blob: 31be7d685ba76c78c7de650ee8add5f319e4d925 [file] [log] [blame]
/* This file is part of the Intel(R) Cilk(TM) Plus support
It contains routines to handle Array Notation expression
handling routines in the C++ Compiler.
Copyright (C) 2013-2017 Free Software Foundation, Inc.
Contributed by Balaji V. Iyer <balaji.v.iyer@intel.com>,
Intel Corporation
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* The Array Notation Transformation Technique:
An array notation expression has 4 major components:
1. The array name
2. Start Index
3. Number of elements we need to access (we call it length)
4. Stride
So, if we have something like A[0:5:2], we are accessing A[0], A[2], A[4],
A[6] and A[8]. The user is responsible to make sure the access length does
not step outside the array's size.
In this section, I highlight the overall method on how array notations are
broken up into C/C++ code. Almost all the functions follows this step:
Let's say the user has used the array notation in a statement like this:
A[St1:Ln:Str1] = B[St2:Ln:Str2] + <NON ARRAY_NOT STMT>
where St{1,2} = Starting index, Ln = Number of elements we need to access,
and Str{1,2} = the stride.
Note: The length of both the array notation expressions must be the same.
The above expression is broken into the following:
for (Tmp_Var = 0; Tmp_Var < Ln; Tmp_Var++)
A[St1 + Tmp_Var * Str1] = B[St1 + Tmp_Var * Str2] + <NON_ARRAY_NOT_STMT>;
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "cp-tree.h"
#include "tree-iterator.h"
/* Creates a FOR_STMT with INIT, COND, INCR and BODY as the initializer,
condition, increment expression and the loop-body, respectively. */
static void
create_an_loop (tree init, tree cond, tree incr, tree body)
{
tree for_stmt;
finish_expr_stmt (init);
for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
finish_init_stmt (for_stmt);
finish_for_cond (cond, for_stmt, false);
finish_for_expr (incr, for_stmt);
finish_expr_stmt (body);
finish_for_stmt (for_stmt);
}
/* If *VALUE is not a constant integer, then this function replaces it with
a variable to make it loop invariant for array notations. */
static inline void
make_triplet_val_inv (tree *value)
{
if (TREE_CODE (*value) != INTEGER_CST
&& TREE_CODE (*value) != PARM_DECL
&& !VAR_P (*value))
*value = get_temp_regvar (ptrdiff_type_node, *value);
}
/* Returns a vector of size RANK that contains an ARRAY_REF. This vector is
created using array notation-triplet information stored in AN_INFO. The
induction var is taken from AN_LOOP_INFO.
For example: For an array notation A[5:10:2], the vector start will be
of size 1 holding '5', stride of same size as start but holding the value of
as 2, and is_vector as true. Let's assume VAR is 'x'
This function returns a vector of size 1 with the following data:
A[5 + (x * 2)] .
*/
static vec<tree, va_gc> *
create_array_refs (location_t loc, vec<vec<an_parts> > an_info,
vec<an_loop_parts> an_loop_info, size_t size, size_t rank)
{
tree ind_mult, ind_incr;
vec<tree, va_gc> *array_operand = NULL;
for (size_t ii = 0; ii < size; ii++)
if (an_info[ii][0].is_vector)
{
tree array_opr = an_info[ii][rank - 1].value;
for (int s_jj = rank -1; s_jj >= 0; s_jj--)
{
tree start = cp_fold_convert (ptrdiff_type_node,
an_info[ii][s_jj].start);
tree stride = cp_fold_convert (ptrdiff_type_node,
an_info[ii][s_jj].stride);
tree var = cp_fold_convert (ptrdiff_type_node,
an_loop_info[s_jj].var);
ind_mult = build2 (MULT_EXPR, TREE_TYPE (var), var, stride);
ind_incr = build2 (PLUS_EXPR, TREE_TYPE (var), start, ind_mult);
/* Array [ start_index + (induction_var * stride)] */
array_opr = grok_array_decl (loc, array_opr, ind_incr, false);
}
vec_safe_push (array_operand, array_opr);
}
else
vec_safe_push (array_operand, integer_one_node);
return array_operand;
}
/* Populates the INCR and CMP fields in *NODE with the increment
(of type POSTINCREMENT) and comparison (of TYPE LT_EXPR) expressions, using
data from AN_INFO. */
void
create_cmp_incr (location_t loc, vec <an_loop_parts> *node, size_t rank,
vec<vec<an_parts> > an_info, tsubst_flags_t complain)
{
for (size_t ii = 0; ii < rank; ii++)
{
(*node)[ii].incr = build_x_unary_op (loc, POSTINCREMENT_EXPR,
(*node)[ii].var, complain);
(*node)[ii].cmp = build_x_binary_op (loc, LT_EXPR, (*node)[ii].var,
TREE_CODE ((*node)[ii].var),
an_info[0][ii].length,
TREE_CODE (an_info[0][ii].length),
NULL, complain);
}
}
/* Replaces all the scalar expressions in *NODE. Returns a STATEMENT LIST that
holds the NODE along with the variables that hold the results of the
invariant expressions. */
static tree
replace_invariant_exprs (tree *node)
{
size_t ix = 0;
tree node_list = NULL_TREE;
tree t = NULL_TREE, new_var = NULL_TREE;
struct inv_list data;
data.list_values = NULL;
data.replacement = NULL;
data.additional_tcodes = NULL;
cp_walk_tree (node, find_inv_trees, (void *) &data, NULL);
if (vec_safe_length (data.list_values))
{
node_list = push_stmt_list ();
for (ix = 0; vec_safe_iterate (data.list_values, ix, &t); ix++)
{
/* Sometimes, when comma_expr has a function call in it, it will
typecast it to void. Find_inv_trees finds those nodes and so
if it void type, then don't bother creating a new var to hold
the return value. */
if (VOID_TYPE_P (TREE_TYPE (t)))
{
finish_expr_stmt (t);
new_var = void_node;
}
else
new_var = get_temp_regvar (TREE_TYPE (t), t);
vec_safe_push (data.replacement, new_var);
}
cp_walk_tree (node, replace_inv_trees, (void *) &data, NULL);
node_list = pop_stmt_list (node_list);
}
return node_list;
}
