| // Internal policy header for unordered_set and unordered_map -*- C++ -*- |
| |
| // Copyright (C) 2010-2022 Free Software Foundation, Inc. |
| // |
| // This file is part of the GNU ISO C++ Library. This library is free |
| // software; you can redistribute it and/or modify it under the |
| // terms of the GNU General Public License as published by the |
| // Free Software Foundation; either version 3, or (at your option) |
| // any later version. |
| |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // Under Section 7 of GPL version 3, you are granted additional |
| // permissions described in the GCC Runtime Library Exception, version |
| // 3.1, as published by the Free Software Foundation. |
| |
| // You should have received a copy of the GNU General Public License and |
| // a copy of the GCC Runtime Library Exception along with this program; |
| // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| // <http://www.gnu.org/licenses/>. |
| |
| /** @file bits/hashtable_policy.h |
| * This is an internal header file, included by other library headers. |
| * Do not attempt to use it directly. |
| * @headername{unordered_map,unordered_set} |
| */ |
| |
| #ifndef _HASHTABLE_POLICY_H |
| #define _HASHTABLE_POLICY_H 1 |
| |
| #include <tuple> // for std::tuple, std::forward_as_tuple |
| #include <bits/functional_hash.h> // for __is_fast_hash |
| #include <bits/stl_algobase.h> // for std::min, std::is_permutation. |
| #include <bits/stl_pair.h> // for std::pair |
| #include <ext/aligned_buffer.h> // for __gnu_cxx::__aligned_buffer |
| #include <ext/alloc_traits.h> // for std::__alloc_rebind |
| #include <ext/numeric_traits.h> // for __gnu_cxx::__int_traits |
| |
| namespace std _GLIBCXX_VISIBILITY(default) |
| { |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| /// @cond undocumented |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| class _Hashtable; |
| |
| namespace __detail |
| { |
| /** |
| * @defgroup hashtable-detail Base and Implementation Classes |
| * @ingroup unordered_associative_containers |
| * @{ |
| */ |
| template<typename _Key, typename _Value, typename _ExtractKey, |
| typename _Equal, typename _Hash, typename _RangeHash, |
| typename _Unused, typename _Traits> |
| struct _Hashtable_base; |
| |
| // Helper function: return distance(first, last) for forward |
| // iterators, or 0/1 for input iterators. |
| template<typename _Iterator> |
| inline typename std::iterator_traits<_Iterator>::difference_type |
| __distance_fw(_Iterator __first, _Iterator __last, |
| std::input_iterator_tag) |
| { return __first != __last ? 1 : 0; } |
| |
| template<typename _Iterator> |
| inline typename std::iterator_traits<_Iterator>::difference_type |
| __distance_fw(_Iterator __first, _Iterator __last, |
| std::forward_iterator_tag) |
| { return std::distance(__first, __last); } |
| |
| template<typename _Iterator> |
| inline typename std::iterator_traits<_Iterator>::difference_type |
| __distance_fw(_Iterator __first, _Iterator __last) |
| { return __distance_fw(__first, __last, |
| std::__iterator_category(__first)); } |
| |
| struct _Identity |
| { |
| template<typename _Tp> |
| _Tp&& |
| operator()(_Tp&& __x) const noexcept |
| { return std::forward<_Tp>(__x); } |
| }; |
| |
| struct _Select1st |
| { |
| template<typename _Pair> |
| struct __1st_type; |
| |
| template<typename _Tp, typename _Up> |
| struct __1st_type<pair<_Tp, _Up>> |
| { using type = _Tp; }; |
| |
| template<typename _Tp, typename _Up> |
| struct __1st_type<const pair<_Tp, _Up>> |
| { using type = const _Tp; }; |
| |
| template<typename _Pair> |
| struct __1st_type<_Pair&> |
| { using type = typename __1st_type<_Pair>::type&; }; |
| |
| template<typename _Tp> |
| typename __1st_type<_Tp>::type&& |
| operator()(_Tp&& __x) const noexcept |
| { return std::forward<_Tp>(__x).first; } |
| }; |
| |
| template<typename _ExKey, typename _Value> |
| struct _ConvertToValueType; |
| |
| template<typename _Value> |
| struct _ConvertToValueType<_Identity, _Value> |
| { |
| template<typename _Kt> |
| constexpr _Kt&& |
| operator()(_Kt&& __k) const noexcept |
| { return std::forward<_Kt>(__k); } |
| }; |
| |
| template<typename _Value> |
| struct _ConvertToValueType<_Select1st, _Value> |
| { |
| constexpr _Value&& |
| operator()(_Value&& __x) const noexcept |
| { return std::move(__x); } |
| |
| constexpr const _Value& |
| operator()(const _Value& __x) const noexcept |
| { return __x; } |
| |
| template<typename _Kt, typename _Val> |
| constexpr std::pair<_Kt, _Val>&& |
| operator()(std::pair<_Kt, _Val>&& __x) const noexcept |
| { return std::move(__x); } |
| |
| template<typename _Kt, typename _Val> |
| constexpr const std::pair<_Kt, _Val>& |
| operator()(const std::pair<_Kt, _Val>& __x) const noexcept |
| { return __x; } |
| }; |
| |
| template<typename _ExKey> |
| struct _NodeBuilder; |
| |
| template<> |
| struct _NodeBuilder<_Select1st> |
| { |
| template<typename _Kt, typename _Arg, typename _NodeGenerator> |
| static auto |
| _S_build(_Kt&& __k, _Arg&& __arg, const _NodeGenerator& __node_gen) |
| -> typename _NodeGenerator::__node_type* |
| { |
| return __node_gen(std::forward<_Kt>(__k), |
| std::forward<_Arg>(__arg).second); |
| } |
| }; |
| |
| template<> |
| struct _NodeBuilder<_Identity> |
| { |
| template<typename _Kt, typename _Arg, typename _NodeGenerator> |
| static auto |
| _S_build(_Kt&& __k, _Arg&&, const _NodeGenerator& __node_gen) |
| -> typename _NodeGenerator::__node_type* |
| { return __node_gen(std::forward<_Kt>(__k)); } |
| }; |
| |
| template<typename _NodeAlloc> |
| struct _Hashtable_alloc; |
| |
| // Functor recycling a pool of nodes and using allocation once the pool is |
| // empty. |
| template<typename _NodeAlloc> |
| struct _ReuseOrAllocNode |
| { |
| private: |
| using __node_alloc_type = _NodeAlloc; |
| using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>; |
| using __node_alloc_traits = |
| typename __hashtable_alloc::__node_alloc_traits; |
| |
| public: |
| using __node_type = typename __hashtable_alloc::__node_type; |
| |
| _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h) |
| : _M_nodes(__nodes), _M_h(__h) { } |
| _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete; |
| |
| ~_ReuseOrAllocNode() |
| { _M_h._M_deallocate_nodes(_M_nodes); } |
| |
| template<typename... _Args> |
| __node_type* |
| operator()(_Args&&... __args) const |
| { |
| if (_M_nodes) |
| { |
| __node_type* __node = _M_nodes; |
| _M_nodes = _M_nodes->_M_next(); |
| __node->_M_nxt = nullptr; |
| auto& __a = _M_h._M_node_allocator(); |
| __node_alloc_traits::destroy(__a, __node->_M_valptr()); |
| __try |
| { |
| __node_alloc_traits::construct(__a, __node->_M_valptr(), |
| std::forward<_Args>(__args)...); |
| } |
| __catch(...) |
| { |
| _M_h._M_deallocate_node_ptr(__node); |
| __throw_exception_again; |
| } |
| return __node; |
| } |
| return _M_h._M_allocate_node(std::forward<_Args>(__args)...); |
| } |
| |
| private: |
| mutable __node_type* _M_nodes; |
| __hashtable_alloc& _M_h; |
| }; |
| |
| // Functor similar to the previous one but without any pool of nodes to |
| // recycle. |
| template<typename _NodeAlloc> |
| struct _AllocNode |
| { |
| private: |
| using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>; |
| |
| public: |
| using __node_type = typename __hashtable_alloc::__node_type; |
| |
| _AllocNode(__hashtable_alloc& __h) |
| : _M_h(__h) { } |
| |
| template<typename... _Args> |
| __node_type* |
| operator()(_Args&&... __args) const |
| { return _M_h._M_allocate_node(std::forward<_Args>(__args)...); } |
| |
| private: |
| __hashtable_alloc& _M_h; |
| }; |
| |
