| #!/usr/bin/python |
| |
| # Script to statistically compare two sets of log files with -ftime-report |
| # output embedded within them. |
| |
| # Contributed by Lawrence Crowl <crowl@google.com> |
| # |
| # Copyright (C) 2012 Free Software Foundation, Inc. |
| # |
| # This file is part of GCC. |
| # |
| # GCC is free software; you can redistribute it and/or modify |
| # it under the terms of the GNU General Public License as published by |
| # the Free Software Foundation; either version 3, or (at your option) |
| # any later version. |
| # |
| # GCC is distributed in the hope that it will be useful, |
| # but WITHOUT ANY WARRANTY; without even the implied warranty of |
| # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| # GNU General Public License for more details. |
| # |
| # You should have received a copy of the GNU General Public License |
| # along with GCC; see the file COPYING. If not, write to |
| # the Free Software Foundation, 51 Franklin Street, Fifth Floor, |
| # Boston, MA 02110-1301, USA. |
| |
| |
| """ Compare two sets of compile-time performance numbers. |
| |
| The intent of this script is to compare compile-time performance of two |
| different versions of the compiler. Each version of the compiler must be |
| run at least three times with the -ftime-report option. Each log file |
| represents a data point, or trial. The set of trials for each compiler |
| version constitutes a sample. The ouput of the script is a description |
| of the statistically significant difference between the two version of |
| the compiler. |
| |
| The parameters to the script are: |
| |
| Two file patterns that each match a set of log files. You will probably |
| need to quote the patterns before passing them to the script. |
| |
| Each pattern corresponds to a version of the compiler. |
| |
| A regular expression that finds interesting lines in the log files. |
| If you want to match the beginning of the line, you will need to add |
| the ^ operator. The filtering uses Python regular expression syntax. |
| |
| The default is "TOTAL". |
| |
| All of the interesting lines in a single log file are summed to produce |
| a single trial (data point). |
| |
| A desired statistical confidence within the range 60% to 99.9%. Due to |
| the implementation, this confidence will be rounded down to one of 60%, |
| 70%, 80%, 90%, 95%, 98%, 99%, 99.5%, 99.8%, and 99.9%. |
| |
| The default is 95. |
| |
| If the computed confidence is lower than desired, the script will |
| estimate the number of trials needed to meet the desired confidence. |
| This estimate is not very good, as the variance tends to change as |
| you increase the number of trials. |
| |
| The most common use of the script is total compile-time comparison between |
| logfiles stored in different directories. |
| |
| compare_two_ftime_report_sets "Log1/*perf" "Log2/*perf" |
| |
| One can also look at parsing time, but expecting a lower confidence. |
| |
| compare_two_ftime_report_sets "Log1/*perf" "Log2/*perf" "^phase parsing" 75 |
| |
| """ |
| |
| |
| import os |
| import sys |
| import fnmatch |
| import glob |
| import re |
| import math |
| |
| |
| ####################################################################### Utility |
| |
| |
| def divide(dividend, divisor): |
| """ Return the quotient, avoiding division by zero. |
| """ |
| if divisor == 0: |
| return sys.float_info.max |
| else: |
| return dividend / divisor |
| |
| |
| ################################################################# File and Line |
| |
| |
| # Should you repurpose this script, this code might help. |