/* Replace array notation's built-in function passed in AN_BUILTIN_FN with
the appropriate loop and computation (all stored in variable LOOP of type
tree node). The output of the function is always a scalar and that
result is returned in *NEW_VAR. *NEW_VAR is NULL_TREE if the function is
__sec_reduce_mutating. */
static tree
expand_sec_reduce_builtin (tree an_builtin_fn, tree *new_var)
{
tree new_var_type = NULL_TREE, func_parm, new_yes_expr, new_no_expr;
tree array_ind_value = NULL_TREE, new_no_ind, new_yes_ind, new_no_list;
tree new_yes_list, new_cond_expr, new_expr = NULL_TREE;
vec<tree, va_gc> *array_list = NULL, *array_operand = NULL;
size_t list_size = 0, rank = 0, ii = 0;
tree body, an_init, loop_with_init = alloc_stmt_list ();
tree array_op0, comp_node = NULL_TREE;
tree call_fn = NULL_TREE, identity_value = NULL_TREE;
tree init = NULL_TREE, cond_init = NULL_TREE;
enum tree_code code = NOP_EXPR;
location_t location = UNKNOWN_LOCATION;
vec<vec<an_parts> > an_info = vNULL;
auto_vec<an_loop_parts> an_loop_info;
enum built_in_function an_type =
is_cilkplus_reduce_builtin (CALL_EXPR_FN (an_builtin_fn));
vec <tree, va_gc> *func_args;
if (an_type == BUILT_IN_NONE)
return NULL_TREE;
if (an_type != BUILT_IN_CILKPLUS_SEC_REDUCE
&& an_type != BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING)
func_parm = CALL_EXPR_ARG (an_builtin_fn, 0);
else
{
call_fn = CALL_EXPR_ARG (an_builtin_fn, 2);
/* We need to do this because we are "faking" the builtin function types,
so the compiler does a bunch of typecasts and this will get rid of
all that! */
STRIP_NOPS (call_fn);
if (TREE_CODE (call_fn) != OVERLOAD
&& TREE_CODE (call_fn) != FUNCTION_DECL)
call_fn = TREE_OPERAND (call_fn, 0);
identity_value = CALL_EXPR_ARG (an_builtin_fn, 0);
func_parm = CALL_EXPR_ARG (an_builtin_fn, 1);
STRIP_NOPS (identity_value);
}
STRIP_NOPS (func_parm);
location = EXPR_LOCATION (an_builtin_fn);
/* Note about using find_rank (): If find_rank returns false, then it must
have already reported an error, thus we just return an error_mark_node
without any doing any error emission. */
if (!find_rank (location, an_builtin_fn, an_builtin_fn, true, &rank))
return error_mark_node;
if (rank == 0)
{
error_at (location, "Invalid builtin arguments");
return error_mark_node;
}
else if (rank > 1
&& (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND))
{
error_at (location, "__sec_reduce_min_ind or __sec_reduce_max_ind cannot "
"have arrays with dimension greater than 1");
return error_mark_node;
}
extract_array_notation_exprs (func_parm, true, &array_list);
list_size = vec_safe_length (array_list);
switch (an_type)
{
case BUILT_IN_CILKPLUS_SEC_REDUCE_ADD:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUL:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN:
new_var_type = TREE_TYPE ((*array_list)[0]);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_ZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_ZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_NONZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_NONZERO:
new_var_type = boolean_type_node;
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND:
new_var_type = size_type_node;
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE:
if (call_fn && identity_value)
new_var_type = TREE_TYPE ((*array_list)[0]);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING:
new_var_type = NULL_TREE;
break;
default:
gcc_unreachable ();
}
if (new_var_type && TREE_CODE (new_var_type) == ARRAY_TYPE)
new_var_type = TREE_TYPE (new_var_type);
an_loop_info.safe_grow_cleared (rank);
an_init = push_stmt_list ();
/* Assign the array notation components to variable so that they can satisfy
the exec-once rule. */
for (ii = 0; ii < list_size; ii++)
if (TREE_CODE ((*array_list)[ii]) == ARRAY_NOTATION_REF)
{
tree anode = (*array_list)[ii];
make_triplet_val_inv (&ARRAY_NOTATION_START (anode));
make_triplet_val_inv (&ARRAY_NOTATION_LENGTH (anode));
make_triplet_val_inv (&ARRAY_NOTATION_STRIDE (anode));
}
cilkplus_extract_an_triplets (array_list, list_size, rank, &an_info);
for (ii = 0; ii < rank; ii++)
{
tree typ = ptrdiff_type_node;
/* In this place, we are using get_temp_regvar instead of
create_temporary_var if an_type is SEC_REDUCE_MAX/MIN_IND because
the array_ind_value depends on this value being initalized to 0. */
if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND)
an_loop_info[ii].var = get_temp_regvar (typ, build_zero_cst (typ));
else
{
an_loop_info[ii].var = create_temporary_var (typ);
add_decl_expr (an_loop_info[ii].var);
}
an_loop_info[ii].ind_init =
build_x_modify_expr (location, an_loop_info[ii].var, INIT_EXPR,
build_zero_cst (typ), tf_warning_or_error);
}
array_operand = create_array_refs (location, an_info, an_loop_info,
list_size, rank);
replace_array_notations (&func_parm, true, array_list, array_operand);
if (!TREE_TYPE (func_parm))
TREE_TYPE (func_parm) = TREE_TYPE ((*array_list)[0]);
create_cmp_incr (location, &an_loop_info, rank, an_info, tf_warning_or_error);
if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND)
array_ind_value = get_temp_regvar (TREE_TYPE (func_parm), func_parm);
array_op0 = (*array_operand)[0];
if (INDIRECT_REF_P (array_op0))
array_op0 = TREE_OPERAND (array_op0, 0);
switch (an_type)
{
case BUILT_IN_CILKPLUS_SEC_REDUCE_ADD:
code = PLUS_EXPR;
init = build_zero_cst (new_var_type);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUL:
code = MULT_EXPR;
init = build_one_cst (new_var_type);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_ZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_NONZERO:
code = ((an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_ZERO) ? EQ_EXPR
: NE_EXPR);
init = build_zero_cst (new_var_type);
cond_init = build_one_cst (new_var_type);
comp_node = build_zero_cst (TREE_TYPE (func_parm));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_ZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_NONZERO:
code = ((an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_ZERO) ? NE_EXPR
: EQ_EXPR);
init = build_one_cst (new_var_type);
cond_init = build_zero_cst (new_var_type);
comp_node = build_zero_cst (TREE_TYPE (func_parm));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX:
code = MAX_EXPR;
init = (TYPE_MIN_VALUE (new_var_type) ? TYPE_MIN_VALUE (new_var_type)
: func_parm);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN:
code = MIN_EXPR;
init = (TYPE_MAX_VALUE (new_var_type) ? TYPE_MAX_VALUE (new_var_type)
: func_parm);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND:
code = (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND ? LE_EXPR
: GE_EXPR);
init = an_loop_info[0].var;
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE:
init = identity_value;
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING:
init = NULL_TREE;
break;
default:
gcc_unreachable ();
}
if (an_type != BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING)
*new_var = get_temp_regvar (new_var_type, init);
else
*new_var = NULL_TREE;
switch (an_type)
{
case BUILT_IN_CILKPLUS_SEC_REDUCE_ADD:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUL:
new_expr = build_x_modify_expr (location, *new_var, code, func_parm,
tf_warning_or_error);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_ZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_NONZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_ZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_NONZERO:
/* In all these cases, assume the false case is true and as soon as
we find a true case, set the true flag on and latch it in. */
new_yes_expr = build_x_modify_expr (location, *new_var, NOP_EXPR,
cond_init, tf_warning_or_error);
new_no_expr = build_x_modify_expr (location, *new_var, NOP_EXPR,
*new_var, tf_warning_or_error);
new_cond_expr = build_x_binary_op
(location, code, func_parm, TREE_CODE (func_parm), comp_node,
TREE_CODE (comp_node), NULL, tf_warning_or_error);
new_expr = build_x_conditional_expr (location, new_cond_expr,
new_yes_expr, new_no_expr,
tf_warning_or_error);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN:
new_cond_expr = build_x_binary_op
(location, code, *new_var, TREE_CODE (*new_var), func_parm,
TREE_CODE (func_parm), NULL, tf_warning_or_error);
new_expr = build_x_modify_expr (location, *new_var, NOP_EXPR, func_parm,
tf_warning_or_error);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND:
new_yes_expr = build_x_modify_expr (location, array_ind_value, NOP_EXPR,
func_parm, tf_warning_or_error);
new_no_expr = build_x_modify_expr (location, array_ind_value, NOP_EXPR,
array_ind_value, tf_warning_or_error);
if (list_size > 1)
new_yes_ind = build_x_modify_expr (location, *new_var, NOP_EXPR,
an_loop_info[0].var,
tf_warning_or_error);
else
new_yes_ind = build_x_modify_expr (location, *new_var, NOP_EXPR,
TREE_OPERAND (array_op0, 1),
tf_warning_or_error);
new_no_ind = build_x_modify_expr (location, *new_var, NOP_EXPR, *new_var,
tf_warning_or_error);
new_yes_list = alloc_stmt_list ();
append_to_statement_list (new_yes_ind, &new_yes_list);
append_to_statement_list (new_yes_expr, &new_yes_list);
new_no_list = alloc_stmt_list ();
append_to_statement_list (new_no_ind, &new_no_list);
append_to_statement_list (new_no_expr, &new_no_list);
new_cond_expr = build_x_binary_op (location, code, array_ind_value,
TREE_CODE (array_ind_value), func_parm,
TREE_CODE (func_parm), NULL,
tf_warning_or_error);
new_expr = build_x_conditional_expr (location, new_cond_expr,
new_yes_list, new_no_list,
tf_warning_or_error);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING:
func_args = make_tree_vector ();
if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE)
vec_safe_push (func_args, *new_var);
else
vec_safe_push (func_args, identity_value);
vec_safe_push (func_args, func_parm);
new_expr = finish_call_expr (call_fn, &func_args, false, true,
tf_warning_or_error);
if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE)
new_expr = build_x_modify_expr (location, *new_var, NOP_EXPR, new_expr,
tf_warning_or_error);
release_tree_vector (func_args);
break;
default:
gcc_unreachable ();
}
an_init = pop_stmt_list (an_init);
append_to_statement_list (an_init, &loop_with_init);
body = new_expr;
for (ii = 0; ii < rank; ii++)
{
tree new_loop = push_stmt_list ();
create_an_loop (an_loop_info[ii].ind_init, an_loop_info[ii].cmp,
an_loop_info[ii].incr, body);
body = pop_stmt_list (new_loop);
}
append_to_statement_list (body, &loop_with_init);
release_vec_vec (an_info);
return loop_with_init;
}
/* Returns a loop with ARRAY_REF inside it with an appropriate modify expr.
The LHS and/or RHS will be array notation expressions that have a
MODIFYCODE. The location of the variable is specified by LOCATION. */
static tree
expand_an_in_modify_expr (location_t location, tree lhs,
enum tree_code modifycode, tree rhs,
tsubst_flags_t complain)
{
tree array_expr_lhs = NULL_TREE, array_expr_rhs = NULL_TREE;
tree array_expr = NULL_TREE;
tree body = NULL_TREE;
auto_vec<tree> cond_expr;
vec<tree, va_gc> *lhs_array_operand = NULL, *rhs_array_operand = NULL;
size_t lhs_rank = 0, rhs_rank = 0, ii = 0;