| // Auxiliary types used for all instantiations of _Hashtable nodes |
| // and iterators. |
| |
| /** |
| * struct _Hashtable_traits |
| * |
| * Important traits for hash tables. |
| * |
| * @tparam _Cache_hash_code Boolean value. True if the value of |
| * the hash function is stored along with the value. This is a |
| * time-space tradeoff. Storing it may improve lookup speed by |
| * reducing the number of times we need to call the _Hash or _Equal |
| * functors. |
| * |
| * @tparam _Constant_iterators Boolean value. True if iterator and |
| * const_iterator are both constant iterator types. This is true |
| * for unordered_set and unordered_multiset, false for |
| * unordered_map and unordered_multimap. |
| * |
| * @tparam _Unique_keys Boolean value. True if the return value |
| * of _Hashtable::count(k) is always at most one, false if it may |
| * be an arbitrary number. This is true for unordered_set and |
| * unordered_map, false for unordered_multiset and |
| * unordered_multimap. |
| */ |
| template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys> |
| struct _Hashtable_traits |
| { |
| using __hash_cached = __bool_constant<_Cache_hash_code>; |
| using __constant_iterators = __bool_constant<_Constant_iterators>; |
| using __unique_keys = __bool_constant<_Unique_keys>; |
| }; |
| |
| /** |
| * struct _Hashtable_hash_traits |
| * |
| * Important traits for hash tables depending on associated hasher. |
| * |
| */ |
| template<typename _Hash> |
| struct _Hashtable_hash_traits |
| { |
| static constexpr std::size_t |
| __small_size_threshold() noexcept |
| { return std::__is_fast_hash<_Hash>::value ? 0 : 20; } |
| }; |
| |
| /** |
| * struct _Hash_node_base |
| * |
| * Nodes, used to wrap elements stored in the hash table. A policy |
| * template parameter of class template _Hashtable controls whether |
| * nodes also store a hash code. In some cases (e.g. strings) this |
| * may be a performance win. |
| */ |
| struct _Hash_node_base |
| { |
| _Hash_node_base* _M_nxt; |
| |
| _Hash_node_base() noexcept : _M_nxt() { } |
| |
| _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { } |
| }; |
| |
| /** |
| * struct _Hash_node_value_base |
| * |
| * Node type with the value to store. |
| */ |
| template<typename _Value> |
| struct _Hash_node_value_base |
| { |
| typedef _Value value_type; |
| |
| __gnu_cxx::__aligned_buffer<_Value> _M_storage; |
| |
| _Value* |
| _M_valptr() noexcept |
| { return _M_storage._M_ptr(); } |
| |
| const _Value* |
| _M_valptr() const noexcept |
| { return _M_storage._M_ptr(); } |
| |
| _Value& |
| _M_v() noexcept |
| { return *_M_valptr(); } |
| |
| const _Value& |
| _M_v() const noexcept |
| { return *_M_valptr(); } |
| }; |
| |
| /** |
| * Primary template struct _Hash_node_code_cache. |
| */ |
| template<bool _Cache_hash_code> |
| struct _Hash_node_code_cache |
| { }; |
| |
| /** |
| * Specialization for node with cache, struct _Hash_node_code_cache. |
| */ |
| template<> |
| struct _Hash_node_code_cache<true> |
| { std::size_t _M_hash_code; }; |
| |
| template<typename _Value, bool _Cache_hash_code> |
| struct _Hash_node_value |
| : _Hash_node_value_base<_Value> |
| , _Hash_node_code_cache<_Cache_hash_code> |
| { }; |
| |
| /** |
| * Primary template struct _Hash_node. |
| */ |
| template<typename _Value, bool _Cache_hash_code> |
| struct _Hash_node |
| : _Hash_node_base |
| , _Hash_node_value<_Value, _Cache_hash_code> |
| { |
| _Hash_node* |
| _M_next() const noexcept |
| { return static_cast<_Hash_node*>(this->_M_nxt); } |
| }; |
| |
| /// Base class for node iterators. |
| template<typename _Value, bool _Cache_hash_code> |
| struct _Node_iterator_base |
| { |
| using __node_type = _Hash_node<_Value, _Cache_hash_code>; |
| |
| __node_type* _M_cur; |
| |
| _Node_iterator_base() : _M_cur(nullptr) { } |
| _Node_iterator_base(__node_type* __p) noexcept |
| : _M_cur(__p) { } |
| |
| void |
| _M_incr() noexcept |
| { _M_cur = _M_cur->_M_next(); } |
| |
| friend bool |
| operator==(const _Node_iterator_base& __x, const _Node_iterator_base& __y) |
| noexcept |
| { return __x._M_cur == __y._M_cur; } |
| |
| #if __cpp_impl_three_way_comparison < 201907L |
| friend bool |
| operator!=(const _Node_iterator_base& __x, const _Node_iterator_base& __y) |
| noexcept |
| { return __x._M_cur != __y._M_cur; } |
| #endif |
| }; |
| |
| /// Node iterators, used to iterate through all the hashtable. |
| template<typename _Value, bool __constant_iterators, bool __cache> |
| struct _Node_iterator |
| : public _Node_iterator_base<_Value, __cache> |
| { |
| private: |
| using __base_type = _Node_iterator_base<_Value, __cache>; |
| using __node_type = typename __base_type::__node_type; |
| |
| public: |
| using value_type = _Value; |
| using difference_type = std::ptrdiff_t; |
| using iterator_category = std::forward_iterator_tag; |
| |
| using pointer = __conditional_t<__constant_iterators, |
| const value_type*, value_type*>; |
| |
| using reference = __conditional_t<__constant_iterators, |
| const value_type&, value_type&>; |
| |
| _Node_iterator() = default; |
| |
| explicit |
| _Node_iterator(__node_type* __p) noexcept |
| : __base_type(__p) { } |
| |
| reference |
| operator*() const noexcept |
| { return this->_M_cur->_M_v(); } |
| |
| pointer |
| operator->() const noexcept |
| { return this->_M_cur->_M_valptr(); } |
| |
| _Node_iterator& |
| operator++() noexcept |
| { |
| this->_M_incr(); |
| return *this; |
| } |
| |
| _Node_iterator |
| operator++(int) noexcept |
| { |
| _Node_iterator __tmp(*this); |
| this->_M_incr(); |
| return __tmp; |
| } |
| }; |
| |
| /// Node const_iterators, used to iterate through all the hashtable. |
| template<typename _Value, bool __constant_iterators, bool __cache> |
| struct _Node_const_iterator |
| : public _Node_iterator_base<_Value, __cache> |
| { |
| private: |
| using __base_type = _Node_iterator_base<_Value, __cache>; |
| using __node_type = typename __base_type::__node_type; |
| |
| public: |
| typedef _Value value_type; |
| typedef std::ptrdiff_t difference_type; |
| typedef std::forward_iterator_tag iterator_category; |
| |
| typedef const value_type* pointer; |
| typedef const value_type& reference; |
| |
| _Node_const_iterator() = default; |
| |
| explicit |
| _Node_const_iterator(__node_type* __p) noexcept |
| : __base_type(__p) { } |
| |
| _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators, |
| __cache>& __x) noexcept |
| : __base_type(__x._M_cur) { } |
| |
| reference |
| operator*() const noexcept |
| { return this->_M_cur->_M_v(); } |
| |
| pointer |
| operator->() const noexcept |
| { return this->_M_cur->_M_valptr(); } |
| |
| _Node_const_iterator& |
| operator++() noexcept |
| { |
| this->_M_incr(); |
| return *this; |
| } |
| |
| _Node_const_iterator |
| operator++(int) noexcept |
| { |
| _Node_const_iterator __tmp(*this); |
| this->_M_incr(); |
| return __tmp; |
| } |
| }; |
| |
| // Many of class template _Hashtable's template parameters are policy |
| // classes. These are defaults for the policies. |
| |
| /// Default range hashing function: use division to fold a large number |
| /// into the range [0, N). |
| struct _Mod_range_hashing |
| { |
| typedef std::size_t first_argument_type; |
| typedef std::size_t second_argument_type; |
| typedef std::size_t result_type; |
| |
| result_type |
| operator()(first_argument_type __num, |
| second_argument_type __den) const noexcept |
| { return __num % __den; } |
| }; |
| |
| /// Default ranged hash function H. In principle it should be a |
| /// function object composed from objects of type H1 and H2 such that |
| /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of |