| # |
| #def find_files(topdir, filepat): |
| # """ Find a set of file names, under a given directory, |
| # matching a Unix shell file pattern. |
| # Returns an iterator over the file names. |
| # """ |
| # for path, dirlist, filelist in os.walk(topdir): |
| # for name in fnmatch.filter(filelist, filepat): |
| # yield os.path.join(path, name) |
| |
| |
| def match_files(fileglob): |
| """ Find a set of file names matching a Unix shell glob pattern. |
| Returns an iterator over the file names. |
| """ |
| return glob.iglob(os.path.expanduser(fileglob)) |
| |
| |
| def lines_in_file(filename): |
| """ Return an iterator over lines in the named file. """ |
| filedesc = open(filename, "r") |
| for line in filedesc: |
| yield line |
| filedesc.close() |
| |
| |
| def lines_containing_pattern(pattern, lines): |
| """ Find lines by a Python regular-expression. |
| Returns an iterator over lines containing the expression. |
| """ |
| parser = re.compile(pattern) |
| for line in lines: |
| if parser.search(line): |
| yield line |
| |
| |
| ############################################################# Number Formatting |
| |
| |
| def strip_redundant_digits(numrep): |
| if numrep.find(".") == -1: |
| return numrep |
| return numrep.rstrip("0").rstrip(".") |
| |
| |
| def text_number(number): |
| return strip_redundant_digits("%g" % number) |
| |
| |
| def round_significant(digits, number): |
| if number == 0: |
| return 0 |
| magnitude = abs(number) |
| significance = math.floor(math.log10(magnitude)) |
| least_position = int(significance - digits + 1) |
| return round(number, -least_position) |
| |
| |
| def text_significant(digits, number): |
| return text_number(round_significant(digits, number)) |
| |
| |
| def text_percent(number): |
| return text_significant(3, number*100) + "%" |
| |
| |
| ################################################################ T-Distribution |
| |
| |
| # This section of code provides functions for using Student's t-distribution. |
| |
| |
| # The functions are implemented using table lookup |
| # to facilitate implementation of inverse functions. |
| |
| |
| # The table is comprised of row 0 listing the alpha values, |
| # column 0 listing the degree-of-freedom values, |
| # and the other entries listing the corresponding t-distribution values. |
| |
| t_dist_table = [ |
| [ 0, 0.200, 0.150, 0.100, 0.050, 0.025, 0.010, 0.005, .0025, 0.001, .0005], |
| [ 1, 1.376, 1.963, 3.078, 6.314, 12.71, 31.82, 63.66, 127.3, 318.3, 636.6], |
| [ 2, 1.061, 1.386, 1.886, 2.920, 4.303, 6.965, 9.925, 14.09, 22.33, 31.60], |
| [ 3, 0.978, 1.250, 1.638, 2.353, 3.182, 4.541, 5.841, 7.453, 10.21, 12.92], |
| [ 4, 0.941, 1.190, 1.533, 2.132, 2.776, 3.747, 4.604, 5.598, 7.173, 8.610], |
| [ 5, 0.920, 1.156, 1.476, 2.015, 2.571, 3.365, 4.032, 4.773, 5.894, 6.869], |
| [ 6, 0.906, 1.134, 1.440, 1.943, 2.447, 3.143, 3.707, 4.317, 5.208, 5.959], |
| [ 7, 0.896, 1.119, 1.415, 1.895, 2.365, 2.998, 3.499, 4.029, 4.785, 5.408], |
| [ 8, 0.889, 1.108, 1.397, 1.860, 2.306, 2.896, 3.355, 3.833, 4.501, 5.041], |
| [ 9, 0.883, 1.100, 1.383, 1.833, 2.262, 2.821, 3.250, 3.690, 4.297, 4.781], |
| [ 10, 0.879, 1.093, 1.372, 1.812, 2.228, 2.764, 3.169, 3.581, 4.144, 4.587], |
| [ 11, 0.876, 1.088, 1.363, 1.796, 2.201, 2.718, 3.106, 3.497, 4.025, 4.437], |
| [ 12, 0.873, 1.083, 1.356, 1.782, 2.179, 2.681, 3.055, 3.428, 3.930, 4.318], |
| [ 13, 0.870, 1.079, 1.350, 1.771, 2.160, 2.650, 3.012, 3.372, 3.852, 4.221], |
| [ 14, 0.868, 1.076, 1.345, 1.761, 2.145, 2.624, 2.977, 3.326, 3.787, 4.140], |