vec<tree, va_gc> *rhs_list = NULL, *lhs_list = NULL;
size_t rhs_list_size = 0, lhs_list_size = 0;
tree new_modify_expr, new_var = NULL_TREE, builtin_loop, scalar_mods;
bool found_builtin_fn = false;
tree an_init, loop_with_init = alloc_stmt_list ();
vec<vec<an_parts> > lhs_an_info = vNULL, rhs_an_info = vNULL;
auto_vec<an_loop_parts> lhs_an_loop_info, rhs_an_loop_info;
tree lhs_len, rhs_len;
if (!find_rank (location, rhs, rhs, false, &rhs_rank))
return error_mark_node;
extract_array_notation_exprs (rhs, false, &rhs_list);
rhs_list_size = vec_safe_length (rhs_list);
an_init = push_stmt_list ();
if (rhs_rank)
{
scalar_mods = replace_invariant_exprs (&rhs);
if (scalar_mods)
finish_expr_stmt (scalar_mods);
}
for (ii = 0; ii < rhs_list_size; ii++)
{
tree rhs_node = (*rhs_list)[ii];
if (TREE_CODE (rhs_node) == CALL_EXPR)
{
builtin_loop = expand_sec_reduce_builtin (rhs_node, &new_var);
if (builtin_loop == error_mark_node)
return error_mark_node;
else if (builtin_loop)
{
finish_expr_stmt (builtin_loop);
found_builtin_fn = true;
if (new_var)
{
vec <tree, va_gc> *rhs_sub_list = NULL, *new_var_list = NULL;
vec_safe_push (rhs_sub_list, rhs_node);
vec_safe_push (new_var_list, new_var);
replace_array_notations (&rhs, false, rhs_sub_list,
new_var_list);
}
}
}
}
lhs_rank = 0;
rhs_rank = 0;
if (!find_rank (location, lhs, lhs, true, &lhs_rank)
|| !find_rank (location, rhs, rhs, true, &rhs_rank))
{
pop_stmt_list (an_init);
return error_mark_node;
}
/* If both are scalar, then the only reason why we will get this far is if
there is some array notations inside it and was using a builtin array
notation functions. If so, we have already broken those guys up and now
a simple build_x_modify_expr would do. */
if (lhs_rank == 0 && rhs_rank == 0)
{
if (found_builtin_fn)
{
new_modify_expr = build_x_modify_expr (location, lhs,
modifycode, rhs, complain);
finish_expr_stmt (new_modify_expr);
pop_stmt_list (an_init);
return an_init;
}
else
gcc_unreachable ();
}
/* If for some reason location is not set, then find if LHS or RHS has
location info. If so, then use that so we atleast have an idea. */
if (location == UNKNOWN_LOCATION)
{
if (EXPR_LOCATION (lhs) != UNKNOWN_LOCATION)
location = EXPR_LOCATION (lhs);
else if (EXPR_LOCATION (rhs) != UNKNOWN_LOCATION)
location = EXPR_LOCATION (rhs);
}
/* We need this when we have a scatter issue. */
extract_array_notation_exprs (lhs, true, &lhs_list);
rhs_list = NULL;
extract_array_notation_exprs (rhs, true, &rhs_list);
rhs_list_size = vec_safe_length (rhs_list);
lhs_list_size = vec_safe_length (lhs_list);
if (lhs_rank == 0 && rhs_rank != 0)
{
error_at (location, "%qE cannot be scalar when %qE is not", lhs, rhs);
return error_mark_node;
}
if (lhs_rank != 0 && rhs_rank != 0 && lhs_rank != rhs_rank)
{
error_at (location, "rank mismatch between %qE and %qE", lhs, rhs);
return error_mark_node;
}
/* Assign the array notation components to variable so that they can satisfy
the execute-once rule. */
for (ii = 0; ii < lhs_list_size; ii++)
{
tree anode = (*lhs_list)[ii];
make_triplet_val_inv (&ARRAY_NOTATION_START (anode));
make_triplet_val_inv (&ARRAY_NOTATION_LENGTH (anode));
make_triplet_val_inv (&ARRAY_NOTATION_STRIDE (anode));
}
for (ii = 0; ii < rhs_list_size; ii++)
if ((*rhs_list)[ii] && TREE_CODE ((*rhs_list)[ii]) == ARRAY_NOTATION_REF)
{
tree aa = (*rhs_list)[ii];
make_triplet_val_inv (&ARRAY_NOTATION_START (aa));
make_triplet_val_inv (&ARRAY_NOTATION_LENGTH (aa));
make_triplet_val_inv (&ARRAY_NOTATION_STRIDE (aa));
}
lhs_an_loop_info.safe_grow_cleared (lhs_rank);
if (rhs_rank)
rhs_an_loop_info.safe_grow_cleared (rhs_rank);
cond_expr.safe_grow_cleared (MAX (lhs_rank, rhs_rank));
cilkplus_extract_an_triplets (lhs_list, lhs_list_size, lhs_rank,
&lhs_an_info);
if (rhs_list)
cilkplus_extract_an_triplets (rhs_list, rhs_list_size, rhs_rank,
&rhs_an_info);
if (length_mismatch_in_expr_p (EXPR_LOCATION (lhs), lhs_an_info)
|| (rhs_list && length_mismatch_in_expr_p (EXPR_LOCATION (rhs),
rhs_an_info)))
{
pop_stmt_list (an_init);
goto error;
}
rhs_len = ((rhs_list_size > 0 && rhs_rank > 0) ?
rhs_an_info[0][0].length : NULL_TREE);
lhs_len = ((lhs_list_size > 0 && lhs_rank > 0) ?
lhs_an_info[0][0].length : NULL_TREE);
if (lhs_list_size > 0 && rhs_list_size > 0 && lhs_rank > 0 && rhs_rank > 0
&& TREE_CODE (lhs_len) == INTEGER_CST && rhs_len
&& TREE_CODE (rhs_len) == INTEGER_CST
&& !tree_int_cst_equal (rhs_len, lhs_len))
{
error_at (location, "length mismatch between LHS and RHS");
pop_stmt_list (an_init);
goto error;
}
for (ii = 0; ii < lhs_rank; ii++)
{
tree typ = ptrdiff_type_node;
lhs_an_loop_info[ii].var = create_temporary_var (typ);
add_decl_expr (lhs_an_loop_info[ii].var);
lhs_an_loop_info[ii].ind_init = build_x_modify_expr
(location, lhs_an_loop_info[ii].var, INIT_EXPR, build_zero_cst (typ),
complain);
}
if (rhs_list_size > 0)
{
rhs_array_operand = fix_sec_implicit_args (location, rhs_list,
lhs_an_loop_info, lhs_rank,
lhs);
if (!rhs_array_operand)
goto error;
}
replace_array_notations (&rhs, true, rhs_list, rhs_array_operand);
rhs_list_size = 0;
rhs_list = NULL;
extract_array_notation_exprs (rhs, true, &rhs_list);
rhs_list_size = vec_safe_length (rhs_list);
for (ii = 0; ii < rhs_rank; ii++)
{
tree typ = ptrdiff_type_node;
rhs_an_loop_info[ii].var = create_temporary_var (typ);
add_decl_expr (rhs_an_loop_info[ii].var);
rhs_an_loop_info[ii].ind_init = build_x_modify_expr
(location, rhs_an_loop_info[ii].var, INIT_EXPR, build_zero_cst (typ),
complain);
}
if (lhs_rank)
{
lhs_array_operand =