| /// h1 and h2. So instead we'll just use a tag to tell class template |
| /// hashtable to do that composition. |
| struct _Default_ranged_hash { }; |
| |
| /// Default value for rehash policy. Bucket size is (usually) the |
| /// smallest prime that keeps the load factor small enough. |
| struct _Prime_rehash_policy |
| { |
| using __has_load_factor = true_type; |
| |
| _Prime_rehash_policy(float __z = 1.0) noexcept |
| : _M_max_load_factor(__z), _M_next_resize(0) { } |
| |
| float |
| max_load_factor() const noexcept |
| { return _M_max_load_factor; } |
| |
| // Return a bucket size no smaller than n. |
| std::size_t |
| _M_next_bkt(std::size_t __n) const; |
| |
| // Return a bucket count appropriate for n elements |
| std::size_t |
| _M_bkt_for_elements(std::size_t __n) const |
| { return __builtin_ceil(__n / (double)_M_max_load_factor); } |
| |
| // __n_bkt is current bucket count, __n_elt is current element count, |
| // and __n_ins is number of elements to be inserted. Do we need to |
| // increase bucket count? If so, return make_pair(true, n), where n |
| // is the new bucket count. If not, return make_pair(false, 0). |
| std::pair<bool, std::size_t> |
| _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, |
| std::size_t __n_ins) const; |
| |
| typedef std::size_t _State; |
| |
| _State |
| _M_state() const |
| { return _M_next_resize; } |
| |
| void |
| _M_reset() noexcept |
| { _M_next_resize = 0; } |
| |
| void |
| _M_reset(_State __state) |
| { _M_next_resize = __state; } |
| |
| static const std::size_t _S_growth_factor = 2; |
| |
| float _M_max_load_factor; |
| mutable std::size_t _M_next_resize; |
| }; |
| |
| /// Range hashing function assuming that second arg is a power of 2. |
| struct _Mask_range_hashing |
| { |
| typedef std::size_t first_argument_type; |
| typedef std::size_t second_argument_type; |
| typedef std::size_t result_type; |
| |
| result_type |
| operator()(first_argument_type __num, |
| second_argument_type __den) const noexcept |
| { return __num & (__den - 1); } |
| }; |
| |
| /// Compute closest power of 2 not less than __n |
| inline std::size_t |
| __clp2(std::size_t __n) noexcept |
| { |
| using __gnu_cxx::__int_traits; |
| // Equivalent to return __n ? std::bit_ceil(__n) : 0; |
| if (__n < 2) |
| return __n; |
| const unsigned __lz = sizeof(size_t) > sizeof(long) |
| ? __builtin_clzll(__n - 1ull) |
| : __builtin_clzl(__n - 1ul); |
| // Doing two shifts avoids undefined behaviour when __lz == 0. |
| return (size_t(1) << (__int_traits<size_t>::__digits - __lz - 1)) << 1; |
| } |
| |
| /// Rehash policy providing power of 2 bucket numbers. Avoids modulo |
| /// operations. |
| struct _Power2_rehash_policy |
| { |
| using __has_load_factor = true_type; |
| |
| _Power2_rehash_policy(float __z = 1.0) noexcept |
| : _M_max_load_factor(__z), _M_next_resize(0) { } |
| |
| float |
| max_load_factor() const noexcept |
| { return _M_max_load_factor; } |
| |
| // Return a bucket size no smaller than n (as long as n is not above the |
| // highest power of 2). |
| std::size_t |
| _M_next_bkt(std::size_t __n) noexcept |
| { |
| if (__n == 0) |
| // Special case on container 1st initialization with 0 bucket count |
| // hint. We keep _M_next_resize to 0 to make sure that next time we |
| // want to add an element allocation will take place. |
| return 1; |
| |
| const auto __max_width = std::min<size_t>(sizeof(size_t), 8); |
| const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1); |
| std::size_t __res = __clp2(__n); |
| |
| if (__res == 0) |
| __res = __max_bkt; |
| else if (__res == 1) |
| // If __res is 1 we force it to 2 to make sure there will be an |
| // allocation so that nothing need to be stored in the initial |
| // single bucket |
| __res = 2; |
| |
| if (__res == __max_bkt) |
| // Set next resize to the max value so that we never try to rehash again |
| // as we already reach the biggest possible bucket number. |
| // Note that it might result in max_load_factor not being respected. |
| _M_next_resize = size_t(-1); |
| else |
| _M_next_resize |
| = __builtin_floor(__res * (double)_M_max_load_factor); |
| |
| return __res; |
| } |
| |
| // Return a bucket count appropriate for n elements |
| std::size_t |
| _M_bkt_for_elements(std::size_t __n) const noexcept |
| { return __builtin_ceil(__n / (double)_M_max_load_factor); } |
| |
| // __n_bkt is current bucket count, __n_elt is current element count, |
| // and __n_ins is number of elements to be inserted. Do we need to |
| // increase bucket count? If so, return make_pair(true, n), where n |
| // is the new bucket count. If not, return make_pair(false, 0). |
| std::pair<bool, std::size_t> |
| _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, |
| std::size_t __n_ins) noexcept |
| { |
| if (__n_elt + __n_ins > _M_next_resize) |
| { |
| // If _M_next_resize is 0 it means that we have nothing allocated so |
| // far and that we start inserting elements. In this case we start |
| // with an initial bucket size of 11. |
| double __min_bkts |
| = std::max<std::size_t>(__n_elt + __n_ins, _M_next_resize ? 0 : 11) |
| / (double)_M_max_load_factor; |
| if (__min_bkts >= __n_bkt) |
| return { true, |
| _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1, |
| __n_bkt * _S_growth_factor)) }; |
| |
| _M_next_resize |
| = __builtin_floor(__n_bkt * (double)_M_max_load_factor); |
| return { false, 0 }; |
| } |
| else |
| return { false, 0 }; |
| } |
| |
| typedef std::size_t _State; |
| |
| _State |
| _M_state() const noexcept |
| { return _M_next_resize; } |
| |
| void |
| _M_reset() noexcept |
| { _M_next_resize = 0; } |
| |
| void |
| _M_reset(_State __state) noexcept |
| { _M_next_resize = __state; } |
| |
| static const std::size_t _S_growth_factor = 2; |
| |
| float _M_max_load_factor; |
| std::size_t _M_next_resize; |
| }; |
| |
| // Base classes for std::_Hashtable. We define these base classes |
| // because in some cases we want to do different things depending on |
| // the value of a policy class. In some cases the policy class |
| // affects which member functions and nested typedefs are defined; |
| // we handle that by specializing base class templates. Several of |
| // the base class templates need to access other members of class |
| // template _Hashtable, so we use a variant of the "Curiously |
| // Recurring Template Pattern" (CRTP) technique. |
| |
| /** |
| * Primary class template _Map_base. |
| * |
| * If the hashtable has a value type of the form pair<const T1, T2> and |
| * a key extraction policy (_ExtractKey) that returns the first part |
| * of the pair, the hashtable gets a mapped_type typedef. If it |
| * satisfies those criteria and also has unique keys, then it also |
| * gets an operator[]. |
| */ |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits, |
| bool _Unique_keys = _Traits::__unique_keys::value> |
| struct _Map_base { }; |
| |
| /// Partial specialization, __unique_keys set to false, std::pair value type. |
| template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
| { |
| using mapped_type = _Val; |
| }; |
| |
| /// Partial specialization, __unique_keys set to true. |
| template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true> |
| { |
| private: |
| using __hashtable_base = _Hashtable_base<_Key, pair<const _Key, _Val>, |
| _Select1st, _Equal, _Hash, |
| _RangeHash, _Unused, |
| _Traits>; |
| |
| using __hashtable = _Hashtable<_Key, pair<const _Key, _Val>, _Alloc, |
| _Select1st, _Equal, _Hash, _RangeHash, |
| _Unused, _RehashPolicy, _Traits>; |
| |
| using __hash_code = typename __hashtable_base::__hash_code; |
| |
| public: |
