| // Mathematical Special Functions for -*- C++ -*- |
| |
| // Copyright (C) 2006-2022 Free Software Foundation, Inc. |
| // |
| // This file is part of the GNU ISO C++ Library. This library is free |
| // software; you can redistribute it and/or modify it under the |
| // terms of the GNU General Public License as published by the |
| // Free Software Foundation; either version 3, or (at your option) |
| // any later version. |
| |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // Under Section 7 of GPL version 3, you are granted additional |
| // permissions described in the GCC Runtime Library Exception, version |
| // 3.1, as published by the Free Software Foundation. |
| |
| // You should have received a copy of the GNU General Public License and |
| // a copy of the GCC Runtime Library Exception along with this program; |
| // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| // <http://www.gnu.org/licenses/>. |
| |
| /** @file bits/specfun.h |
| * This is an internal header file, included by other library headers. |
| * Do not attempt to use it directly. @headername{cmath} |
| */ |
| |
| #ifndef _GLIBCXX_BITS_SPECFUN_H |
| #define _GLIBCXX_BITS_SPECFUN_H 1 |
| |
| #include <bits/c++config.h> |
| |
| #define __STDCPP_MATH_SPEC_FUNCS__ 201003L |
| |
| #define __cpp_lib_math_special_functions 201603L |
| |
| #if __cplusplus <= 201403L && __STDCPP_WANT_MATH_SPEC_FUNCS__ == 0 |
| # error include <cmath> and define __STDCPP_WANT_MATH_SPEC_FUNCS__ |
| #endif |
| |
| #include <bits/stl_algobase.h> |
| #include <limits> |
| #include <type_traits> |
| |
| #include <tr1/gamma.tcc> |
| #include <tr1/bessel_function.tcc> |
| #include <tr1/beta_function.tcc> |
| #include <tr1/ell_integral.tcc> |
| #include <tr1/exp_integral.tcc> |
| #include <tr1/hypergeometric.tcc> |
| #include <tr1/legendre_function.tcc> |
| #include <tr1/modified_bessel_func.tcc> |
| #include <tr1/poly_hermite.tcc> |
| #include <tr1/poly_laguerre.tcc> |
| #include <tr1/riemann_zeta.tcc> |
| |
| namespace std _GLIBCXX_VISIBILITY(default) |
| { |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| |
| /** |
| * @defgroup mathsf Mathematical Special Functions |
| * @ingroup numerics |
| * |
| * @section mathsf_desc Mathematical Special Functions |
| * |
| * A collection of advanced mathematical special functions, |
| * defined by ISO/IEC IS 29124 and then added to ISO C++ 2017. |
| * |
| * |
| * @subsection mathsf_intro Introduction and History |
| * The first significant library upgrade on the road to C++2011, |
| * <a href="http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf"> |
| * TR1</a>, included a set of 23 mathematical functions that significantly |
| * extended the standard transcendental functions inherited from C and declared |
| * in @<cmath@>. |
| * |
| * Although most components from TR1 were eventually adopted for C++11 these |
| * math functions were left behind out of concern for implementability. |
| * The math functions were published as a separate international standard |
| * <a href="http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3060.pdf"> |
| * IS 29124 - Extensions to the C++ Library to Support Mathematical Special |
| * Functions</a>. |
| * |
| * For C++17 these functions were incorporated into the main standard. |
| * |
| * @subsection mathsf_contents Contents |
| * The following functions are implemented in namespace @c std: |
| * - @ref assoc_laguerre "assoc_laguerre - Associated Laguerre functions" |
| * - @ref assoc_legendre "assoc_legendre - Associated Legendre functions" |
| * - @ref beta "beta - Beta functions" |
| * - @ref comp_ellint_1 "comp_ellint_1 - Complete elliptic functions of the first kind" |
| * - @ref comp_ellint_2 "comp_ellint_2 - Complete elliptic functions of the second kind" |
| * - @ref comp_ellint_3 "comp_ellint_3 - Complete elliptic functions of the third kind" |
| * - @ref cyl_bessel_i "cyl_bessel_i - Regular modified cylindrical Bessel functions" |
| * - @ref cyl_bessel_j "cyl_bessel_j - Cylindrical Bessel functions of the first kind" |
| * - @ref cyl_bessel_k "cyl_bessel_k - Irregular modified cylindrical Bessel functions" |
| * - @ref cyl_neumann "cyl_neumann - Cylindrical Neumann functions or Cylindrical Bessel functions of the second kind" |
| * - @ref ellint_1 "ellint_1 - Incomplete elliptic functions of the first kind" |
| * - @ref ellint_2 "ellint_2 - Incomplete elliptic functions of the second kind" |
| * - @ref ellint_3 "ellint_3 - Incomplete elliptic functions of the third kind" |
| * - @ref expint "expint - The exponential integral" |
| * - @ref hermite "hermite - Hermite polynomials" |
| * - @ref laguerre "laguerre - Laguerre functions" |
| * - @ref legendre "legendre - Legendre polynomials" |
| * - @ref riemann_zeta "riemann_zeta - The Riemann zeta function" |
| * - @ref sph_bessel "sph_bessel - Spherical Bessel functions" |
| * - @ref sph_legendre "sph_legendre - Spherical Legendre functions" |
| * - @ref sph_neumann "sph_neumann - Spherical Neumann functions" |
| * |
| * The hypergeometric functions were stricken from the TR29124 and C++17 |
| * versions of this math library because of implementation concerns. |
| * However, since they were in the TR1 version and since they are popular |
| * we kept them as an extension in namespace @c __gnu_cxx: |
| * - @ref __gnu_cxx::conf_hyperg "conf_hyperg - Confluent hypergeometric functions" |
| * - @ref __gnu_cxx::hyperg "hyperg - Hypergeometric functions" |
| * |
| * <!-- @subsection mathsf_general General Features --> |
| * |
| * @subsection mathsf_promotion Argument Promotion |
| * The arguments suppled to the non-suffixed functions will be promoted |
| * according to the following rules: |
| * 1. If any argument intended to be floating point is given an integral value |
| * That integral value is promoted to double. |
| * 2. All floating point arguments are promoted up to the largest floating |
| * point precision among them. |
| * |
| * @subsection mathsf_NaN NaN Arguments |
| * If any of the floating point arguments supplied to these functions is |