| [ 15, 0.866, 1.074, 1.341, 1.753, 2.131, 2.602, 2.947, 3.286, 3.733, 4.073], |
| [ 16, 0.865, 1.071, 1.337, 1.746, 2.120, 2.583, 2.921, 3.252, 3.686, 4.015], |
| [ 17, 0.863, 1.069, 1.333, 1.740, 2.110, 2.567, 2.898, 3.222, 3.646, 3.965], |
| [ 18, 0.862, 1.067, 1.330, 1.734, 2.101, 2.552, 2.878, 3.197, 3.610, 3.922], |
| [ 19, 0.861, 1.066, 1.328, 1.729, 2.093, 2.539, 2.861, 3.174, 3.579, 3.883], |
| [ 20, 0.860, 1.064, 1.325, 1.725, 2.086, 2.528, 2.845, 3.153, 3.552, 3.850], |
| [ 21, 0.859, 1.063, 1.323, 1.721, 2.080, 2.518, 2.831, 3.135, 3.527, 3.819], |
| [ 22, 0.858, 1.061, 1.321, 1.717, 2.074, 2.508, 2.819, 3.119, 3.505, 3.792], |
| [ 23, 0.858, 1.060, 1.319, 1.714, 2.069, 2.500, 2.807, 3.104, 3.485, 3.768], |
| [ 24, 0.857, 1.059, 1.318, 1.711, 2.064, 2.492, 2.797, 3.091, 3.467, 3.745], |
| [ 25, 0.856, 1.058, 1.316, 1.708, 2.060, 2.485, 2.787, 3.078, 3.450, 3.725], |
| [ 26, 0.856, 1.058, 1.315, 1.706, 2.056, 2.479, 2.779, 3.067, 3.435, 3.707], |
| [ 27, 0.855, 1.057, 1.314, 1.703, 2.052, 2.473, 2.771, 3.057, 3.421, 3.689], |
| [ 28, 0.855, 1.056, 1.313, 1.701, 2.048, 2.467, 2.763, 3.047, 3.408, 3.674], |
| [ 29, 0.854, 1.055, 1.311, 1.699, 2.045, 2.462, 2.756, 3.038, 3.396, 3.660], |
| [ 30, 0.854, 1.055, 1.310, 1.697, 2.042, 2.457, 2.750, 3.030, 3.385, 3.646], |
| [ 31, 0.853, 1.054, 1.309, 1.696, 2.040, 2.453, 2.744, 3.022, 3.375, 3.633], |
| [ 32, 0.853, 1.054, 1.309, 1.694, 2.037, 2.449, 2.738, 3.015, 3.365, 3.622], |
| [ 33, 0.853, 1.053, 1.308, 1.692, 2.035, 2.445, 2.733, 3.008, 3.356, 3.611], |
| [ 34, 0.852, 1.052, 1.307, 1.691, 2.032, 2.441, 2.728, 3.002, 3.348, 3.601], |
| [ 35, 0.852, 1.052, 1.306, 1.690, 2.030, 2.438, 2.724, 2.996, 3.340, 3.591], |
| [ 36, 0.852, 1.052, 1.306, 1.688, 2.028, 2.434, 2.719, 2.990, 3.333, 3.582], |
| [ 37, 0.851, 1.051, 1.305, 1.687, 2.026, 2.431, 2.715, 2.985, 3.326, 3.574], |
| [ 38, 0.851, 1.051, 1.304, 1.686, 2.024, 2.429, 2.712, 2.980, 3.319, 3.566], |
| [ 39, 0.851, 1.050, 1.304, 1.685, 2.023, 2.426, 2.708, 2.976, 3.313, 3.558], |
| [ 40, 0.851, 1.050, 1.303, 1.684, 2.021, 2.423, 2.704, 2.971, 3.307, 3.551], |
| [ 50, 0.849, 1.047, 1.299, 1.676, 2.009, 2.403, 2.678, 2.937, 3.261, 3.496], |
| [ 60, 0.848, 1.045, 1.296, 1.671, 2.000, 2.390, 2.660, 2.915, 3.232, 3.460], |
| [ 80, 0.846, 1.043, 1.292, 1.664, 1.990, 2.374, 2.639, 2.887, 3.195, 3.416], |
| [100, 0.845, 1.042, 1.290, 1.660, 1.984, 2.364, 2.626, 2.871, 3.174, 3.390], |
| [150, 0.844, 1.040, 1.287, 1.655, 1.976, 2.351, 2.609, 2.849, 3.145, 3.357] ] |
| |
| |
| # The functions use the following parameter name conventions: |
| # alpha - the alpha parameter |
| # degree - the degree-of-freedom parameter |
| # value - the t-distribution value for some alpha and degree |
| # deviations - a confidence interval radius, |
| # expressed as a multiple of the standard deviation of the sample |
| # ax - the alpha parameter index |
| # dx - the degree-of-freedom parameter index |
| |
| # The interface to this section of code is the last three functions, |
| # find_t_dist_value, find_t_dist_alpha, and find_t_dist_degree. |
| |
| |
| def t_dist_alpha_at_index(ax): |
| if ax == 0: |
| return .25 # effectively no confidence |
| else: |
| return t_dist_table[0][ax] |
| |
| |
| def t_dist_degree_at_index(dx): |
| return t_dist_table[dx][0] |
| |
| |
| def t_dist_value_at_index(ax, dx): |
| return t_dist_table[dx][ax] |
| |
| |
| def t_dist_index_of_degree(degree): |
| limit = len(t_dist_table) - 1 |
| dx = 0 |
| while dx < limit and t_dist_degree_at_index(dx+1) <= degree: |
| dx += 1 |
| return dx |
| |
| |
| def t_dist_index_of_alpha(alpha): |