| using key_type = typename __hashtable_base::key_type; |
| using mapped_type = _Val; |
| |
| mapped_type& |
| operator[](const key_type& __k); |
| |
| mapped_type& |
| operator[](key_type&& __k); |
| |
| // _GLIBCXX_RESOLVE_LIB_DEFECTS |
| // DR 761. unordered_map needs an at() member function. |
| mapped_type& |
| at(const key_type& __k) |
| { |
| auto __ite = static_cast<__hashtable*>(this)->find(__k); |
| if (!__ite._M_cur) |
| __throw_out_of_range(__N("unordered_map::at")); |
| return __ite->second; |
| } |
| |
| const mapped_type& |
| at(const key_type& __k) const |
| { |
| auto __ite = static_cast<const __hashtable*>(this)->find(__k); |
| if (!__ite._M_cur) |
| __throw_out_of_range(__N("unordered_map::at")); |
| return __ite->second; |
| } |
| }; |
| |
| template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| auto |
| _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
| operator[](const key_type& __k) |
| -> mapped_type& |
| { |
| __hashtable* __h = static_cast<__hashtable*>(this); |
| __hash_code __code = __h->_M_hash_code(__k); |
| std::size_t __bkt = __h->_M_bucket_index(__code); |
| if (auto __node = __h->_M_find_node(__bkt, __k, __code)) |
| return __node->_M_v().second; |
| |
| typename __hashtable::_Scoped_node __node { |
| __h, |
| std::piecewise_construct, |
| std::tuple<const key_type&>(__k), |
| std::tuple<>() |
| }; |
| auto __pos |
| = __h->_M_insert_unique_node(__bkt, __code, __node._M_node); |
| __node._M_node = nullptr; |
| return __pos->second; |
| } |
| |
| template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| auto |
| _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
| operator[](key_type&& __k) |
| -> mapped_type& |
| { |
| __hashtable* __h = static_cast<__hashtable*>(this); |
| __hash_code __code = __h->_M_hash_code(__k); |
| std::size_t __bkt = __h->_M_bucket_index(__code); |
| if (auto __node = __h->_M_find_node(__bkt, __k, __code)) |
| return __node->_M_v().second; |
| |
| typename __hashtable::_Scoped_node __node { |
| __h, |
| std::piecewise_construct, |
| std::forward_as_tuple(std::move(__k)), |
| std::tuple<>() |
| }; |
| auto __pos |
| = __h->_M_insert_unique_node(__bkt, __code, __node._M_node); |
| __node._M_node = nullptr; |
| return __pos->second; |
| } |
| |
| // Partial specialization for unordered_map<const T, U>, see PR 104174. |
| template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits, bool __uniq> |
| struct _Map_base<const _Key, pair<const _Key, _Val>, |
| _Alloc, _Select1st, _Equal, _Hash, |
| _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq> |
| : _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, _Hash, |
| _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq> |
| { }; |
| |
| /** |
| * Primary class template _Insert_base. |
| * |
| * Defines @c insert member functions appropriate to all _Hashtables. |
| */ |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| struct _Insert_base |
| { |
| protected: |
| using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey, |
| _Equal, _Hash, _RangeHash, |
| _Unused, _Traits>; |
| |
| using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, |
| _Unused, _RehashPolicy, _Traits>; |
| |
| using __hash_cached = typename _Traits::__hash_cached; |
| using __constant_iterators = typename _Traits::__constant_iterators; |
| |
| using __hashtable_alloc = _Hashtable_alloc< |
| __alloc_rebind<_Alloc, _Hash_node<_Value, |
| __hash_cached::value>>>; |
| |
| using value_type = typename __hashtable_base::value_type; |
| using size_type = typename __hashtable_base::size_type; |
| |
| using __unique_keys = typename _Traits::__unique_keys; |
| using __node_alloc_type = typename __hashtable_alloc::__node_alloc_type; |
| using __node_gen_type = _AllocNode<__node_alloc_type>; |
| |
| __hashtable& |
| _M_conjure_hashtable() |
| { return *(static_cast<__hashtable*>(this)); } |
| |
| template<typename _InputIterator, typename _NodeGetter> |
| void |
| _M_insert_range(_InputIterator __first, _InputIterator __last, |
| const _NodeGetter&, true_type __uks); |
| |
| template<typename _InputIterator, typename _NodeGetter> |
| void |
| _M_insert_range(_InputIterator __first, _InputIterator __last, |
| const _NodeGetter&, false_type __uks); |
| |
| public: |
| using iterator = _Node_iterator<_Value, __constant_iterators::value, |
| __hash_cached::value>; |
| |
| using const_iterator = _Node_const_iterator<_Value, |
| __constant_iterators::value, |
| __hash_cached::value>; |
| |
| using __ireturn_type = __conditional_t<__unique_keys::value, |
| std::pair<iterator, bool>, |
| iterator>; |
| |
| __ireturn_type |
| insert(const value_type& __v) |
| { |
| __hashtable& __h = _M_conjure_hashtable(); |
| __node_gen_type __node_gen(__h); |
| return __h._M_insert(__v, __node_gen, __unique_keys{}); |
| } |
| |
| iterator |
| insert(const_iterator __hint, const value_type& __v) |
| { |
| __hashtable& __h = _M_conjure_hashtable(); |
| __node_gen_type __node_gen(__h); |
| return __h._M_insert(__hint, __v, __node_gen, __unique_keys{}); |
| } |
| |
| template<typename _KType, typename... _Args> |
| std::pair<iterator, bool> |
| try_emplace(const_iterator, _KType&& __k, _Args&&... __args) |
| { |
| __hashtable& __h = _M_conjure_hashtable(); |
| auto __code = __h._M_hash_code(__k); |
| std::size_t __bkt = __h._M_bucket_index(__code); |
| if (auto __node = __h._M_find_node(__bkt, __k, __code)) |
| return { iterator(__node), false }; |
| |
| typename __hashtable::_Scoped_node __node { |
| &__h, |
| std::piecewise_construct, |
| std::forward_as_tuple(std::forward<_KType>(__k)), |
| std::forward_as_tuple(std::forward<_Args>(__args)...) |
| }; |
| auto __it |
| = __h._M_insert_unique_node(__bkt, __code, __node._M_node); |
| __node._M_node = nullptr; |
| return { __it, true }; |
| } |
| |
| void |
| insert(initializer_list<value_type> __l) |
| { this->insert(__l.begin(), __l.end()); } |
| |
| template<typename _InputIterator> |
| void |
| insert(_InputIterator __first, _InputIterator __last) |
| { |
| __hashtable& __h = _M_conjure_hashtable(); |
| __node_gen_type __node_gen(__h); |
| return _M_insert_range(__first, __last, __node_gen, __unique_keys{}); |
| } |
| }; |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| template<typename _InputIterator, typename _NodeGetter> |
| void |
| _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, |
| _RehashPolicy, _Traits>:: |
| _M_insert_range(_InputIterator __first, _InputIterator __last, |
| const _NodeGetter& __node_gen, true_type __uks) |
| { |
| __hashtable& __h = _M_conjure_hashtable(); |
| for (; __first != __last; ++__first) |
| __h._M_insert(*__first, __node_gen, __uks); |
| } |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| template<typename _InputIterator, typename _NodeGetter> |
| void |
| _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, |
| _RehashPolicy, _Traits>:: |
| _M_insert_range(_InputIterator __first, _InputIterator __last, |
| const _NodeGetter& __node_gen, false_type __uks) |
| { |
| using __rehash_type = typename __hashtable::__rehash_type; |
| using __rehash_state = typename __hashtable::__rehash_state; |
| using pair_type = std::pair<bool, std::size_t>; |
| |
| size_type __n_elt = __detail::__distance_fw(__first, __last); |
| if (__n_elt == 0) |
| return; |
| |
| __hashtable& __h = _M_conjure_hashtable(); |
| __rehash_type& __rehash = __h._M_rehash_policy; |
| const __rehash_state& __saved_state = __rehash._M_state(); |
| pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count, |
| __h._M_element_count, |
| __n_elt); |
| |
| if (__do_rehash.first) |
| __h._M_rehash(__do_rehash.second, __saved_state); |
| |
| for (; __first != __last; ++__first) |