| * invalid or NaN (std::numeric_limits<Tp>::quiet_NaN), |
| * the value NaN is returned. |
| * |
| * @subsection mathsf_impl Implementation |
| * |
| * We strive to implement the underlying math with type generic algorithms |
| * to the greatest extent possible. In practice, the functions are thin |
| * wrappers that dispatch to function templates. Type dependence is |
| * controlled with std::numeric_limits and functions thereof. |
| * |
| * We don't promote @c float to @c double or @c double to <tt>long double</tt> |
| * reflexively. The goal is for @c float functions to operate more quickly, |
| * at the cost of @c float accuracy and possibly a smaller domain of validity. |
| * Similaryly, <tt>long double</tt> should give you more dynamic range |
| * and slightly more pecision than @c double on many systems. |
| * |
| * @subsection mathsf_testing Testing |
| * |
| * These functions have been tested against equivalent implementations |
| * from the <a href="http://www.gnu.org/software/gsl"> |
| * Gnu Scientific Library, GSL</a> and |
| * <a href="http://www.boost.org/doc/libs/1_60_0/libs/math/doc/html/index.html">Boost</a> |
| * and the ratio |
| * @f[ |
| * \frac{|f - f_{test}|}{|f_{test}|} |
| * @f] |
| * is generally found to be within 10<sup>-15</sup> for 64-bit double on |
| * linux-x86_64 systems over most of the ranges of validity. |
| * |
| * @todo Provide accuracy comparisons on a per-function basis for a small |
| * number of targets. |
| * |
| * @subsection mathsf_bibliography General Bibliography |
| * |
| * @see Abramowitz and Stegun: Handbook of Mathematical Functions, |
| * with Formulas, Graphs, and Mathematical Tables |
| * Edited by Milton Abramowitz and Irene A. Stegun, |
| * National Bureau of Standards Applied Mathematics Series - 55 |
| * Issued June 1964, Tenth Printing, December 1972, with corrections |
| * Electronic versions of A&S abound including both pdf and navigable html. |
| * @see for example http://people.math.sfu.ca/~cbm/aands/ |
| * |
| * @see The old A&S has been redone as the |
| * NIST Digital Library of Mathematical Functions: http://dlmf.nist.gov/ |
| * This version is far more navigable and includes more recent work. |
| * |
| * @see An Atlas of Functions: with Equator, the Atlas Function Calculator |
| * 2nd Edition, by Oldham, Keith B., Myland, Jan, Spanier, Jerome |
| * |
| * @see Asymptotics and Special Functions by Frank W. J. Olver, |
| * Academic Press, 1974 |
| * |
| * @see Numerical Recipes in C, The Art of Scientific Computing, |
| * by William H. Press, Second Ed., Saul A. Teukolsky, |
| * William T. Vetterling, and Brian P. Flannery, |
| * Cambridge University Press, 1992 |
| * |
| * @see The Special Functions and Their Approximations: Volumes 1 and 2, |
| * by Yudell L. Luke, Academic Press, 1969 |
| * |
| * @{ |
| */ |
| |
| // Associated Laguerre polynomials |
| |
| /** |
| * Return the associated Laguerre polynomial of order @c n, |
| * degree @c m: @f$ L_n^m(x) @f$ for @c float argument. |
| * |
| * @see assoc_laguerre for more details. |
| */ |
| inline float |
| assoc_laguerref(unsigned int __n, unsigned int __m, float __x) |
| { return __detail::__assoc_laguerre<float>(__n, __m, __x); } |
| |
| /** |
| * Return the associated Laguerre polynomial of order @c n, |
| * degree @c m: @f$ L_n^m(x) @f$. |
| * |
| * @see assoc_laguerre for more details. |
| */ |
| inline long double |
| assoc_laguerrel(unsigned int __n, unsigned int __m, long double __x) |
| { return __detail::__assoc_laguerre<long double>(__n, __m, __x); } |
| |
| /** |
| * Return the associated Laguerre polynomial of nonnegative order @c n, |
| * nonnegative degree @c m and real argument @c x: @f$ L_n^m(x) @f$. |
| * |
| * The associated Laguerre function of real degree @f$ \alpha @f$, |
| * @f$ L_n^\alpha(x) @f$, is defined by |
| * @f[ |
| * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} |
| * {}_1F_1(-n; \alpha + 1; x) |
| * @f] |
| * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and |
| * @f$ {}_1F_1(a; c; x) @f$ is the confluent hypergeometric function. |
| * |
| * The associated Laguerre polynomial is defined for integral |
| * degree @f$ \alpha = m @f$ by: |
| * @f[ |
| * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) |
| * @f] |
| * where the Laguerre polynomial is defined by: |
| * @f[ |
| * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) |
| * @f] |
| * and @f$ x >= 0 @f$. |
| * @see laguerre for details of the Laguerre function of degree @c n |
| * |
| * @tparam _Tp The floating-point type of the argument @c __x. |
| * @param __n The order of the Laguerre function, <tt>__n >= 0</tt>. |
| * @param __m The degree of the Laguerre function, <tt>__m >= 0</tt>. |
| * @param __x The argument of the Laguerre function, <tt>__x >= 0</tt>. |
| * @throw std::domain_error if <tt>__x < 0</tt>. |
| */ |
| template<typename _Tp> |
| inline typename __gnu_cxx::__promote<_Tp>::__type |
| assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x) |
| { |
| typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| return __detail::__assoc_laguerre<__type>(__n, __m, __x); |
| } |
| |
| // Associated Legendre functions |
| |
| /** |
| * Return the associated Legendre function of degree @c l and order @c m |
| * for @c float argument. |
| * |
| * @see assoc_legendre for more details. |
| */ |
| inline float |
| assoc_legendref(unsigned int __l, unsigned int __m, float __x) |
| { return __detail::__assoc_legendre_p<float>(__l, __m, __x); } |
| |
| /** |
| * Return the associated Legendre function of degree @c l and order @c m. |
| * |
| * @see assoc_legendre for more details. |
| */ |
| inline long double |
| assoc_legendrel(unsigned int __l, unsigned int __m, long double __x) |
| { return __detail::__assoc_legendre_p<long double>(__l, __m, __x); } |
| |
| |
| /** |
| * Return the associated Legendre function of degree @c l and order @c m. |
| * |
| * The associated Legendre function is derived from the Legendre function |
| * @f$ P_l(x) @f$ by the Rodrigues formula: |
| * @f[ |
| * P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x) |