| limit = len(t_dist_table[0]) - 1 |
| ax = 0 |
| while ax < limit and t_dist_alpha_at_index(ax+1) >= alpha: |
| ax += 1 |
| return ax |
| |
| |
| def t_dist_index_of_value(dx, value): |
| limit = len(t_dist_table[dx]) - 1 |
| ax = 0 |
| while ax < limit and t_dist_value_at_index(ax+1, dx) < value: |
| ax += 1 |
| return ax |
| |
| |
| def t_dist_value_within_deviations(dx, ax, deviations): |
| degree = t_dist_degree_at_index(dx) |
| count = degree + 1 |
| root = math.sqrt(count) |
| value = t_dist_value_at_index(ax, dx) |
| nominal = value / root |
| comparison = nominal <= deviations |
| return comparison |
| |
| |
| def t_dist_index_of_degree_for_deviations(ax, deviations): |
| limit = len(t_dist_table) - 1 |
| dx = 1 |
| while dx < limit and not t_dist_value_within_deviations(dx, ax, deviations): |
| dx += 1 |
| return dx |
| |
| |
| def find_t_dist_value(alpha, degree): |
| """ Return the t-distribution value. |
| The parameters are alpha and degree of freedom. |
| """ |
| dx = t_dist_index_of_degree(degree) |
| ax = t_dist_index_of_alpha(alpha) |
| return t_dist_value_at_index(ax, dx) |
| |
| |
| def find_t_dist_alpha(value, degree): |
| """ Return the alpha. |
| The parameters are the t-distribution value for a given degree of freedom. |
| """ |
| dx = t_dist_index_of_degree(degree) |
| ax = t_dist_index_of_value(dx, value) |
| return t_dist_alpha_at_index(ax) |
| |
| |
| def find_t_dist_degree(alpha, deviations): |
| """ Return the degree-of-freedom. |
| The parameters are the desired alpha and the number of standard deviations |
| away from the mean that the degree should handle. |
| """ |
| ax = t_dist_index_of_alpha(alpha) |
| dx = t_dist_index_of_degree_for_deviations(ax, deviations) |
| return t_dist_degree_at_index(dx) |
| |
| |
| ############################################################## Core Statistical |
| |
| |
| # This section provides the core statistical classes and functions. |
| |
| |
| class Accumulator: |
| |
| """ An accumulator for statistical information using arithmetic mean. """ |
| |
| def __init__(self): |
| self.count = 0 |
| self.mean = 0 |
| self.sumsqdiff = 0 |
| |
| def insert(self, value): |
| self.count += 1 |
| diff = value - self.mean |
| self.mean += diff / self.count |
| self.sumsqdiff += (self.count - 1) * diff * diff / self.count |
| |
| |
| def fill_accumulator_from_values(values): |
| accumulator = Accumulator() |
| for value in values: |
| accumulator.insert(value) |
| return accumulator |
| |
| |
| def alpha_from_confidence(confidence): |
| scrubbed = min(99.99, max(confidence, 60)) |
| return (100.0 - scrubbed) / 200.0 |
| |
| |
| def confidence_from_alpha(alpha): |
| return 100 - 200 * alpha |
| |
| |
| class Sample: |
| |
| """ A description of a sample using an arithmetic mean. """ |
| |
| def __init__(self, accumulator, alpha): |
| if accumulator.count < 3: |
| sys.exit("Samples must contain three trials.") |
| self.count = accumulator.count |
| self.mean = accumulator.mean |
| variance = accumulator.sumsqdiff / (self.count - 1) |
| self.deviation = math.sqrt(variance) |
| self.error = self.deviation / math.sqrt(self.count) |
| self.alpha = alpha |
| self.radius = find_t_dist_value(alpha, self.count - 1) * self.error |
| |
| def alpha_for_radius(self, radius): |
| return find_t_dist_alpha(divide(radius, self.error), self.count) |
| |
| def degree_for_radius(self, radius): |
| return find_t_dist_degree(self.alpha, divide(radius, self.deviation)) |
| |
| def __str__(self): |
| text = "trial count is " + text_number(self.count) |
| text += ", mean is " + text_number(self.mean) |