| __h._M_insert(*__first, __node_gen, __uks); |
| } |
| |
| /** |
| * Primary class template _Insert. |
| * |
| * Defines @c insert member functions that depend on _Hashtable policies, |
| * via partial specializations. |
| */ |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits, |
| bool _Constant_iterators = _Traits::__constant_iterators::value> |
| struct _Insert; |
| |
| /// Specialization. |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, |
| _RehashPolicy, _Traits, true> |
| : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits> |
| { |
| using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, |
| _Equal, _Hash, _RangeHash, _Unused, |
| _RehashPolicy, _Traits>; |
| |
| using value_type = typename __base_type::value_type; |
| using iterator = typename __base_type::iterator; |
| using const_iterator = typename __base_type::const_iterator; |
| using __ireturn_type = typename __base_type::__ireturn_type; |
| |
| using __unique_keys = typename __base_type::__unique_keys; |
| using __hashtable = typename __base_type::__hashtable; |
| using __node_gen_type = typename __base_type::__node_gen_type; |
| |
| using __base_type::insert; |
| |
| __ireturn_type |
| insert(value_type&& __v) |
| { |
| __hashtable& __h = this->_M_conjure_hashtable(); |
| __node_gen_type __node_gen(__h); |
| return __h._M_insert(std::move(__v), __node_gen, __unique_keys{}); |
| } |
| |
| iterator |
| insert(const_iterator __hint, value_type&& __v) |
| { |
| __hashtable& __h = this->_M_conjure_hashtable(); |
| __node_gen_type __node_gen(__h); |
| return __h._M_insert(__hint, std::move(__v), __node_gen, |
| __unique_keys{}); |
| } |
| }; |
| |
| /// Specialization. |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
| : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits> |
| { |
| using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, |
| _Equal, _Hash, _RangeHash, _Unused, |
| _RehashPolicy, _Traits>; |
| using value_type = typename __base_type::value_type; |
| using iterator = typename __base_type::iterator; |
| using const_iterator = typename __base_type::const_iterator; |
| |
| using __unique_keys = typename __base_type::__unique_keys; |
| using __hashtable = typename __base_type::__hashtable; |
| using __ireturn_type = typename __base_type::__ireturn_type; |
| |
| using __base_type::insert; |
| |
| template<typename _Pair> |
| using __is_cons = std::is_constructible<value_type, _Pair&&>; |
| |
| template<typename _Pair> |
| using _IFcons = std::enable_if<__is_cons<_Pair>::value>; |
| |
| template<typename _Pair> |
| using _IFconsp = typename _IFcons<_Pair>::type; |
| |
| template<typename _Pair, typename = _IFconsp<_Pair>> |
| __ireturn_type |
| insert(_Pair&& __v) |
| { |
| __hashtable& __h = this->_M_conjure_hashtable(); |
| return __h._M_emplace(__unique_keys{}, std::forward<_Pair>(__v)); |
| } |
| |
| template<typename _Pair, typename = _IFconsp<_Pair>> |
| iterator |
| insert(const_iterator __hint, _Pair&& __v) |
| { |
| __hashtable& __h = this->_M_conjure_hashtable(); |
| return __h._M_emplace(__hint, __unique_keys{}, |
| std::forward<_Pair>(__v)); |
| } |
| }; |
| |
| template<typename _Policy> |
| using __has_load_factor = typename _Policy::__has_load_factor; |
| |
| /** |
| * Primary class template _Rehash_base. |
| * |
| * Give hashtable the max_load_factor functions and reserve iff the |
| * rehash policy supports it. |
| */ |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits, |
| typename = |
| __detected_or_t<false_type, __has_load_factor, _RehashPolicy>> |
| struct _Rehash_base; |
| |
| /// Specialization when rehash policy doesn't provide load factor management. |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, |
| false_type /* Has load factor */> |
| { |
| }; |
| |
| /// Specialization when rehash policy provide load factor management. |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, |
| true_type /* Has load factor */> |
| { |
| private: |
| using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, |
| _Equal, _Hash, _RangeHash, _Unused, |
| _RehashPolicy, _Traits>; |
| |
| public: |
| float |
| max_load_factor() const noexcept |
| { |
| const __hashtable* __this = static_cast<const __hashtable*>(this); |
| return __this->__rehash_policy().max_load_factor(); |
| } |
| |
| void |
| max_load_factor(float __z) |
| { |
| __hashtable* __this = static_cast<__hashtable*>(this); |
| __this->__rehash_policy(_RehashPolicy(__z)); |
| } |
| |
| void |
| reserve(std::size_t __n) |
| { |
| __hashtable* __this = static_cast<__hashtable*>(this); |
| __this->rehash(__this->__rehash_policy()._M_bkt_for_elements(__n)); |
| } |
| }; |
| |
| /** |
| * Primary class template _Hashtable_ebo_helper. |
| * |
| * Helper class using EBO when it is not forbidden (the type is not |
| * final) and when it is worth it (the type is empty.) |
| */ |
| template<int _Nm, typename _Tp, |
| bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)> |
| struct _Hashtable_ebo_helper; |
| |
| /// Specialization using EBO. |
| template<int _Nm, typename _Tp> |
| struct _Hashtable_ebo_helper<_Nm, _Tp, true> |
| : private _Tp |
| { |
| _Hashtable_ebo_helper() noexcept(noexcept(_Tp())) : _Tp() { } |
| |
| template<typename _OtherTp> |
| _Hashtable_ebo_helper(_OtherTp&& __tp) |
| : _Tp(std::forward<_OtherTp>(__tp)) |
| { } |
| |
| const _Tp& _M_cget() const { return static_cast<const _Tp&>(*this); } |
| _Tp& _M_get() { return static_cast<_Tp&>(*this); } |
| }; |
| |
| /// Specialization not using EBO. |
| template<int _Nm, typename _Tp> |
| struct _Hashtable_ebo_helper<_Nm, _Tp, false> |
| { |
| _Hashtable_ebo_helper() = default; |
| |
| template<typename _OtherTp> |
| _Hashtable_ebo_helper(_OtherTp&& __tp) |
| : _M_tp(std::forward<_OtherTp>(__tp)) |
| { } |
| |
| const _Tp& _M_cget() const { return _M_tp; } |
| _Tp& _M_get() { return _M_tp; } |
| |
| private: |
| _Tp _M_tp{}; |
| }; |
| |
| /** |
| * Primary class template _Local_iterator_base. |
| * |
| * Base class for local iterators, used to iterate within a bucket |
| * but not between buckets. |
| */ |
| template<typename _Key, typename _Value, typename _ExtractKey, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| bool __cache_hash_code> |
| struct _Local_iterator_base; |
| |
| /** |
| * Primary class template _Hash_code_base. |
| * |
| * Encapsulates two policy issues that aren't quite orthogonal. |
| * (1) the difference between using a ranged hash function and using |
| * the combination of a hash function and a range-hashing function. |
| * In the former case we don't have such things as hash codes, so |
| * we have a dummy type as placeholder. |
| * (2) Whether or not we cache hash codes. Caching hash codes is |
| * meaningless if we have a ranged hash function. |
| * |
| * We also put the key extraction objects here, for convenience. |
| * Each specialization derives from one or more of the template |
| * parameters to benefit from Ebo. This is important as this type |
| * is inherited in some cases by the _Local_iterator_base type used |
| * to implement local_iterator and const_local_iterator. As with |
| * any iterator type we prefer to make it as small as possible. |
| */ |
| template<typename _Key, typename _Value, typename _ExtractKey, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| bool __cache_hash_code> |
| struct _Hash_code_base |
| : private _Hashtable_ebo_helper<1, _Hash> |
| { |
| private: |
| using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>; |
| |
| // Gives the local iterator implementation access to _M_bucket_index(). |
| friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