create_array_refs (location, lhs_an_info, lhs_an_loop_info,
lhs_list_size, lhs_rank);
replace_array_notations (&lhs, true, lhs_list, lhs_array_operand);
}
if (rhs_array_operand)
vec_safe_truncate (rhs_array_operand, 0);
if (rhs_rank)
{
rhs_array_operand = create_array_refs (location, rhs_an_info,
rhs_an_loop_info, rhs_list_size,
rhs_rank);
/* Replace all the array refs created by the above function because this
variable is blown away by the fix_sec_implicit_args function below. */
replace_array_notations (&rhs, true, rhs_list, rhs_array_operand);
vec_safe_truncate (rhs_array_operand , 0);
rhs_array_operand = fix_sec_implicit_args (location, rhs_list,
rhs_an_loop_info, rhs_rank,
rhs);
if (!rhs_array_operand)
goto error;
replace_array_notations (&rhs, true, rhs_list, rhs_array_operand);
}
array_expr_rhs = rhs;
array_expr_lhs = lhs;
array_expr = build_x_modify_expr (location, array_expr_lhs, modifycode,
array_expr_rhs, complain);
create_cmp_incr (location, &lhs_an_loop_info, lhs_rank, lhs_an_info,
complain);
if (rhs_rank)
create_cmp_incr (location, &rhs_an_loop_info, rhs_rank, rhs_an_info,
complain);
for (ii = 0; ii < MAX (rhs_rank, lhs_rank); ii++)
if (ii < lhs_rank && ii < rhs_rank)
cond_expr[ii] = build_x_binary_op
(location, TRUTH_ANDIF_EXPR, lhs_an_loop_info[ii].cmp,
TREE_CODE (lhs_an_loop_info[ii].cmp), rhs_an_loop_info[ii].cmp,
TREE_CODE (rhs_an_loop_info[ii].cmp), NULL, complain);
else if (ii < lhs_rank && ii >= rhs_rank)
cond_expr[ii] = lhs_an_loop_info[ii].cmp;
else
/* No need to compare ii < rhs_rank && ii >= lhs_rank because in a valid
Array notation expression, rank of RHS cannot be greater than LHS. */
gcc_unreachable ();
an_init = pop_stmt_list (an_init);
append_to_statement_list (an_init, &loop_with_init);
body = array_expr;
for (ii = 0; ii < MAX (lhs_rank, rhs_rank); ii++)
{
tree incr_list = alloc_stmt_list ();
tree init_list = alloc_stmt_list ();
tree new_loop = push_stmt_list ();
if (lhs_rank)
{
append_to_statement_list (lhs_an_loop_info[ii].ind_init, &init_list);
append_to_statement_list (lhs_an_loop_info[ii].incr, &incr_list);
}
if (rhs_rank)
{
append_to_statement_list (rhs_an_loop_info[ii].ind_init, &init_list);
append_to_statement_list (rhs_an_loop_info[ii].incr, &incr_list);
}
create_an_loop (init_list, cond_expr[ii], incr_list, body);
body = pop_stmt_list (new_loop);
}
append_to_statement_list (body, &loop_with_init);
release_vec_vec (lhs_an_info);
release_vec_vec (rhs_an_info);
return loop_with_init;
error:
release_vec_vec (lhs_an_info);
release_vec_vec (rhs_an_info);
return error_mark_node;
}
/* Helper function for expand_conditonal_array_notations. Encloses the
conditional statement passed in ORIG_STMT with a loop around it and
replaces the condition in STMT with a ARRAY_REF tree-node to the array.
The condition must have a ARRAY_NOTATION_REF tree. */
static tree
cp_expand_cond_array_notations (tree orig_stmt)
{
vec<tree, va_gc> *array_list = NULL, *array_operand = NULL;
size_t list_size = 0;
size_t rank = 0, ii = 0;
tree an_init, body, stmt = NULL_TREE;
tree builtin_loop, new_var = NULL_TREE;
tree loop_with_init = alloc_stmt_list ();
location_t location = UNKNOWN_LOCATION;
vec<vec<an_parts> > an_info = vNULL;
auto_vec<an_loop_parts> an_loop_info;
if (TREE_CODE (orig_stmt) == COND_EXPR)
{
size_t cond_rank = 0, yes_rank = 0, no_rank = 0;
tree yes_expr = COND_EXPR_THEN (orig_stmt);
tree no_expr = COND_EXPR_ELSE (orig_stmt);
tree cond = COND_EXPR_COND (orig_stmt);
if (!find_rank (EXPR_LOCATION (cond), cond, cond, true, &cond_rank)
|| !find_rank (EXPR_LOCATION (yes_expr), yes_expr, yes_expr, true,
&yes_rank)
|| !find_rank (EXPR_LOCATION (no_expr), no_expr, no_expr, true,
&no_rank))
return error_mark_node;
/* If the condition has a zero rank, then handle array notations in body
separately. */
if (cond_rank == 0)
return orig_stmt;
if (cond_rank != yes_rank && yes_rank != 0)
{
error_at (EXPR_LOCATION (yes_expr), "rank mismatch with controlling"
" expression of parent if-statement");
return error_mark_node;
}
else if (cond_rank != no_rank && no_rank != 0)
{
error_at (EXPR_LOCATION (no_expr), "rank mismatch with controlling "
"expression of parent if-statement");
return error_mark_node;
}
}
else if (TREE_CODE (orig_stmt) == IF_STMT)
{
size_t cond_rank = 0, yes_rank = 0, no_rank = 0;
tree yes_expr = THEN_CLAUSE (orig_stmt);
tree no_expr = ELSE_CLAUSE (orig_stmt);
tree cond = IF_COND (orig_stmt);
if (!find_rank (EXPR_LOCATION (cond), cond, cond, true, &cond_rank)
|| (yes_expr
&& !find_rank (EXPR_LOCATION (yes_expr), yes_expr, yes_expr, true,
&yes_rank))
|| (no_expr
&& !find_rank (EXPR_LOCATION (no_expr), no_expr, no_expr, true,
&no_rank)))
return error_mark_node;
/* Same reasoning as for COND_EXPR. */
if (cond_rank == 0)
return orig_stmt;
else if (cond_rank != yes_rank && yes_rank != 0)
{
error_at (EXPR_LOCATION (yes_expr), "rank mismatch with controlling"
" expression of parent if-statement");
return error_mark_node;
}
else if (cond_rank != no_rank && no_rank != 0)
{
error_at (EXPR_LOCATION (no_expr), "rank mismatch with controlling "
"expression of parent if-statement");
return error_mark_node;
}
}
else if (truth_value_p (TREE_CODE (orig_stmt)))
{
size_t left_rank = 0, right_rank = 0;
tree left_expr = TREE_OPERAND (orig_stmt, 0);
tree right_expr = TREE_OPERAND (orig_stmt, 1);
if (!find_rank (EXPR_LOCATION (left_expr), left_expr, left_expr, true,
&left_rank)
|| !find_rank (EXPR_LOCATION (right_expr), right_expr, right_expr,
true, &right_rank))
return error_mark_node;
if (right_rank == 0 && left_rank == 0)