| text += " (" + text_number(confidence_from_alpha(self.alpha)) +"%" |
| text += " confidence in " + text_number(self.mean - self.radius) |
| text += " to " + text_number(self.mean + self.radius) + ")" |
| text += ",\nstd.deviation is " + text_number(self.deviation) |
| text += ", std.error is " + text_number(self.error) |
| return text |
| |
| |
| def sample_from_values(values, alpha): |
| accumulator = fill_accumulator_from_values(values) |
| return Sample(accumulator, alpha) |
| |
| |
| class Comparison: |
| |
| """ A comparison of two samples using arithmetic means. """ |
| |
| def __init__(self, first, second, alpha): |
| if first.mean > second.mean: |
| self.upper = first |
| self.lower = second |
| self.larger = "first" |
| else: |
| self.upper = second |
| self.lower = first |
| self.larger = "second" |
| self.a_wanted = alpha |
| radius = self.upper.mean - self.lower.mean |
| rising = self.lower.alpha_for_radius(radius) |
| falling = self.upper.alpha_for_radius(radius) |
| self.a_actual = max(rising, falling) |
| rising = self.lower.degree_for_radius(radius) |
| falling = self.upper.degree_for_radius(radius) |
| self.count = max(rising, falling) + 1 |
| |
| def __str__(self): |
| message = "The " + self.larger + " sample appears to be " |
| change = divide(self.upper.mean, self.lower.mean) - 1 |
| message += text_percent(change) + " larger,\n" |
| confidence = confidence_from_alpha(self.a_actual) |
| if confidence >= 60: |
| message += "with " + text_number(confidence) + "% confidence" |
| message += " of being larger." |
| else: |
| message += "but with no confidence of actually being larger." |
| if self.a_actual > self.a_wanted: |
| confidence = confidence_from_alpha(self.a_wanted) |
| message += "\nTo reach " + text_number(confidence) + "% confidence," |
| if self.count < 100: |
| message += " you need roughly " + text_number(self.count) + " trials,\n" |
| message += "assuming the standard deviation is stable, which is iffy." |
| else: |
| message += "\nyou need to reduce the larger deviation" |
| message += " or increase the number of trials." |
| return message |
| |
| |
| ############################################################ Single Value Files |
| |
| |
| # This section provides functions to compare two raw data files, |
| # each containing a whole sample consisting of single number per line. |
| |
| |
| # Should you repurpose this script, this code might help. |
| # |
| #def values_from_data_file(filename): |
| # for line in lines_in_file(filename): |
| # yield float(line) |
| |
| |
| # Should you repurpose this script, this code might help. |
| # |
| #def sample_from_data_file(filename, alpha): |
| # confidence = confidence_from_alpha(alpha) |
| # text = "\nArithmetic sample for data file\n\"" + filename + "\"" |
| # text += " with desired confidence " + text_number(confidence) + " is " |
| # print text |
| # values = values_from_data_file(filename) |
| # sample = sample_from_values(values, alpha) |
| # print sample |
| # return sample |
| |
| |
| # Should you repurpose this script, this code might help. |
| # |
| #def compare_two_data_files(filename1, filename2, confidence): |
| # alpha = alpha_from_confidence(confidence) |
| # sample1 = sample_from_data_file(filename1, alpha) |
| # sample2 = sample_from_data_file(filename2, alpha) |
| # print |
| # print Comparison(sample1, sample2, alpha) |
| |
| |
| # Should you repurpose this script, this code might help. |
| # |
| #def command_two_data_files(): |
| # argc = len(sys.argv) |
| # if argc < 2 or 4 < argc: |