| _Hash, _RangeHash, _Unused, false>; |
| |
| public: |
| typedef _Hash hasher; |
| |
| hasher |
| hash_function() const |
| { return _M_hash(); } |
| |
| protected: |
| typedef std::size_t __hash_code; |
| |
| // We need the default constructor for the local iterators and _Hashtable |
| // default constructor. |
| _Hash_code_base() = default; |
| |
| _Hash_code_base(const _Hash& __hash) : __ebo_hash(__hash) { } |
| |
| __hash_code |
| _M_hash_code(const _Key& __k) const |
| { |
| static_assert(__is_invocable<const _Hash&, const _Key&>{}, |
| "hash function must be invocable with an argument of key type"); |
| return _M_hash()(__k); |
| } |
| |
| template<typename _Kt> |
| __hash_code |
| _M_hash_code_tr(const _Kt& __k) const |
| { |
| static_assert(__is_invocable<const _Hash&, const _Kt&>{}, |
| "hash function must be invocable with an argument of key type"); |
| return _M_hash()(__k); |
| } |
| |
| __hash_code |
| _M_hash_code(const _Hash&, |
| const _Hash_node_value<_Value, true>& __n) const |
| { return __n._M_hash_code; } |
| |
| // Compute hash code using _Hash as __n _M_hash_code, if present, was |
| // computed using _H2. |
| template<typename _H2> |
| __hash_code |
| _M_hash_code(const _H2&, |
| const _Hash_node_value<_Value, __cache_hash_code>& __n) const |
| { return _M_hash_code(_ExtractKey{}(__n._M_v())); } |
| |
| __hash_code |
| _M_hash_code(const _Hash_node_value<_Value, false>& __n) const |
| { return _M_hash_code(_ExtractKey{}(__n._M_v())); } |
| |
| __hash_code |
| _M_hash_code(const _Hash_node_value<_Value, true>& __n) const |
| { return __n._M_hash_code; } |
| |
| std::size_t |
| _M_bucket_index(__hash_code __c, std::size_t __bkt_count) const |
| { return _RangeHash{}(__c, __bkt_count); } |
| |
| std::size_t |
| _M_bucket_index(const _Hash_node_value<_Value, false>& __n, |
| std::size_t __bkt_count) const |
| noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>())) |
| && noexcept(declval<const _RangeHash&>()((__hash_code)0, |
| (std::size_t)0)) ) |
| { |
| return _RangeHash{}(_M_hash_code(_ExtractKey{}(__n._M_v())), |
| __bkt_count); |
| } |
| |
| std::size_t |
| _M_bucket_index(const _Hash_node_value<_Value, true>& __n, |
| std::size_t __bkt_count) const |
| noexcept( noexcept(declval<const _RangeHash&>()((__hash_code)0, |
| (std::size_t)0)) ) |
| { return _RangeHash{}(__n._M_hash_code, __bkt_count); } |
| |
| void |
| _M_store_code(_Hash_node_code_cache<false>&, __hash_code) const |
| { } |
| |
| void |
| _M_copy_code(_Hash_node_code_cache<false>&, |
| const _Hash_node_code_cache<false>&) const |
| { } |
| |
| void |
| _M_store_code(_Hash_node_code_cache<true>& __n, __hash_code __c) const |
| { __n._M_hash_code = __c; } |
| |
| void |
| _M_copy_code(_Hash_node_code_cache<true>& __to, |
| const _Hash_node_code_cache<true>& __from) const |
| { __to._M_hash_code = __from._M_hash_code; } |
| |
| void |
| _M_swap(_Hash_code_base& __x) |
| { std::swap(__ebo_hash::_M_get(), __x.__ebo_hash::_M_get()); } |
| |
| const _Hash& |
| _M_hash() const { return __ebo_hash::_M_cget(); } |
| }; |
| |
| /// Partial specialization used when nodes contain a cached hash code. |
| template<typename _Key, typename _Value, typename _ExtractKey, |
| typename _Hash, typename _RangeHash, typename _Unused> |
| struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
| _Hash, _RangeHash, _Unused, true> |
| : public _Node_iterator_base<_Value, true> |
| { |
| protected: |
| using __base_node_iter = _Node_iterator_base<_Value, true>; |
| using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
| _Hash, _RangeHash, _Unused, true>; |
| |
| _Local_iterator_base() = default; |
| _Local_iterator_base(const __hash_code_base&, |
| _Hash_node<_Value, true>* __p, |
| std::size_t __bkt, std::size_t __bkt_count) |
| : __base_node_iter(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) |
| { } |
| |
| void |
| _M_incr() |
| { |
| __base_node_iter::_M_incr(); |
| if (this->_M_cur) |
| { |
| std::size_t __bkt |
| = _RangeHash{}(this->_M_cur->_M_hash_code, _M_bucket_count); |
| if (__bkt != _M_bucket) |
| this->_M_cur = nullptr; |
| } |
| } |
| |
| std::size_t _M_bucket; |
| std::size_t _M_bucket_count; |
| |
| public: |
| std::size_t |
| _M_get_bucket() const { return _M_bucket; } // for debug mode |
| }; |
| |
| // Uninitialized storage for a _Hash_code_base. |
| // This type is DefaultConstructible and Assignable even if the |
| // _Hash_code_base type isn't, so that _Local_iterator_base<..., false> |
| // can be DefaultConstructible and Assignable. |
| template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value> |
| struct _Hash_code_storage |
| { |
| __gnu_cxx::__aligned_buffer<_Tp> _M_storage; |
| |
| _Tp* |
| _M_h() { return _M_storage._M_ptr(); } |
| |
| const _Tp* |
| _M_h() const { return _M_storage._M_ptr(); } |
| }; |
| |
| // Empty partial specialization for empty _Hash_code_base types. |
| template<typename _Tp> |
| struct _Hash_code_storage<_Tp, true> |
| { |
| static_assert( std::is_empty<_Tp>::value, "Type must be empty" ); |
| |
| // As _Tp is an empty type there will be no bytes written/read through |
| // the cast pointer, so no strict-aliasing violation. |
| _Tp* |
| _M_h() { return reinterpret_cast<_Tp*>(this); } |
| |
| const _Tp* |
| _M_h() const { return reinterpret_cast<const _Tp*>(this); } |
| }; |
| |
| template<typename _Key, typename _Value, typename _ExtractKey, |
| typename _Hash, typename _RangeHash, typename _Unused> |
| using __hash_code_for_local_iter |
| = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey, |
| _Hash, _RangeHash, _Unused, false>>; |
| |
| // Partial specialization used when hash codes are not cached |
| template<typename _Key, typename _Value, typename _ExtractKey, |
| typename _Hash, typename _RangeHash, typename _Unused> |
| struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
| _Hash, _RangeHash, _Unused, false> |
| : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _Hash, _RangeHash, |
| _Unused> |
| , _Node_iterator_base<_Value, false> |
| { |
| protected: |
| using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
| _Hash, _RangeHash, _Unused, false>; |
| using __node_iter_base = _Node_iterator_base<_Value, false>; |
| |
| _Local_iterator_base() : _M_bucket_count(-1) { } |
| |
| _Local_iterator_base(const __hash_code_base& __base, |
| _Hash_node<_Value, false>* __p, |
| std::size_t __bkt, std::size_t __bkt_count) |
| : __node_iter_base(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) |
| { _M_init(__base); } |
| |
| ~_Local_iterator_base() |
| { |
| if (_M_bucket_count != size_t(-1)) |
| _M_destroy(); |
| } |
| |
| _Local_iterator_base(const _Local_iterator_base& __iter) |
| : __node_iter_base(__iter._M_cur), _M_bucket(__iter._M_bucket) |
| , _M_bucket_count(__iter._M_bucket_count) |
| { |
| if (_M_bucket_count != size_t(-1)) |
| _M_init(*__iter._M_h()); |
| } |
| |
| _Local_iterator_base& |
| operator=(const _Local_iterator_base& __iter) |
| { |
| if (_M_bucket_count != -1) |
| _M_destroy(); |
| this->_M_cur = __iter._M_cur; |
| _M_bucket = __iter._M_bucket; |
| _M_bucket_count = __iter._M_bucket_count; |
| if (_M_bucket_count != -1) |
| _M_init(*__iter._M_h()); |
| return *this; |
| } |
| |
| void |
| _M_incr() |
| { |
| __node_iter_base::_M_incr(); |
| if (this->_M_cur) |
| { |
| std::size_t __bkt = this->_M_h()->_M_bucket_index(*this->_M_cur, |
| _M_bucket_count); |
| if (__bkt != _M_bucket) |
| this->_M_cur = nullptr; |
| } |
| } |
| |
| std::size_t _M_bucket; |
| std::size_t _M_bucket_count; |
| |
| void |
| _M_init(const __hash_code_base& __base) |
| { ::new(this->_M_h()) __hash_code_base(__base); } |
| |
| void |