return orig_stmt;
}
if (!find_rank (EXPR_LOCATION (orig_stmt), orig_stmt, orig_stmt, true,
&rank))
return error_mark_node;
if (rank == 0)
return orig_stmt;
extract_array_notation_exprs (orig_stmt, false, &array_list);
stmt = alloc_stmt_list ();
for (ii = 0; ii < vec_safe_length (array_list); ii++)
{
tree array_node = (*array_list)[ii];
if (TREE_CODE (array_node) == CALL_EXPR
|| TREE_CODE (array_node) == AGGR_INIT_EXPR)
{
builtin_loop = expand_sec_reduce_builtin (array_node, &new_var);
if (builtin_loop == error_mark_node)
finish_expr_stmt (error_mark_node);
else if (new_var)
{
vec<tree, va_gc> *sub_list = NULL, *new_var_list = NULL;
vec_safe_push (sub_list, array_node);
vec_safe_push (new_var_list, new_var);
replace_array_notations (&orig_stmt, false, sub_list,
new_var_list);
append_to_statement_list (builtin_loop, &stmt);
}
}
}
append_to_statement_list (orig_stmt, &stmt);
rank = 0;
array_list = NULL;
if (!find_rank (EXPR_LOCATION (stmt), stmt, stmt, true, &rank))
return error_mark_node;
if (rank == 0)
return stmt;
extract_array_notation_exprs (stmt, true, &array_list);
list_size = vec_safe_length (array_list);
if (list_size == 0)
return stmt;
location = EXPR_LOCATION (orig_stmt);
list_size = vec_safe_length (array_list);
an_loop_info.safe_grow_cleared (rank);
an_init = push_stmt_list ();
/* Assign the array notation components to variable so that they can
satisfy the exec-once rule. */
for (ii = 0; ii < list_size; ii++)
{
tree anode = (*array_list)[ii];
make_triplet_val_inv (&ARRAY_NOTATION_START (anode));
make_triplet_val_inv (&ARRAY_NOTATION_LENGTH (anode));
make_triplet_val_inv (&ARRAY_NOTATION_STRIDE (anode));
}
cilkplus_extract_an_triplets (array_list, list_size, rank, &an_info);
for (ii = 0; ii < rank; ii++)
{
tree typ = ptrdiff_type_node;
an_loop_info[ii].var = create_temporary_var (typ);
add_decl_expr (an_loop_info[ii].var);
an_loop_info[ii].ind_init =
build_x_modify_expr (location, an_loop_info[ii].var, INIT_EXPR,
build_zero_cst (typ), tf_warning_or_error);
}
array_operand = create_array_refs (location, an_info, an_loop_info,
list_size, rank);
replace_array_notations (&stmt, true, array_list, array_operand);
create_cmp_incr (location, &an_loop_info, rank, an_info, tf_warning_or_error);
an_init = pop_stmt_list (an_init);
append_to_statement_list (an_init, &loop_with_init);
body = stmt;
for (ii = 0; ii < rank; ii++)
{
tree new_loop = push_stmt_list ();
create_an_loop (an_loop_info[ii].ind_init, an_loop_info[ii].cmp,
an_loop_info[ii].incr, body);
body = pop_stmt_list (new_loop);
}
append_to_statement_list (body, &loop_with_init);
release_vec_vec (an_info);
return loop_with_init;
}
/* Transforms array notations inside unary expression ORIG_STMT with an
appropriate loop and ARRAY_REF (and returns all this as a super-tree called
LOOP). */
static tree
expand_unary_array_notation_exprs (tree orig_stmt)
{
vec<tree, va_gc> *array_list = NULL, *array_operand = NULL;
size_t list_size = 0, rank = 0, ii = 0;
tree body;
tree builtin_loop, stmt = NULL_TREE, new_var = NULL_TREE;
location_t location = EXPR_LOCATION (orig_stmt);
tree an_init, loop_with_init = alloc_stmt_list ();
vec<vec<an_parts> > an_info = vNULL;
auto_vec<an_loop_parts> an_loop_info;
if (!find_rank (location, orig_stmt, orig_stmt, true, &rank))
return error_mark_node;
if (rank == 0)
return orig_stmt;
extract_array_notation_exprs (orig_stmt, false, &array_list);
list_size = vec_safe_length (array_list);
location = EXPR_LOCATION (orig_stmt);
stmt = NULL_TREE;
for (ii = 0; ii < list_size; ii++)
if (TREE_CODE ((*array_list)[ii]) == CALL_EXPR
|| TREE_CODE ((*array_list)[ii]) == AGGR_INIT_EXPR)
{
tree list_node = (*array_list)[ii];
builtin_loop = expand_sec_reduce_builtin (list_node, &new_var);
if (builtin_loop == error_mark_node)
return error_mark_node;
else if (builtin_loop)
{
vec<tree, va_gc> *sub_list = NULL, *new_var_list = NULL;
stmt = alloc_stmt_list ();
append_to_statement_list (builtin_loop, &stmt);
vec_safe_push (sub_list, list_node);
vec_safe_push (new_var_list, new_var);
replace_array_notations (&orig_stmt, false, sub_list, new_var_list);
}
}
if (stmt != NULL_TREE)
append_to_statement_list (finish_expr_stmt (orig_stmt), &stmt);
else
stmt = orig_stmt;
rank = 0;
list_size = 0;
array_list = NULL;
extract_array_notation_exprs (stmt, true, &array_list);
list_size = vec_safe_length (array_list);
if (!find_rank (EXPR_LOCATION (stmt), stmt, stmt, true, &rank))
return error_mark_node;
if (rank == 0 || list_size == 0)
return stmt;
an_loop_info.safe_grow_cleared (rank);
an_init = push_stmt_list ();
/* Assign the array notation components to variable so that they can satisfy
the exec-once rule. */
for (ii = 0; ii < list_size; ii++)
{
tree array_node = (*array_list)[ii];
make_triplet_val_inv (&ARRAY_NOTATION_START (array_node));
make_triplet_val_inv (&ARRAY_NOTATION_LENGTH (array_node));
make_triplet_val_inv (&ARRAY_NOTATION_STRIDE (array_node));
}
cilkplus_extract_an_triplets (array_list, list_size, rank, &an_info);
for (ii = 0; ii < rank; ii++)
{
tree typ = ptrdiff_type_node;
an_loop_info[ii].var = create_temporary_var (typ);
add_decl_expr (an_loop_info[ii].var);
an_loop_info[ii].ind_init = build_x_modify_expr
(location, an_loop_info[ii].var, INIT_EXPR, build_zero_cst (typ),
tf_warning_or_error);
}
array_operand = create_array_refs (location, an_info, an_loop_info,
list_size, rank);
replace_array_notations (&stmt, true, array_list, array_operand);
create_cmp_incr (location, &an_loop_info, rank, an_info, tf_warning_or_error);