| * @f] |
| * @see legendre for details of the Legendre function of degree @c l |
| * |
| * @tparam _Tp The floating-point type of the argument @c __x. |
| * @param __l The degree <tt>__l >= 0</tt>. |
| * @param __m The order <tt>__m <= l</tt>. |
| * @param __x The argument, <tt>abs(__x) <= 1</tt>. |
| * @throw std::domain_error if <tt>abs(__x) > 1</tt>. |
| */ |
| template<typename _Tp> |
| inline typename __gnu_cxx::__promote<_Tp>::__type |
| assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x) |
| { |
| typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| return __detail::__assoc_legendre_p<__type>(__l, __m, __x); |
| } |
| |
| // Beta functions |
| |
| /** |
| * Return the beta function, @f$ B(a,b) @f$, for @c float parameters @c a, @c b. |
| * |
| * @see beta for more details. |
| */ |
| inline float |
| betaf(float __a, float __b) |
| { return __detail::__beta<float>(__a, __b); } |
| |
| /** |
| * Return the beta function, @f$B(a,b)@f$, for long double |
| * parameters @c a, @c b. |
| * |
| * @see beta for more details. |
| */ |
| inline long double |
| betal(long double __a, long double __b) |
| { return __detail::__beta<long double>(__a, __b); } |
| |
| /** |
| * Return the beta function, @f$B(a,b)@f$, for real parameters @c a, @c b. |
| * |
| * The beta function is defined by |
| * @f[ |
| * B(a,b) = \int_0^1 t^{a - 1} (1 - t)^{b - 1} dt |
| * = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} |
| * @f] |
| * where @f$ a > 0 @f$ and @f$ b > 0 @f$ |
| * |
| * @tparam _Tpa The floating-point type of the parameter @c __a. |
| * @tparam _Tpb The floating-point type of the parameter @c __b. |
| * @param __a The first argument of the beta function, <tt> __a > 0 </tt>. |
| * @param __b The second argument of the beta function, <tt> __b > 0 </tt>. |
| * @throw std::domain_error if <tt> __a < 0 </tt> or <tt> __b < 0 </tt>. |
| */ |
| template<typename _Tpa, typename _Tpb> |
| inline typename __gnu_cxx::__promote_2<_Tpa, _Tpb>::__type |
| beta(_Tpa __a, _Tpb __b) |
| { |
| typedef typename __gnu_cxx::__promote_2<_Tpa, _Tpb>::__type __type; |
| return __detail::__beta<__type>(__a, __b); |
| } |
| |
| // Complete elliptic integrals of the first kind |
| |
| /** |
| * Return the complete elliptic integral of the first kind @f$ E(k) @f$ |
| * for @c float modulus @c k. |
| * |
| * @see comp_ellint_1 for details. |
| */ |
| inline float |
| comp_ellint_1f(float __k) |
| { return __detail::__comp_ellint_1<float>(__k); } |
| |
| /** |
| * Return the complete elliptic integral of the first kind @f$ E(k) @f$ |
| * for long double modulus @c k. |
| * |
| * @see comp_ellint_1 for details. |
| */ |
| inline long double |
| comp_ellint_1l(long double __k) |
| { return __detail::__comp_ellint_1<long double>(__k); } |
| |
| /** |
| * Return the complete elliptic integral of the first kind |
| * @f$ K(k) @f$ for real modulus @c k. |
| * |
| * The complete elliptic integral of the first kind is defined as |
| * @f[ |
| * K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta} |
| * {\sqrt{1 - k^2 sin^2\theta}} |
| * @f] |
| * where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the |
| * first kind and the modulus @f$ |k| <= 1 @f$. |
| * @see ellint_1 for details of the incomplete elliptic function |
| * of the first kind. |
| * |
| * @tparam _Tp The floating-point type of the modulus @c __k. |
| * @param __k The modulus, <tt> abs(__k) <= 1 </tt> |
| * @throw std::domain_error if <tt> abs(__k) > 1 </tt>. |
| */ |
| template<typename _Tp> |
| inline typename __gnu_cxx::__promote<_Tp>::__type |
| comp_ellint_1(_Tp __k) |
| { |
| typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| return __detail::__comp_ellint_1<__type>(__k); |
| } |
| |
| // Complete elliptic integrals of the second kind |
| |
| /** |
| * Return the complete elliptic integral of the second kind @f$ E(k) @f$ |
| * for @c float modulus @c k. |
| * |
| * @see comp_ellint_2 for details. |
| */ |
| inline float |
| comp_ellint_2f(float __k) |
| { return __detail::__comp_ellint_2<float>(__k); } |
| |
| /** |
| * Return the complete elliptic integral of the second kind @f$ E(k) @f$ |
| * for long double modulus @c k. |
| * |
| * @see comp_ellint_2 for details. |
| */ |
| inline long double |
| comp_ellint_2l(long double __k) |
| { return __detail::__comp_ellint_2<long double>(__k); } |
| |
| /** |
| * Return the complete elliptic integral of the second kind @f$ E(k) @f$ |
| * for real modulus @c k. |
| * |
| * The complete elliptic integral of the second kind is defined as |
| * @f[ |
| * E(k) = E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta} |
| * @f] |
| * where @f$ E(k,\phi) @f$ is the incomplete elliptic integral of the |
| * second kind and the modulus @f$ |k| <= 1 @f$. |
| * @see ellint_2 for details of the incomplete elliptic function |
| * of the second kind. |
| * |
| * @tparam _Tp The floating-point type of the modulus @c __k. |
| * @param __k The modulus, @c abs(__k) <= 1 |
| * @throw std::domain_error if @c abs(__k) > 1. |
| */ |
| template<typename _Tp> |
| inline typename __gnu_cxx::__promote<_Tp>::__type |
| comp_ellint_2(_Tp __k) |
| { |
| typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| return __detail::__comp_ellint_2<__type>(__k); |
| } |
| |
| // Complete elliptic integrals of the third kind |
| |
| /** |
| * @brief Return the complete elliptic integral of the third kind |
| * @f$ \Pi(k,\nu) @f$ for @c float modulus @c k. |
| * |
| * @see comp_ellint_3 for details. |
| */ |
| inline float |
| comp_ellint_3f(float __k, float __nu) |
| { return __detail::__comp_ellint_3<float>(__k, __nu); } |
| |
| /** |
| * @brief Return the complete elliptic integral of the third kind |
| * @f$ \Pi(k,\nu) @f$ for <tt>long double</tt> modulus @c k. |
| * |
| * @see comp_ellint_3 for details. |
| */ |
| inline long double |
| comp_ellint_3l(long double __k, long double __nu) |
| { return __detail::__comp_ellint_3<long double>(__k, __nu); } |
| |
| /** |
| * Return the complete elliptic integral of the third kind |
| * @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ for real modulus @c k. |