| # message = "usage: " + sys.argv[0] |
| # message += " file-name file-name [confidence]" |
| # print message |
| # else: |
| # filename1 = sys.argv[1] |
| # filename2 = sys.argv[2] |
| # if len(sys.argv) >= 4: |
| # confidence = int(sys.argv[3]) |
| # else: |
| # confidence = 95 |
| # compare_two_data_files(filename1, filename2, confidence) |
| |
| |
| ############################################### -ftime-report TimeVar Log Files |
| |
| |
| # This section provides functions to compare two sets of -ftime-report log |
| # files. Each set is a sample, where each data point is derived from the |
| # sum of values in a single log file. |
| |
| |
| label = r"^ *([^:]*[^: ]) *:" |
| number = r" *([0-9.]*) *" |
| percent = r"\( *[0-9]*\%\)" |
| numpct = number + percent |
| total_format = label + number + number + number + number + " kB\n" |
| total_parser = re.compile(total_format) |
| tmvar_format = label + numpct + " usr" + numpct + " sys" |
| tmvar_format += numpct + " wall" + number + " kB " + percent + " ggc\n" |
| tmvar_parser = re.compile(tmvar_format) |
| replace = r"\2\t\3\t\4\t\5\t\1" |
| |
| |
| def split_time_report(lines, pattern): |
| if pattern == "TOTAL": |
| parser = total_parser |
| else: |
| parser = tmvar_parser |
| for line in lines: |
| modified = parser.sub(replace, line) |
| if modified != line: |
| yield re.split("\t", modified) |
| |
| |
| def extract_cpu_time(tvtuples): |
| for tuple in tvtuples: |
| yield float(tuple[0]) + float(tuple[1]) |
| |
| |
| def sum_values(values): |
| sum = 0 |
| for value in values: |
| sum += value |
| return sum |
| |
| |
| def extract_time_for_timevar_log(filename, pattern): |
| lines = lines_in_file(filename) |
| tmvars = lines_containing_pattern(pattern, lines) |
| tuples = split_time_report(tmvars, pattern) |
| times = extract_cpu_time(tuples) |
| return sum_values(times) |
| |
| |
| def extract_times_for_timevar_logs(filelist, pattern): |
| for filename in filelist: |
| yield extract_time_for_timevar_log(filename, pattern) |
| |
| |
| def sample_from_timevar_logs(fileglob, pattern, alpha): |
| confidence = confidence_from_alpha(alpha) |
| text = "\nArithmetic sample for timevar log files\n\"" + fileglob + "\"" |
| text += "\nand selecting lines containing \"" + pattern + "\"" |
| text += " with desired confidence " + text_number(confidence) + " is " |
| print text |
| filelist = match_files(fileglob) |
| values = extract_times_for_timevar_logs(filelist, pattern) |
| sample = sample_from_values(values, alpha) |
| print sample |
| return sample |
| |
| |
| def compare_two_timevar_logs(fileglob1, fileglob2, pattern, confidence): |
| alpha = alpha_from_confidence(confidence) |
| sample1 = sample_from_timevar_logs(fileglob1, pattern, alpha) |
| sample2 = sample_from_timevar_logs(fileglob2, pattern, alpha) |
| print |
| print Comparison(sample1, sample2, alpha) |
| |
| |
| def command_two_timevar_logs(): |
| argc = len(sys.argv) |
| if argc < 3 or 5 < argc: |
| message = "usage: " + sys.argv[0] |
| message += " file-pattern file-pattern [line-pattern [confidence]]" |
| print message |
| else: |
| filepat1 = sys.argv[1] |
| filepat2 = sys.argv[2] |
| if len(sys.argv) >= 5: |
| confidence = int(sys.argv[4]) |
| else: |
| confidence = 95 |
| if len(sys.argv) >= 4: |
| linepat = sys.argv[3] |
| else: |
| linepat = "TOTAL" |
| compare_two_timevar_logs(filepat1, filepat2, linepat, confidence) |
| |
| |
| ########################################################################## Main |
| |
| |
| # This section is the main code, implementing the command. |
| |
| |
| command_two_timevar_logs() |