| _M_destroy() { this->_M_h()->~__hash_code_base(); } |
| |
| public: |
| std::size_t |
| _M_get_bucket() const { return _M_bucket; } // for debug mode |
| }; |
| |
| /// local iterators |
| template<typename _Key, typename _Value, typename _ExtractKey, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| bool __constant_iterators, bool __cache> |
| struct _Local_iterator |
| : public _Local_iterator_base<_Key, _Value, _ExtractKey, |
| _Hash, _RangeHash, _Unused, __cache> |
| { |
| private: |
| using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, |
| _Hash, _RangeHash, _Unused, __cache>; |
| using __hash_code_base = typename __base_type::__hash_code_base; |
| |
| public: |
| using value_type = _Value; |
| using pointer = __conditional_t<__constant_iterators, |
| const value_type*, value_type*>; |
| using reference = __conditional_t<__constant_iterators, |
| const value_type&, value_type&>; |
| using difference_type = ptrdiff_t; |
| using iterator_category = forward_iterator_tag; |
| |
| _Local_iterator() = default; |
| |
| _Local_iterator(const __hash_code_base& __base, |
| _Hash_node<_Value, __cache>* __n, |
| std::size_t __bkt, std::size_t __bkt_count) |
| : __base_type(__base, __n, __bkt, __bkt_count) |
| { } |
| |
| reference |
| operator*() const |
| { return this->_M_cur->_M_v(); } |
| |
| pointer |
| operator->() const |
| { return this->_M_cur->_M_valptr(); } |
| |
| _Local_iterator& |
| operator++() |
| { |
| this->_M_incr(); |
| return *this; |
| } |
| |
| _Local_iterator |
| operator++(int) |
| { |
| _Local_iterator __tmp(*this); |
| this->_M_incr(); |
| return __tmp; |
| } |
| }; |
| |
| /// local const_iterators |
| template<typename _Key, typename _Value, typename _ExtractKey, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| bool __constant_iterators, bool __cache> |
| struct _Local_const_iterator |
| : public _Local_iterator_base<_Key, _Value, _ExtractKey, |
| _Hash, _RangeHash, _Unused, __cache> |
| { |
| private: |
| using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, |
| _Hash, _RangeHash, _Unused, __cache>; |
| using __hash_code_base = typename __base_type::__hash_code_base; |
| |
| public: |
| typedef _Value value_type; |
| typedef const value_type* pointer; |
| typedef const value_type& reference; |
| typedef std::ptrdiff_t difference_type; |
| typedef std::forward_iterator_tag iterator_category; |
| |
| _Local_const_iterator() = default; |
| |
| _Local_const_iterator(const __hash_code_base& __base, |
| _Hash_node<_Value, __cache>* __n, |
| std::size_t __bkt, std::size_t __bkt_count) |
| : __base_type(__base, __n, __bkt, __bkt_count) |
| { } |
| |
| _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey, |
| _Hash, _RangeHash, _Unused, |
| __constant_iterators, |
| __cache>& __x) |
| : __base_type(__x) |
| { } |
| |
| reference |
| operator*() const |
| { return this->_M_cur->_M_v(); } |
| |
| pointer |
| operator->() const |
| { return this->_M_cur->_M_valptr(); } |
| |
| _Local_const_iterator& |
| operator++() |
| { |
| this->_M_incr(); |
| return *this; |
| } |
| |
| _Local_const_iterator |
| operator++(int) |
| { |
| _Local_const_iterator __tmp(*this); |
| this->_M_incr(); |
| return __tmp; |
| } |
| }; |
| |
| /** |
| * Primary class template _Hashtable_base. |
| * |
| * Helper class adding management of _Equal functor to |
| * _Hash_code_base type. |
| * |
| * Base class templates are: |
| * - __detail::_Hash_code_base |
| * - __detail::_Hashtable_ebo_helper |
| */ |
| template<typename _Key, typename _Value, typename _ExtractKey, |
| typename _Equal, typename _Hash, typename _RangeHash, |
| typename _Unused, typename _Traits> |
| struct _Hashtable_base |
| : public _Hash_code_base<_Key, _Value, _ExtractKey, _Hash, _RangeHash, |
| _Unused, _Traits::__hash_cached::value>, |
| private _Hashtable_ebo_helper<0, _Equal> |
| { |
| public: |
| typedef _Key key_type; |
| typedef _Value value_type; |
| typedef _Equal key_equal; |
| typedef std::size_t size_type; |
| typedef std::ptrdiff_t difference_type; |
| |
| using __traits_type = _Traits; |
| using __hash_cached = typename __traits_type::__hash_cached; |
| |
| using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
| _Hash, _RangeHash, _Unused, |
| __hash_cached::value>; |
| |
| using __hash_code = typename __hash_code_base::__hash_code; |
| |
| private: |
| using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>; |
| |
| static bool |
| _S_equals(__hash_code, const _Hash_node_code_cache<false>&) |
| { return true; } |
| |
| static bool |
| _S_node_equals(const _Hash_node_code_cache<false>&, |
| const _Hash_node_code_cache<false>&) |
| { return true; } |
| |
| static bool |
| _S_equals(__hash_code __c, const _Hash_node_code_cache<true>& __n) |
| { return __c == __n._M_hash_code; } |
| |
| static bool |
| _S_node_equals(const _Hash_node_code_cache<true>& __lhn, |
| const _Hash_node_code_cache<true>& __rhn) |
| { return __lhn._M_hash_code == __rhn._M_hash_code; } |
| |
| protected: |
| _Hashtable_base() = default; |
| |
| _Hashtable_base(const _Hash& __hash, const _Equal& __eq) |
| : __hash_code_base(__hash), _EqualEBO(__eq) |
| { } |
| |
| bool |
| _M_key_equals(const _Key& __k, |
| const _Hash_node_value<_Value, |
| __hash_cached::value>& __n) const |
| { |
| static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{}, |
| "key equality predicate must be invocable with two arguments of " |
| "key type"); |
| return _M_eq()(__k, _ExtractKey{}(__n._M_v())); |
| } |
| |
| template<typename _Kt> |
| bool |
| _M_key_equals_tr(const _Kt& __k, |
| const _Hash_node_value<_Value, |
| __hash_cached::value>& __n) const |
| { |
| static_assert( |
| __is_invocable<const _Equal&, const _Kt&, const _Key&>{}, |
| "key equality predicate must be invocable with two arguments of " |
| "key type"); |
| return _M_eq()(__k, _ExtractKey{}(__n._M_v())); |
| } |
| |
| bool |
| _M_equals(const _Key& __k, __hash_code __c, |
| const _Hash_node_value<_Value, __hash_cached::value>& __n) const |
| { return _S_equals(__c, __n) && _M_key_equals(__k, __n); } |
| |
| template<typename _Kt> |
| bool |
| _M_equals_tr(const _Kt& __k, __hash_code __c, |
| const _Hash_node_value<_Value, |
| __hash_cached::value>& __n) const |
| { return _S_equals(__c, __n) && _M_key_equals_tr(__k, __n); } |
| |
| bool |
| _M_node_equals( |
| const _Hash_node_value<_Value, __hash_cached::value>& __lhn, |
| const _Hash_node_value<_Value, __hash_cached::value>& __rhn) const |
| { |
| return _S_node_equals(__lhn, __rhn) |
| && _M_key_equals(_ExtractKey{}(__lhn._M_v()), __rhn); |
| } |
| |
| void |
| _M_swap(_Hashtable_base& __x) |
| { |
| __hash_code_base::_M_swap(__x); |
| std::swap(_EqualEBO::_M_get(), __x._EqualEBO::_M_get()); |
| } |
| |
| const _Equal& |
| _M_eq() const { return _EqualEBO::_M_cget(); } |
| }; |
| |
| /** |
| * Primary class template _Equality. |
| * |
| * This is for implementing equality comparison for unordered |
| * containers, per N3068, by John Lakos and Pablo Halpern. |
| * Algorithmically, we follow closely the reference implementations |
| * therein. |
| */ |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits, |
| bool _Unique_keys = _Traits::__unique_keys::value> |
| struct _Equality; |
| |
| /// unordered_map and unordered_set specializations. |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true> |
| { |
| using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, |
| _RehashPolicy, _Traits>; |
| |
| bool |
| _M_equal(const __hashtable&) const; |
| }; |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| bool |
| _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
| _M_equal(const __hashtable& __other) const |
| { |