| * |
| * The complete elliptic integral of the third kind is defined as |
| * @f[ |
| * \Pi(k,\nu) = \Pi(k,\nu,\pi/2) = \int_0^{\pi/2} |
| * \frac{d\theta} |
| * {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}} |
| * @f] |
| * where @f$ \Pi(k,\nu,\phi) @f$ is the incomplete elliptic integral of the |
| * second kind and the modulus @f$ |k| <= 1 @f$. |
| * @see ellint_3 for details of the incomplete elliptic function |
| * of the third kind. |
| * |
| * @tparam _Tp The floating-point type of the modulus @c __k. |
| * @tparam _Tpn The floating-point type of the argument @c __nu. |
| * @param __k The modulus, @c abs(__k) <= 1 |
| * @param __nu The argument |
| * @throw std::domain_error if @c abs(__k) > 1. |
| */ |
| template<typename _Tp, typename _Tpn> |
| inline typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type |
| comp_ellint_3(_Tp __k, _Tpn __nu) |
| { |
| typedef typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type __type; |
| return __detail::__comp_ellint_3<__type>(__k, __nu); |
| } |
| |
| // Regular modified cylindrical Bessel functions |
| |
| /** |
| * Return the regular modified Bessel function @f$ I_{\nu}(x) @f$ |
| * for @c float order @f$ \nu @f$ and argument @f$ x >= 0 @f$. |
| * |
| * @see cyl_bessel_i for setails. |
| */ |
| inline float |
| cyl_bessel_if(float __nu, float __x) |
| { return __detail::__cyl_bessel_i<float>(__nu, __x); } |
| |
| /** |
| * Return the regular modified Bessel function @f$ I_{\nu}(x) @f$ |
| * for <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x >= 0 @f$. |
| * |
| * @see cyl_bessel_i for setails. |
| */ |
| inline long double |
| cyl_bessel_il(long double __nu, long double __x) |
| { return __detail::__cyl_bessel_i<long double>(__nu, __x); } |
| |
| /** |
| * Return the regular modified Bessel function @f$ I_{\nu}(x) @f$ |
| * for real order @f$ \nu @f$ and argument @f$ x >= 0 @f$. |
| * |
| * The regular modified cylindrical Bessel function is: |
| * @f[ |
| * I_{\nu}(x) = i^{-\nu}J_\nu(ix) = \sum_{k=0}^{\infty} |
| * \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} |
| * @f] |
| * |
| * @tparam _Tpnu The floating-point type of the order @c __nu. |
| * @tparam _Tp The floating-point type of the argument @c __x. |
| * @param __nu The order |
| * @param __x The argument, <tt> __x >= 0 </tt> |
| * @throw std::domain_error if <tt> __x < 0 </tt>. |
| */ |
| template<typename _Tpnu, typename _Tp> |
| inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type |
| cyl_bessel_i(_Tpnu __nu, _Tp __x) |
| { |
| typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; |
| return __detail::__cyl_bessel_i<__type>(__nu, __x); |
| } |
| |
| // Cylindrical Bessel functions (of the first kind) |
| |
| /** |
| * Return the Bessel function of the first kind @f$ J_{\nu}(x) @f$ |
| * for @c float order @f$ \nu @f$ and argument @f$ x >= 0 @f$. |
| * |
| * @see cyl_bessel_j for setails. |
| */ |
| inline float |
| cyl_bessel_jf(float __nu, float __x) |
| { return __detail::__cyl_bessel_j<float>(__nu, __x); } |
| |
| /** |
| * Return the Bessel function of the first kind @f$ J_{\nu}(x) @f$ |
| * for <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x >= 0 @f$. |
| * |
| * @see cyl_bessel_j for setails. |
| */ |
| inline long double |
| cyl_bessel_jl(long double __nu, long double __x) |
| { return __detail::__cyl_bessel_j<long double>(__nu, __x); } |
| |
| /** |
| * Return the Bessel function @f$ J_{\nu}(x) @f$ of real order @f$ \nu @f$ |
| * and argument @f$ x >= 0 @f$. |
| * |
| * The cylindrical Bessel function is: |
| * @f[ |
| * J_{\nu}(x) = \sum_{k=0}^{\infty} |
| * \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} |
| * @f] |
| * |
| * @tparam _Tpnu The floating-point type of the order @c __nu. |
| * @tparam _Tp The floating-point type of the argument @c __x. |
| * @param __nu The order |
| * @param __x The argument, <tt> __x >= 0 </tt> |
| * @throw std::domain_error if <tt> __x < 0 </tt>. |
| */ |
| template<typename _Tpnu, typename _Tp> |
| inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type |
| cyl_bessel_j(_Tpnu __nu, _Tp __x) |
| { |
| typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; |
| return __detail::__cyl_bessel_j<__type>(__nu, __x); |
| } |
| |
| // Irregular modified cylindrical Bessel functions |
| |
| /** |
| * Return the irregular modified Bessel function @f$ K_{\nu}(x) @f$ |
| * for @c float order @f$ \nu @f$ and argument @f$ x >= 0 @f$. |
| * |
| * @see cyl_bessel_k for setails. |
| */ |
| inline float |
| cyl_bessel_kf(float __nu, float __x) |
| { return __detail::__cyl_bessel_k<float>(__nu, __x); } |
| |
| /** |
| * Return the irregular modified Bessel function @f$ K_{\nu}(x) @f$ |
| * for <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x >= 0 @f$. |
| * |
| * @see cyl_bessel_k for setails. |
| */ |
| inline long double |
| cyl_bessel_kl(long double __nu, long double __x) |
| { return __detail::__cyl_bessel_k<long double>(__nu, __x); } |
| |
| /** |
| * Return the irregular modified Bessel function @f$ K_{\nu}(x) @f$ |
| * of real order @f$ \nu @f$ and argument @f$ x @f$. |
| * |
| * The irregular modified Bessel function is defined by: |
| * @f[ |
| * K_{\nu}(x) = \frac{\pi}{2} |
| * \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi} |
| * @f] |
| * where for integral @f$ \nu = n @f$ a limit is taken: |
| * @f$ lim_{\nu \to n} @f$. |
| * For negative argument we have simply: |
| * @f[ |
| * K_{-\nu}(x) = K_{\nu}(x) |
| * @f] |
| * |
| * @tparam _Tpnu The floating-point type of the order @c __nu. |
| * @tparam _Tp The floating-point type of the argument @c __x. |
| * @param __nu The order |
| * @param __x The argument, <tt> __x >= 0 </tt> |
| * @throw std::domain_error if <tt> __x < 0 </tt>. |
| */ |
| template<typename _Tpnu, typename _Tp> |
| inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type |
| cyl_bessel_k(_Tpnu __nu, _Tp __x) |
| { |
| typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; |
| return __detail::__cyl_bessel_k<__type>(__nu, __x); |
| } |
| |
| // Cylindrical Neumann functions |
