */ | 
 | 	      base = NULL; | 
 | 	      break; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      count[n]++; | 
 | 	      base += sstride[n]; | 
 | 	      mbase += mstride[n]; | 
 | 	    } | 
 | 	} | 
 |       while (count[n] == extent[n]); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | extern void sminloc0_4_r16 (gfc_array_i4 * const restrict,  | 
 | 	gfc_array_r16 * const restrict, GFC_LOGICAL_4 *, GFC_LOGICAL_4); | 
 | export_proto(sminloc0_4_r16); | 
 |  | 
 | void | 
 | sminloc0_4_r16 (gfc_array_i4 * const restrict retarray,  | 
 | 	gfc_array_r16 * const restrict array, | 
 | 	GFC_LOGICAL_4 * mask, GFC_LOGICAL_4 back) | 
 | { | 
 |   index_type rank; | 
 |   index_type dstride; | 
 |   index_type n; | 
 |   GFC_INTEGER_4 *dest; | 
 |  | 
 |   if (mask == NULL || *mask) | 
 |     { | 
 |       minloc0_4_r16 (retarray, array, back); | 
 |       return; | 
 |     } | 
 |  | 
 |   rank = GFC_DESCRIPTOR_RANK (array); | 
 |  | 
 |   if (rank <= 0) | 
 |     runtime_error ("Rank of array needs to be > 0"); | 
 |  | 
 |   if (retarray->base_addr == NULL) | 
 |     { | 
 |       GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1); | 
 |       retarray->dtype.rank = 1; | 
 |       retarray->offset = 0; | 
 |       retarray->base_addr = xmallocarray (rank, sizeof (GFC_INTEGER_4)); | 
 |     } | 
 |   else if (unlikely (compile_options.bounds_check)) | 
 |     { | 
 |        bounds_iforeach_return ((array_t *) retarray, (array_t *) array, | 
 | 			       "MINLOC"); | 
 |     } | 
 |  | 
 |   dstride = GFC_DESCRIPTOR_STRIDE(retarray,0); | 
 |   dest = retarray->base_addr; | 
 |   for (n = 0; n<rank; n++) | 
 |     dest[n * dstride] = 0 ; | 
 | } | 
 | #endif |