| using __node_type = typename __hashtable::__node_type; |
| const __hashtable* __this = static_cast<const __hashtable*>(this); |
| if (__this->size() != __other.size()) |
| return false; |
| |
| for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx) |
| { |
| std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur); |
| auto __prev_n = __other._M_buckets[__ybkt]; |
| if (!__prev_n) |
| return false; |
| |
| for (__node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);; |
| __n = __n->_M_next()) |
| { |
| if (__n->_M_v() == *__itx) |
| break; |
| |
| if (!__n->_M_nxt |
| || __other._M_bucket_index(*__n->_M_next()) != __ybkt) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /// unordered_multiset and unordered_multimap specializations. |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
| { |
| using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, |
| _RehashPolicy, _Traits>; |
| |
| bool |
| _M_equal(const __hashtable&) const; |
| }; |
| |
| template<typename _Key, typename _Value, typename _Alloc, |
| typename _ExtractKey, typename _Equal, |
| typename _Hash, typename _RangeHash, typename _Unused, |
| typename _RehashPolicy, typename _Traits> |
| bool |
| _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>:: |
| _M_equal(const __hashtable& __other) const |
| { |
| using __node_type = typename __hashtable::__node_type; |
| const __hashtable* __this = static_cast<const __hashtable*>(this); |
| if (__this->size() != __other.size()) |
| return false; |
| |
| for (auto __itx = __this->begin(); __itx != __this->end();) |
| { |
| std::size_t __x_count = 1; |
| auto __itx_end = __itx; |
| for (++__itx_end; __itx_end != __this->end() |
| && __this->key_eq()(_ExtractKey{}(*__itx), |
| _ExtractKey{}(*__itx_end)); |
| ++__itx_end) |
| ++__x_count; |
| |
| std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur); |
| auto __y_prev_n = __other._M_buckets[__ybkt]; |
| if (!__y_prev_n) |
| return false; |
| |
| __node_type* __y_n = static_cast<__node_type*>(__y_prev_n->_M_nxt); |
| for (;;) |
| { |
| if (__this->key_eq()(_ExtractKey{}(__y_n->_M_v()), |
| _ExtractKey{}(*__itx))) |
| break; |
| |
| auto __y_ref_n = __y_n; |
| for (__y_n = __y_n->_M_next(); __y_n; __y_n = __y_n->_M_next()) |
| if (!__other._M_node_equals(*__y_ref_n, *__y_n)) |
| break; |
| |
| if (!__y_n || __other._M_bucket_index(*__y_n) != __ybkt) |
| return false; |
| } |
| |
| typename __hashtable::const_iterator __ity(__y_n); |
| for (auto __ity_end = __ity; __ity_end != __other.end(); ++__ity_end) |
| if (--__x_count == 0) |
| break; |
| |
| if (__x_count != 0) |
| return false; |
| |
| if (!std::is_permutation(__itx, __itx_end, __ity)) |
| return false; |
| |
| __itx = __itx_end; |
| } |
| return true; |
| } |
| |
| /** |
| * This type deals with all allocation and keeps an allocator instance |
| * through inheritance to benefit from EBO when possible. |
| */ |
| template<typename _NodeAlloc> |
| struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc> |
| { |
| private: |
| using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>; |
| |
| template<typename> |
| struct __get_value_type; |
| template<typename _Val, bool _Cache_hash_code> |
| struct __get_value_type<_Hash_node<_Val, _Cache_hash_code>> |
| { using type = _Val; }; |
| |
| public: |
| using __node_type = typename _NodeAlloc::value_type; |
| using __node_alloc_type = _NodeAlloc; |
| // Use __gnu_cxx to benefit from _S_always_equal and al. |
| using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>; |
| |
| using __value_alloc_traits = typename __node_alloc_traits::template |
| rebind_traits<typename __get_value_type<__node_type>::type>; |
| |
| using __node_ptr = __node_type*; |
| using __node_base = _Hash_node_base; |
| using __node_base_ptr = __node_base*; |
| using __buckets_alloc_type = |
| __alloc_rebind<__node_alloc_type, __node_base_ptr>; |
| using __buckets_alloc_traits = std::allocator_traits<__buckets_alloc_type>; |
| using __buckets_ptr = __node_base_ptr*; |
| |
| _Hashtable_alloc() = default; |
| _Hashtable_alloc(const _Hashtable_alloc&) = default; |
| _Hashtable_alloc(_Hashtable_alloc&&) = default; |
| |
| template<typename _Alloc> |
| _Hashtable_alloc(_Alloc&& __a) |
| : __ebo_node_alloc(std::forward<_Alloc>(__a)) |
| { } |
| |
| __node_alloc_type& |
| _M_node_allocator() |
| { return __ebo_node_alloc::_M_get(); } |
| |
| const __node_alloc_type& |
| _M_node_allocator() const |
| { return __ebo_node_alloc::_M_cget(); } |
| |
| // Allocate a node and construct an element within it. |
| template<typename... _Args> |
| __node_ptr |
| _M_allocate_node(_Args&&... __args); |
| |
| // Destroy the element within a node and deallocate the node. |
| void |
| _M_deallocate_node(__node_ptr __n); |
| |
| // Deallocate a node. |
| void |
| _M_deallocate_node_ptr(__node_ptr __n); |
| |
| // Deallocate the linked list of nodes pointed to by __n. |
| // The elements within the nodes are destroyed. |
| void |
| _M_deallocate_nodes(__node_ptr __n); |
| |
| __buckets_ptr |
| _M_allocate_buckets(std::size_t __bkt_count); |
| |
| void |
| _M_deallocate_buckets(__buckets_ptr, std::size_t __bkt_count); |
| }; |
| |
| // Definitions of class template _Hashtable_alloc's out-of-line member |
| // functions. |
| template<typename _NodeAlloc> |
| template<typename... _Args> |
| auto |
| _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args) |
| -> __node_ptr |
| { |
| auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1); |
| __node_ptr __n = std::__to_address(__nptr); |
| __try |
| { |
| ::new ((void*)__n) __node_type; |
| __node_alloc_traits::construct(_M_node_allocator(), |
| __n->_M_valptr(), |
| std::forward<_Args>(__args)...); |
| return __n; |
| } |
| __catch(...) |
| { |
| __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1); |
| __throw_exception_again; |
| } |
| } |
| |
| template<typename _NodeAlloc> |
| void |
| _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_ptr __n) |
| { |
| __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr()); |
| _M_deallocate_node_ptr(__n); |
| } |
| |
| template<typename _NodeAlloc> |
| void |
| _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_ptr __n) |
| { |
| typedef typename __node_alloc_traits::pointer _Ptr; |
| auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n); |
| __n->~__node_type(); |
| __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1); |
| } |
| |
| template<typename _NodeAlloc> |
| void |
| _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_ptr __n) |
| { |
| while (__n) |
| { |
| __node_ptr __tmp = __n; |
| __n = __n->_M_next(); |
| _M_deallocate_node(__tmp); |
| } |
| } |
| |
| template<typename _NodeAlloc> |
| auto |
| _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __bkt_count) |
| -> __buckets_ptr |
| { |
| __buckets_alloc_type __alloc(_M_node_allocator()); |
| |
| auto __ptr = __buckets_alloc_traits::allocate(__alloc, __bkt_count); |
| __buckets_ptr __p = std::__to_address(__ptr); |
| __builtin_memset(__p, 0, __bkt_count * sizeof(__node_base_ptr)); |
| return __p; |
| } |
| |
| template<typename _NodeAlloc> |
| void |
| _Hashtable_alloc<_NodeAlloc>:: |
| _M_deallocate_buckets(__buckets_ptr __bkts, |
| std::size_t __bkt_count) |
| { |
| typedef typename __buckets_alloc_traits::pointer _Ptr; |
| auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts); |
| __buckets_alloc_type __alloc(_M_node_allocator()); |
| __buckets_alloc_traits::deallocate(__alloc, __ptr, __bkt_count); |
| } |
| |
| ///@} hashtable-detail |
| } // namespace __detail |
| /// @endcond |
| _GLIBCXX_END_NAMESPACE_VERSION |
| } // namespace std |
| |
| #endif // _HASHTABLE_POLICY_H |