| |
| /** |
| * Return the Neumann function @f$ N_{\nu}(x) @f$ |
| * of @c float order @f$ \nu @f$ and argument @f$ x @f$. |
| * |
| * @see cyl_neumann for setails. |
| */ |
| inline float |
| cyl_neumannf(float __nu, float __x) |
| { return __detail::__cyl_neumann_n<float>(__nu, __x); } |
| |
| /** |
| * Return the Neumann function @f$ N_{\nu}(x) @f$ |
| * of <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x @f$. |
| * |
| * @see cyl_neumann for setails. |
| */ |
| inline long double |
| cyl_neumannl(long double __nu, long double __x) |
| { return __detail::__cyl_neumann_n<long double>(__nu, __x); } |
| |
| /** |
| * Return the Neumann function @f$ N_{\nu}(x) @f$ |
| * of real order @f$ \nu @f$ and argument @f$ x >= 0 @f$. |
| * |
| * The Neumann function is defined by: |
| * @f[ |
| * N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)} |
| * {\sin \nu\pi} |
| * @f] |
| * where @f$ x >= 0 @f$ and for integral order @f$ \nu = n @f$ |
| * a limit is taken: @f$ lim_{\nu \to n} @f$. |
| * |
| * @tparam _Tpnu The floating-point type of the order @c __nu. |
| * @tparam _Tp The floating-point type of the argument @c __x. |
| * @param __nu The order |
| * @param __x The argument, <tt> __x >= 0 </tt> |
| * @throw std::domain_error if <tt> __x < 0 </tt>. |
| */ |
| template<typename _Tpnu, typename _Tp> |
| inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type |
| cyl_neumann(_Tpnu __nu, _Tp __x) |
| { |
| typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; |
| return __detail::__cyl_neumann_n<__type>(__nu, __x); |
| } |
| |
| // Incomplete elliptic integrals of the first kind |
| |
| /** |
| * Return the incomplete elliptic integral of the first kind @f$ E(k,\phi) @f$ |
| * for @c float modulus @f$ k @f$ and angle @f$ \phi @f$. |
| * |
| * @see ellint_1 for details. |
| */ |
| inline float |
| ellint_1f(float __k, float __phi) |
| { return __detail::__ellint_1<float>(__k, __phi); } |
| |
| /** |
| * Return the incomplete elliptic integral of the first kind @f$ E(k,\phi) @f$ |
| * for <tt>long double</tt> modulus @f$ k @f$ and angle @f$ \phi @f$. |
| * |
| * @see ellint_1 for details. |
| */ |
| inline long double |
| ellint_1l(long double __k, long double __phi) |
| { return __detail::__ellint_1<long double>(__k, __phi); } |
| |
| /** |
| * Return the incomplete elliptic integral of the first kind @f$ F(k,\phi) @f$ |
| * for @c real modulus @f$ k @f$ and angle @f$ \phi @f$. |
| * |
| * The incomplete elliptic integral of the first kind is defined as |
| * @f[ |
| * F(k,\phi) = \int_0^{\phi}\frac{d\theta} |
| * {\sqrt{1 - k^2 sin^2\theta}} |
| * @f] |
| * For @f$ \phi= \pi/2 @f$ this becomes the complete elliptic integral of |
| * the first kind, @f$ K(k) @f$. @see comp_ellint_1. |
| * |
| * @tparam _Tp The floating-point type of the modulus @c __k. |
| * @tparam _Tpp The floating-point type of the angle @c __phi. |
| * @param __k The modulus, <tt> abs(__k) <= 1 </tt> |
| * @param __phi The integral limit argument in radians |
| * @throw std::domain_error if <tt> abs(__k) > 1 </tt>. |
| */ |
| template<typename _Tp, typename _Tpp> |
| inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type |
| ellint_1(_Tp __k, _Tpp __phi) |
| { |
| typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type; |
| return __detail::__ellint_1<__type>(__k, __phi); |
| } |
| |
| // Incomplete elliptic integrals of the second kind |
| |
| /** |
| * @brief Return the incomplete elliptic integral of the second kind |
| * @f$ E(k,\phi) @f$ for @c float argument. |
| * |
| * @see ellint_2 for details. |
| */ |
| inline float |
| ellint_2f(float __k, float __phi) |
| { return __detail::__ellint_2<float>(__k, __phi); } |
| |
| /** |
| * @brief Return the incomplete elliptic integral of the second kind |
| * @f$ E(k,\phi) @f$. |
| * |
| * @see ellint_2 for details. |
| */ |
| inline long double |
| ellint_2l(long double __k, long double __phi) |
| { return __detail::__ellint_2<long double>(__k, __phi); } |
| |
| /** |
| * Return the incomplete elliptic integral of the second kind |
| * @f$ E(k,\phi) @f$. |
| * |
| * The incomplete elliptic integral of the second kind is defined as |
| * @f[ |
| * E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta} |
| * @f] |
| * For @f$ \phi= \pi/2 @f$ this becomes the complete elliptic integral of |
| * the second kind, @f$ E(k) @f$. @see comp_ellint_2. |
| * |
| * @tparam _Tp The floating-point type of the modulus @c __k. |
| * @tparam _Tpp The floating-point type of the angle @c __phi. |
| * @param __k The modulus, <tt> abs(__k) <= 1 </tt> |
| * @param __phi The integral limit argument in radians |
| * @return The elliptic function of the second kind. |
| * @throw std::domain_error if <tt> abs(__k) > 1 </tt>. |
| */ |
| template<typename _Tp, typename _Tpp> |
| inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type |
| ellint_2(_Tp __k, _Tpp __phi) |
| { |
| typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type; |
| return __detail::__ellint_2<__type>(__k, __phi); |
| } |
| |
| // Incomplete elliptic integrals of the third kind |
| |
| /** |
| * @brief Return the incomplete elliptic integral of the third kind |
| * @f$ \Pi(k,\nu,\phi) @f$ for @c float argument. |
| * |
| * @see ellint_3 for details. |
| */ |
| inline float |
| ellint_3f(float __k, float __nu, float __phi) |
| { return __detail::__ellint_3<float>(__k, __nu, __phi); } |
| |
| /** |
| * @brief Return the incomplete elliptic integral of the third kind |
| * @f$ \Pi(k,\nu,\phi) @f$. |
| * |
| * @see ellint_3 for details. |
| */ |
| inline long double |
| ellint_3l(long double __k, long double __nu, long double __phi) |
| { return __detail::__ellint_3<long double>(__k, __nu, __phi); } |
| |
| /** |
| * @brief Return the incomplete elliptic integral of the third kind |
| * @f$ \Pi(k,\nu,\phi) @f$. |
| * |
| * The incomplete elliptic integral of the third kind is defined by: |
| * @f[ |
| * \Pi(k,\nu,\phi) = \int_0^{\phi} |
| * \frac{d\theta} |
| * {(1 - \nu \sin^2\theta) |
| * \sqrt{1 - k^2 \sin^2\theta}} |
| * @f] |