an_init = pop_stmt_list (an_init);
append_to_statement_list (an_init, &loop_with_init);
body = stmt;
for (ii = 0; ii < rank; ii++)
{
tree new_loop = push_stmt_list ();
create_an_loop (an_loop_info[ii].ind_init, an_loop_info[ii].cmp,
an_loop_info[ii].incr, body);
body = pop_stmt_list (new_loop);
}
append_to_statement_list (body, &loop_with_init);
release_vec_vec (an_info);
return loop_with_init;
}
/* Expands the array notation's builtin reduction function in EXPR
(of type RETURN_EXPR) and returns a STATEMENT_LIST that contains a loop
with the builtin function expansion and a return statement at the end. */
static tree
expand_return_expr (tree expr)
{
tree new_mod_list, new_var, new_mod, retval_expr;
size_t rank = 0;
location_t loc = EXPR_LOCATION (expr);
if (TREE_CODE (expr) != RETURN_EXPR)
return expr;
if (!find_rank (loc, expr, expr, false, &rank))
return error_mark_node;
/* If the return expression contains array notations, then flag it as
error. */
if (rank >= 1)
{
error_at (loc, "array notation expression cannot be used as a return "
"value");
return error_mark_node;
}
new_mod_list = push_stmt_list ();
retval_expr = TREE_OPERAND (expr, 0);
new_var = create_temporary_var (TREE_TYPE (retval_expr));
add_decl_expr (new_var);
new_mod = expand_an_in_modify_expr (loc, new_var, NOP_EXPR,
TREE_OPERAND (retval_expr, 1),
tf_warning_or_error);
TREE_OPERAND (retval_expr, 1) = new_var;
TREE_OPERAND (expr, 0) = retval_expr;
add_stmt (new_mod);
add_stmt (expr);
new_mod_list = pop_stmt_list (new_mod_list);
return new_mod_list;
}
/* Expands ARRAY_NOTATION_REF and builtin functions in a compound statement,
STMT. Returns the STMT with expanded array notations. */
tree
expand_array_notation_exprs (tree t)
{
enum tree_code code;
bool is_expr;
location_t loc = UNKNOWN_LOCATION;
if (!t)
return t;
loc = EXPR_LOCATION (t);
code = TREE_CODE (t);
is_expr = IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code));
switch (code)
{
case ERROR_MARK:
case IDENTIFIER_NODE:
case VOID_CST:
case INTEGER_CST:
case REAL_CST:
case FIXED_CST:
case STRING_CST:
case BLOCK:
case PLACEHOLDER_EXPR:
case FIELD_DECL:
case VOID_TYPE:
case REAL_TYPE:
case SSA_NAME:
case LABEL_DECL:
case RESULT_DECL:
case VAR_DECL:
case PARM_DECL:
case NON_LVALUE_EXPR:
case NOP_EXPR:
case ADDR_EXPR:
case ARRAY_REF:
case BIT_FIELD_REF:
case VECTOR_CST:
case COMPLEX_CST:
return t;
case INIT_EXPR:
case MODIFY_EXPR:
if (contains_array_notation_expr (t))
t = expand_an_in_modify_expr (loc, TREE_OPERAND (t, 0), NOP_EXPR,
TREE_OPERAND (t, 1),
tf_warning_or_error);
return t;
case MODOP_EXPR:
if (contains_array_notation_expr (t) && !processing_template_decl)
t = expand_an_in_modify_expr
(loc, TREE_OPERAND (t, 0), TREE_CODE (TREE_OPERAND (t, 1)),
TREE_OPERAND (t, 2), tf_warning_or_error);
return t;
case CONSTRUCTOR:
return t;
case BIND_EXPR:
{
BIND_EXPR_BODY (t) =
expand_array_notation_exprs (BIND_EXPR_BODY (t));
return t;
}
case DECL_EXPR:
if (contains_array_notation_expr (t))
{
tree x = DECL_EXPR_DECL (t);
if (DECL_INITIAL (x))
{
location_t loc = DECL_SOURCE_LOCATION (x);
tree lhs = x;
tree rhs = DECL_INITIAL (x);
DECL_INITIAL (x) = NULL;
tree new_modify_expr = build_modify_expr (loc, lhs,
TREE_TYPE (lhs),
NOP_EXPR,
loc, rhs,
TREE_TYPE(rhs));
t = expand_array_notation_exprs (new_modify_expr);
}
}
return t;
case STATEMENT_LIST:
{
tree_stmt_iterator i;
for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
*tsi_stmt_ptr (i) =
expand_array_notation_exprs (*tsi_stmt_ptr (i));
return t;
}
case OMP_PARALLEL:
OMP_PARALLEL_BODY (t)
= expand_array_notation_exprs (OMP_PARALLEL_BODY (t));
return t;
case OMP_TASK:
case OMP_FOR:
case OMP_SINGLE:
case OMP_SECTION:
case OMP_SECTIONS:
case OMP_MASTER:
case OMP_TASKGROUP:
case OMP_ORDERED:
case OMP_CRITICAL:
case OMP_ATOMIC:
case OMP_CLAUSE:
case TARGET_EXPR:
case INTEGER_TYPE:
case ENUMERAL_TYPE:
case BOOLEAN_TYPE:
case POINTER_TYPE:
case ARRAY_TYPE:
case RECORD_TYPE:
case METHOD_TYPE:
return t;
case RETURN_EXPR:
if (contains_array_notation_expr (t))
t = expand_return_expr (t);
return t;
case PREDECREMENT_EXPR:
case PREINCREMENT_EXPR:
case POSTDECREMENT_EXPR:
case POSTINCREMENT_EXPR:
case AGGR_INIT_EXPR:
case CALL_EXPR:
t = expand_unary_array_notation_exprs (t);
return t;
case CONVERT_EXPR:
case CLEANUP_POINT_EXPR:
case EXPR_STMT:
TREE_OPERAND (t, 0) = expand_array_notation_exprs (TREE_OPERAND (t, 0));
/* It is not necessary to wrap error_mark_node in EXPR_STMT. */
if (TREE_OPERAND (t, 0) == error_mark_node)
return TREE_OPERAND (t, 0);
return t;
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
case TRUTH_AND_EXPR:
case TRUTH_OR_EXPR:
case TRUTH_XOR_EXPR:
case TRUTH_NOT_EXPR:
case COND_EXPR:
t = cp_expand_cond_array_notations (t);
if (TREE_CODE (t) == COND_EXPR)
{
COND_EXPR_THEN (t) =
expand_array_notation_exprs (COND_EXPR_THEN (t));
COND_EXPR_ELSE (t) =
expand_array_notation_exprs (COND_EXPR_ELSE (t));
}
return t;
case FOR_STMT:
if (contains_array_notation_expr (FOR_COND (t)))
{
error_at (EXPR_LOCATION (FOR_COND (t)),
"array notation cannot be used in a condition for "
"a for-loop");
return error_mark_node;
}
/* FIXME: Add a check for CILK_FOR_STMT here when we add Cilk tasking
keywords. */
if (TREE_CODE (t) == FOR_STMT)
{
FOR_BODY (t) = expand_array_notation_exprs (FOR_BODY (t));
FOR_EXPR (t) = expand_array_notation_exprs (FOR_EXPR (t));
}
else
t = expand_array_notation_exprs (t);
return t;
case IF_STMT:
t = cp_expand_cond_array_notations (t);
/* If the above function added some extra instructions above the original