| * For @f$ \phi= \pi/2 @f$ this becomes the complete elliptic integral of |
| * the third kind, @f$ \Pi(k,\nu) @f$. @see comp_ellint_3. |
| * |
| * @tparam _Tp The floating-point type of the modulus @c __k. |
| * @tparam _Tpn The floating-point type of the argument @c __nu. |
| * @tparam _Tpp The floating-point type of the angle @c __phi. |
| * @param __k The modulus, <tt> abs(__k) <= 1 </tt> |
| * @param __nu The second argument |
| * @param __phi The integral limit argument in radians |
| * @return The elliptic function of the third kind. |
| * @throw std::domain_error if <tt> abs(__k) > 1 </tt>. |
| */ |
| template<typename _Tp, typename _Tpn, typename _Tpp> |
| inline typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type |
| ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi) |
| { |
| typedef typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type __type; |
| return __detail::__ellint_3<__type>(__k, __nu, __phi); |
| } |
| |
| // Exponential integrals |
| |
| /** |
| * Return the exponential integral @f$ Ei(x) @f$ for @c float argument @c x. |
| * |
| * @see expint for details. |
| */ |
| inline float |
| expintf(float __x) |
| { return __detail::__expint<float>(__x); } |
| |
| /** |
| * Return the exponential integral @f$ Ei(x) @f$ |
| * for <tt>long double</tt> argument @c x. |
| * |
| * @see expint for details. |
| */ |
| inline long double |
| expintl(long double __x) |
| { return __detail::__expint<long double>(__x); } |
| |
| /** |
| * Return the exponential integral @f$ Ei(x) @f$ for @c real argument @c x. |
| * |
| * The exponential integral is given by |
| * \f[ |
| * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt |
| * \f] |
| * |
| * @tparam _Tp The floating-point type of the argument @c __x. |
| * @param __x The argument of the exponential integral function. |
| */ |
| template<typename _Tp> |
| inline typename __gnu_cxx::__promote<_Tp>::__type |
| expint(_Tp __x) |
| { |
| typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| return __detail::__expint<__type>(__x); |
| } |
| |
| // Hermite polynomials |
| |
| /** |
| * Return the Hermite polynomial @f$ H_n(x) @f$ of nonnegative order n |
| * and float argument @c x. |
| * |
| * @see hermite for details. |
| */ |
| inline float |
| hermitef(unsigned int __n, float __x) |
| { return __detail::__poly_hermite<float>(__n, __x); } |
| |
| /** |
| * Return the Hermite polynomial @f$ H_n(x) @f$ of nonnegative order n |
| * and <tt>long double</tt> argument @c x. |
| * |
| * @see hermite for details. |
| */ |
| inline long double |
| hermitel(unsigned int __n, long double __x) |
| { return __detail::__poly_hermite<long double>(__n, __x); } |
| |
| /** |
| * Return the Hermite polynomial @f$ H_n(x) @f$ of order n |
| * and @c real argument @c x. |
| * |
| * The Hermite polynomial is defined by: |
| * @f[ |
| * H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2} |
| * @f] |
| * |
| * The Hermite polynomial obeys a reflection formula: |
| * @f[ |
| * H_n(-x) = (-1)^n H_n(x) |
| * @f] |
| * |
| * @tparam _Tp The floating-point type of the argument @c __x. |
| * @param __n The order |
| * @param __x The argument |
| */ |
| template<typename _Tp> |
| inline typename __gnu_cxx::__promote<_Tp>::__type |
| hermite(unsigned int __n, _Tp __x) |
| { |
| typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| return __detail::__poly_hermite<__type>(__n, __x); |
| } |
| |
| // Laguerre polynomials |
| |
| /** |
| * Returns the Laguerre polynomial @f$ L_n(x) @f$ of nonnegative degree @c n |
| * and @c float argument @f$ x >= 0 @f$. |
| * |
| * @see laguerre for more details. |
| */ |
| inline float |
| laguerref(unsigned int __n, float __x) |
| { return __detail::__laguerre<float>(__n, __x); } |
| |
| /** |
| * Returns the Laguerre polynomial @f$ L_n(x) @f$ of nonnegative degree @c n |
| * and <tt>long double</tt> argument @f$ x >= 0 @f$. |
| * |
| * @see laguerre for more details. |
| */ |
| inline long double |
| laguerrel(unsigned int __n, long double __x) |
| { return __detail::__laguerre<long double>(__n, __x); } |
| |
| /** |
| * Returns the Laguerre polynomial @f$ L_n(x) @f$ |
| * of nonnegative degree @c n and real argument @f$ x >= 0 @f$. |
| * |
| * The Laguerre polynomial is defined by: |
| * @f[ |
| * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) |
| * @f] |
| * |
| * @tparam _Tp The floating-point type of the argument @c __x. |
| * @param __n The nonnegative order |
| * @param __x The argument <tt> __x >= 0 </tt> |
| * @throw std::domain_error if <tt> __x < 0 </tt>. |
| */ |
| template<typename _Tp> |
| inline typename __gnu_cxx::__promote<_Tp>::__type |
| laguerre(unsigned int __n, _Tp __x) |
| { |
| typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| return __detail::__laguerre<__type>(__n, __x); |
| } |
| |
| // Legendre polynomials |
| |
| /** |
| * Return the Legendre polynomial @f$ P_l(x) @f$ of nonnegative |
| * degree @f$ l @f$ and @c float argument @f$ |x| <= 0 @f$. |
| * |
| * @see legendre for more details. |
| */ |
| inline float |
| legendref(unsigned int __l, float __x) |
| { return __detail::__poly_legendre_p<float>(__l, __x); } |
| |
| /** |
| * Return the Legendre polynomial @f$ P_l(x) @f$ of nonnegative |
| * degree @f$ l @f$ and <tt>long double</tt> argument @f$ |x| <= 0 @f$. |
| * |
| * @see legendre for more details. |
| */ |
| inline long double |
| legendrel(unsigned int __l, long double __x) |
| { return __detail::__poly_legendre_p<long double>(__l, __x); } |
| |
| /** |
| * Return the Legendre polynomial @f$ P_l(x) @f$ of nonnegative |
| * degree @f$ l @f$ and real argument @f$ |x| <= 0 @f$. |
| * |
| * The Legendre function of order @f$ l @f$ and argument @f$ x @f$, |
| * @f$ P_l(x) @f$, is defined by: |
| * @f[ |
| * P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l} |
| * @f] |
| * |
| * @tparam _Tp The floating-point type of the argument @c __x. |
| * @param __l The degree @f$ l >= 0 @f$ |
| * @param __x The argument @c abs(__x) <= 1 |
| * @throw std::domain_error if @c abs(__x) > 1 |
| */ |
| template<typename _Tp> |
| inline typename __gnu_cxx::__promote<_Tp>::__type |
| legendre(unsigned int __l, _Tp __x) |
| { |
| typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| return __detail::__poly_legendre_p<__type>(__l, __x); |
| } |
| |
| // Riemann zeta functions |
| |
| /** |
| * Return the Riemann zeta function @f$ \zeta(s) @f$ |
| * for @c float argument @f$ s @f$. |
| * |
| * @see riemann_zeta for more details. |
| */ |
| inline float |
| riemann_zetaf(float __s) |
| { return __detail::__riemann_zeta<float>(__s); } |
| |
| /** |
| * Return the Riemann zeta function @f$ \zeta(s) @f$ |
| * for <tt>long double</tt> argument @f$ s @f$. |
| * |
| * @see riemann_zeta for more details. |
| */ |
| inline long double |
| riemann_zetal(long double __s) |
| { return __detail::__riemann_zeta<long double>(__s); } |
| |
| /** |
| * Return the Riemann zeta function @f$ \zeta(s) @f$ |
| * for real argument @f$ s @f$. |
| * |
| * The Riemann zeta function is defined by: |
| * @f[ |
| * \zeta(s) = \sum_{k=1}^{\infty} k^{-s} \hbox{ for } s > 1 |
| * @f] |
| * and |
| * @f[ |
| * \zeta(s) = \frac{1}{1-2^{1-s}}\sum_{k=1}^{\infty}(-1)^{k-1}k^{-s} |
| * \hbox{ for } 0 <= s <= 1 |
| * @f] |
| * For s < 1 use the reflection formula: |
| * @f[ |
| * \zeta(s) = 2^s \pi^{s-1} \sin(\frac{\pi s}{2}) \Gamma(1-s) \zeta(1-s) |
| * @f] |
| * |
| * @tparam _Tp The floating-point type of the argument @c __s. |
| * @param __s The argument <tt> s != 1 </tt> |
| */ |
| template<typename _Tp> |
| inline typename __gnu_cxx::__promote<_Tp>::__type |
| riemann_zeta(_Tp __s) |
| { |
| typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| return __detail::__riemann_zeta<__type>(__s); |
| } |
| |
| // Spherical Bessel functions |
| |
| /** |
| * Return the spherical Bessel function @f$ j_n(x) @f$ of nonnegative order n |
| * and @c float argument @f$ x >= 0 @f$. |
| * |
| * @see sph_bessel for more details. |
| */ |
| inline float |
| sph_besself(unsigned int __n, float __x) |
| { return __detail::__sph_bessel<float>(__n, __x); } |
| |
| /** |
| * Return the spherical Bessel function @f$ j_n(x) @f$ of nonnegative order n |
| * and <tt>long double</tt> argument @f$ x >= 0 @f$. |
| * |
| * @see sph_bessel for more details. |
| */ |
| inline long double |
| sph_bessell(unsigned int __n, long double __x) |
| { return __detail::__sph_bessel<long double>(__n, __x); } |
| |
| /** |
| * Return the spherical Bessel function @f$ j_n(x) @f$ of nonnegative order n |
| * and real argument @f$ x >= 0 @f$. |
| * |
| * The spherical Bessel function is defined by: |
| * @f[ |
| * j_n(x) = \left(\frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x) |
| * @f] |
| * |
| * @tparam _Tp The floating-point type of the argument @c __x. |
| * @param __n The integral order <tt> n >= 0 </tt> |
| * @param __x The real argument <tt> x >= 0 </tt> |
| * @throw std::domain_error if <tt> __x < 0 </tt>. |
| */ |
| template<typename _Tp> |
| inline typename __gnu_cxx::__promote<_Tp>::__type |
| sph_bessel(unsigned int __n, _Tp __x) |
| { |
| typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| return __detail::__sph_bessel<__type>(__n, __x); |
| } |
| |
| // Spherical associated Legendre functions |
| |
| /** |
| * Return the spherical Legendre function of nonnegative integral |
| * degree @c l and order @c m and float angle @f$ \theta @f$ in radians. |
| * |
| * @see sph_legendre for details. |
| */ |
| inline float |
| sph_legendref(unsigned int __l, unsigned int __m, float __theta) |
| { return __detail::__sph_legendre<float>(__l, __m, __theta); } |
| |
| /** |
| * Return the spherical Legendre function of nonnegative integral |
| * degree @c l and order @c m and <tt>long double</tt> angle @f$ \theta @f$ |
| * in radians. |
| * |
| * @see sph_legendre for details. |
| */ |
| inline long double |
| sph_legendrel(unsigned int __l, unsigned int __m, long double __theta) |
| { return __detail::__sph_legendre<long double>(__l, __m, __theta); } |
| |
| /** |
| * Return the spherical Legendre function of nonnegative integral |
| * degree @c l and order @c m and real angle @f$ \theta @f$ in radians. |
| * |
| * The spherical Legendre function is defined by |
| * @f[ |
| * Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi} |
| * \frac{(l-m)!}{(l+m)!}] |
| * P_l^m(\cos\theta) \exp^{im\phi} |
| * @f] |
| * |
| * @tparam _Tp The floating-point type of the angle @c __theta. |
| * @param __l The order <tt> __l >= 0 </tt> |
| * @param __m The degree <tt> __m >= 0 </tt> and <tt> __m <= __l </tt> |
| * @param __theta The radian polar angle argument |
| */ |
| template<typename _Tp> |
| inline typename __gnu_cxx::__promote<_Tp>::__type |
| sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta) |
| { |
| typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| return __detail::__sph_legendre<__type>(__l, __m, __theta); |
| } |
| |
| // Spherical Neumann functions |
| |
| /** |
| * Return the spherical Neumann function of integral order @f$ n >= 0 @f$ |
| * and @c float argument @f$ x >= 0 @f$. |
| * |
| * @see sph_neumann for details. |
| */ |
| inline float |
| sph_neumannf(unsigned int __n, float __x) |
| { return __detail::__sph_neumann<float>(__n, __x); } |
| |
| /** |
| * Return the spherical Neumann function of integral order @f$ n >= 0 @f$ |
| * and <tt>long double</tt> @f$ x >= 0 @f$. |
| * |
| * @see sph_neumann for details. |
| */ |
| inline long double |
| sph_neumannl(unsigned int __n, long double __x) |
| { return __detail::__sph_neumann<long double>(__n, __x); } |
| |
| /** |
| * Return the spherical Neumann function of integral order @f$ n >= 0 @f$ |
| * and real argument @f$ x >= 0 @f$. |
| * |
| * The spherical Neumann function is defined by |
| * @f[ |
| * n_n(x) = \left(\frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x) |
| * @f] |
| * |
| * @tparam _Tp The floating-point type of the argument @c __x. |
| * @param __n The integral order <tt> n >= 0 </tt> |
| * @param __x The real argument <tt> __x >= 0 </tt> |
| * @throw std::domain_error if <tt> __x < 0 </tt>. |
| */ |
| template<typename _Tp> |
| inline typename __gnu_cxx::__promote<_Tp>::__type |