if statement, then we can't assume it is still IF_STMT so we have to
check again. */
if (TREE_CODE (t) == IF_STMT)
{
if (THEN_CLAUSE (t))
THEN_CLAUSE (t) = expand_array_notation_exprs (THEN_CLAUSE (t));
if (ELSE_CLAUSE (t))
ELSE_CLAUSE (t) = expand_array_notation_exprs (ELSE_CLAUSE (t));
}
else
t = expand_array_notation_exprs (t);
return t;
case SWITCH_STMT:
if (contains_array_notation_expr (SWITCH_STMT_COND (t)))
{
error_at (EXPR_LOCATION (SWITCH_STMT_COND (t)),
"array notation cannot be used as a condition for "
"switch statement");
return error_mark_node;
}
if (SWITCH_STMT_BODY (t))
SWITCH_STMT_BODY (t) =
expand_array_notation_exprs (SWITCH_STMT_BODY (t));
return t;
case WHILE_STMT:
if (contains_array_notation_expr (WHILE_COND (t)))
{
if (EXPR_LOCATION (WHILE_COND (t)) != UNKNOWN_LOCATION)
loc = EXPR_LOCATION (WHILE_COND (t));
error_at (loc, "array notation cannot be used as a condition for "
"while statement");
return error_mark_node;
}
if (WHILE_BODY (t))
WHILE_BODY (t) = expand_array_notation_exprs (WHILE_BODY (t));
return t;
case DO_STMT:
if (contains_array_notation_expr (DO_COND (t)))
{
error_at (EXPR_LOCATION (DO_COND (t)),
"array notation cannot be used as a condition for a "
"do-while statement");
return error_mark_node;
}
if (DO_BODY (t))
DO_BODY (t) = expand_array_notation_exprs (DO_BODY (t));
return t;
default:
if (is_expr)
{
int i, len;
/* Walk over all the sub-trees of this operand. */
len = TREE_CODE_LENGTH (code);
/* Go through the subtrees. We need to do this in forward order so
that the scope of a FOR_EXPR is handled properly. */
for (i = 0; i < len; ++i)
TREE_OPERAND (t, i) =
expand_array_notation_exprs (TREE_OPERAND (t, i));
}
return t;
}
return t;
}
/* Given the base of an array (ARRAY), the START (start_index), the number of
elements to be accessed (LENGTH) and the STRIDE, construct an
ARRAY_NOTATION_REF tree of type TYPE and return it. Restrictions on START,
LENGTH and STRIDE are the same as that of index field passed into ARRAY_REF.
The only additional restriction is that, unlike index in ARRAY_REF, stride,
length and start_index cannot contain array notations. */
tree
build_array_notation_ref (location_t loc, tree array, tree start, tree length,
tree stride, tree type)
{
tree array_ntn_expr = NULL_TREE;
/* If we enter the then-case of the if-statement below, we have hit a case
like this: ARRAY [:]. */
if (!start && !length)
{
if (TREE_CODE (type) != ARRAY_TYPE)
{
error_at (loc, "start-index and length fields necessary for "
"using array notation in pointers or records");
return error_mark_node;
}
tree domain = TYPE_DOMAIN (type);
if (!domain)
{
error_at (loc, "start-index and length fields necessary for "
"using array notation with array of unknown bound");
return error_mark_node;
}
start = cp_fold_convert (ptrdiff_type_node, TYPE_MIN_VALUE (domain));
length = size_binop (PLUS_EXPR, TYPE_MAX_VALUE (domain), size_one_node);
length = cp_fold_convert (ptrdiff_type_node, length);
}
if (!stride)
stride = build_one_cst (ptrdiff_type_node);
stride = maybe_constant_value (stride);
length = maybe_constant_value (length);
if (start)
start = maybe_constant_value (start);
/* When dealing with templates, triplet type-checking will be done in pt.c
after type substitution. */
if (processing_template_decl
&& (type_dependent_expression_p (array)
|| type_dependent_expression_p (length)
|| type_dependent_expression_p (start)
|| type_dependent_expression_p (stride)))
array_ntn_expr = build_min_nt_loc (loc, ARRAY_NOTATION_REF, array, start,
length, stride, NULL_TREE);
else
{
if (!cilkplus_an_triplet_types_ok_p (loc, start, length, stride, type))
return error_mark_node;
array_ntn_expr = build4 (ARRAY_NOTATION_REF, NULL_TREE, array, start,
length, stride);
}
if (TREE_CODE (type) == ARRAY_TYPE || TREE_CODE (type) == POINTER_TYPE)
TREE_TYPE (array_ntn_expr) = TREE_TYPE (type);
else
{
error_at (loc, "base of array section must be pointer or array type");
return error_mark_node;
}
SET_EXPR_LOCATION (array_ntn_expr, loc);
return array_ntn_expr;
}
/* Returns false if any of the Array notation triplet values: START_INDEX,
LENGTH and STRIDE, are not of integral type and have a rank greater than
zero. */
bool
cilkplus_an_triplet_types_ok_p (location_t loc, tree start_index, tree length,
tree stride, tree type)
{
size_t stride_rank = 0, length_rank = 0, start_rank = 0;
if (!TREE_TYPE (start_index) || !INTEGRAL_TYPE_P (TREE_TYPE (start_index)))
{
error_at (loc, "start-index of array notation triplet is not an integer");
return false;
}
if (!TREE_TYPE (length) || !INTEGRAL_TYPE_P (TREE_TYPE (length)))
{
error_at (loc, "length of array notation triplet is not an integer");
return false;
}
if (!TREE_TYPE (stride) || !INTEGRAL_TYPE_P (TREE_TYPE (stride)))
{
error_at (loc, "stride of array notation triplet is not an integer");
return false;
}
if (TREE_CODE (type) == FUNCTION_TYPE)
{
error_at (loc, "array notation cannot be used with function type");
return false;
}
if (!find_rank (loc, start_index, start_index, false, &start_rank)
|| !find_rank (loc, length, length, false, &length_rank)
|| !find_rank (loc, stride, stride, false, &stride_rank))
return false;
if (start_rank != 0)
{
error_at (loc, "rank of an array notation triplet%'s start-index is not "
"zero");
return false;
}
if (length_rank != 0)
{
error_at (loc, "rank of an array notation triplet%'s length is not zero");
return false;
}
if (stride_rank != 0)
{
error_at (loc, "rank of array notation triplet%'s stride is not zero");
return false;
}
return true;
}