| sph_neumann(unsigned int __n, _Tp __x) |
| { |
| typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| return __detail::__sph_neumann<__type>(__n, __x); |
| } |
| |
| /// @} group mathsf |
| |
| _GLIBCXX_END_NAMESPACE_VERSION |
| } // namespace std |
| |
| #ifndef __STRICT_ANSI__ |
| namespace __gnu_cxx _GLIBCXX_VISIBILITY(default) |
| { |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| |
| /** @addtogroup mathsf |
| * @{ |
| */ |
| |
| // Airy functions |
| |
| /** |
| * Return the Airy function @f$ Ai(x) @f$ of @c float argument x. |
| */ |
| inline float |
| airy_aif(float __x) |
| { |
| float __Ai, __Bi, __Aip, __Bip; |
| std::__detail::__airy<float>(__x, __Ai, __Bi, __Aip, __Bip); |
| return __Ai; |
| } |
| |
| /** |
| * Return the Airy function @f$ Ai(x) @f$ of <tt>long double</tt> argument x. |
| */ |
| inline long double |
| airy_ail(long double __x) |
| { |
| long double __Ai, __Bi, __Aip, __Bip; |
| std::__detail::__airy<long double>(__x, __Ai, __Bi, __Aip, __Bip); |
| return __Ai; |
| } |
| |
| /** |
| * Return the Airy function @f$ Ai(x) @f$ of real argument x. |
| */ |
| template<typename _Tp> |
| inline typename __gnu_cxx::__promote<_Tp>::__type |
| airy_ai(_Tp __x) |
| { |
| typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| __type __Ai, __Bi, __Aip, __Bip; |
| std::__detail::__airy<__type>(__x, __Ai, __Bi, __Aip, __Bip); |
| return __Ai; |
| } |
| |
| /** |
| * Return the Airy function @f$ Bi(x) @f$ of @c float argument x. |
| */ |
| inline float |
| airy_bif(float __x) |
| { |
| float __Ai, __Bi, __Aip, __Bip; |
| std::__detail::__airy<float>(__x, __Ai, __Bi, __Aip, __Bip); |
| return __Bi; |
| } |
| |
| /** |
| * Return the Airy function @f$ Bi(x) @f$ of <tt>long double</tt> argument x. |
| */ |
| inline long double |
| airy_bil(long double __x) |
| { |
| long double __Ai, __Bi, __Aip, __Bip; |
| std::__detail::__airy<long double>(__x, __Ai, __Bi, __Aip, __Bip); |
| return __Bi; |
| } |
| |
| /** |
| * Return the Airy function @f$ Bi(x) @f$ of real argument x. |
| */ |
| template<typename _Tp> |
| inline typename __gnu_cxx::__promote<_Tp>::__type |
| airy_bi(_Tp __x) |
| { |
| typedef typename __gnu_cxx::__promote<_Tp>::__type __type; |
| __type __Ai, __Bi, __Aip, __Bip; |
| std::__detail::__airy<__type>(__x, __Ai, __Bi, __Aip, __Bip); |
| return __Bi; |
| } |
| |
| // Confluent hypergeometric functions |
| |
| /** |
| * Return the confluent hypergeometric function @f$ {}_1F_1(a;c;x) @f$ |
| * of @c float numeratorial parameter @c a, denominatorial parameter @c c, |
| * and argument @c x. |
| * |
| * @see conf_hyperg for details. |
| */ |
| inline float |
| conf_hypergf(float __a, float __c, float __x) |
| { return std::__detail::__conf_hyperg<float>(__a, __c, __x); } |
| |
| /** |
| * Return the confluent hypergeometric function @f$ {}_1F_1(a;c;x) @f$ |
| * of <tt>long double</tt> numeratorial parameter @c a, |
| * denominatorial parameter @c c, and argument @c x. |
| * |
| * @see conf_hyperg for details. |
| */ |
| inline long double |
| conf_hypergl(long double __a, long double __c, long double __x) |
| { return std::__detail::__conf_hyperg<long double>(__a, __c, __x); } |
| |
| /** |
| * Return the confluent hypergeometric function @f$ {}_1F_1(a;c;x) @f$ |
| * of real numeratorial parameter @c a, denominatorial parameter @c c, |
| * and argument @c x. |
| * |
| * The confluent hypergeometric function is defined by |
| * @f[ |
| * {}_1F_1(a;c;x) = \sum_{n=0}^{\infty} \frac{(a)_n x^n}{(c)_n n!} |
| * @f] |
| * where the Pochhammer symbol is @f$ (x)_k = (x)(x+1)...(x+k-1) @f$, |
| * @f$ (x)_0 = 1 @f$ |
| * |
| * @param __a The numeratorial parameter |
| * @param __c The denominatorial parameter |
| * @param __x The argument |
| */ |
| template<typename _Tpa, typename _Tpc, typename _Tp> |
| inline typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type |
| conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x) |
| { |
| typedef typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type __type; |
| return std::__detail::__conf_hyperg<__type>(__a, __c, __x); |
| } |
| |
| // Hypergeometric functions |
| |
| /** |
| * Return the hypergeometric function @f$ {}_2F_1(a,b;c;x) @f$ |
| * of @ float numeratorial parameters @c a and @c b, |
| * denominatorial parameter @c c, and argument @c x. |
| * |
| * @see hyperg for details. |
| */ |
| inline float |
| hypergf(float __a, float __b, float __c, float __x) |
| { return std::__detail::__hyperg<float>(__a, __b, __c, __x); } |
| |
| /** |
| * Return the hypergeometric function @f$ {}_2F_1(a,b;c;x) @f$ |
| * of <tt>long double</tt> numeratorial parameters @c a and @c b, |
| * denominatorial parameter @c c, and argument @c x. |
| * |
| * @see hyperg for details. |
| */ |
| inline long double |
| hypergl(long double __a, long double __b, long double __c, long double __x) |
| { return std::__detail::__hyperg<long double>(__a, __b, __c, __x); } |
| |
| /** |
| * Return the hypergeometric function @f$ {}_2F_1(a,b;c;x) @f$ |
| * of real numeratorial parameters @c a and @c b, |
| * denominatorial parameter @c c, and argument @c x. |
| * |
| * The hypergeometric function is defined by |
| * @f[ |
| * {}_2F_1(a;c;x) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n x^n}{(c)_n n!} |
| * @f] |
| * where the Pochhammer symbol is @f$ (x)_k = (x)(x+1)...(x+k-1) @f$, |
| * @f$ (x)_0 = 1 @f$ |
| * |
| * @param __a The first numeratorial parameter |
| * @param __b The second numeratorial parameter |
| * @param __c The denominatorial parameter |
| * @param __x The argument |
| */ |
| template<typename _Tpa, typename _Tpb, typename _Tpc, typename _Tp> |
| inline typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type |
| hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x) |
| { |
| typedef typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp> |
| ::__type __type; |
| return std::__detail::__hyperg<__type>(__a, __b, __c, __x); |
| } |
| |
| /// @} |
| _GLIBCXX_END_NAMESPACE_VERSION |
| } // namespace __gnu_cxx |
| #endif // __STRICT_ANSI__ |
| |
| #endif // _GLIBCXX_BITS_SPECFUN_H |