| /* Copyright (C) 2002-2021 Free Software Foundation, Inc. |
| Contributed by Andy Vaught |
| Namelist output contributed by Paul Thomas |
| F2003 I/O support contributed by Jerry DeLisle |
| |
| This file is part of the GNU Fortran runtime library (libgfortran). |
| |
| Libgfortran is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| Libgfortran is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "io.h" |
| #include "fbuf.h" |
| #include "format.h" |
| #include "unix.h" |
| #include <assert.h> |
| #include <string.h> |
| #include <ctype.h> |
| |
| #define star_fill(p, n) memset(p, '*', n) |
| |
| typedef unsigned char uchar; |
| |
| /* Helper functions for character(kind=4) internal units. These are needed |
| by write_float.def. */ |
| |
| static void |
| memcpy4 (gfc_char4_t *dest, const char *source, int k) |
| { |
| int j; |
| |
| const char *p = source; |
| for (j = 0; j < k; j++) |
| *dest++ = (gfc_char4_t) *p++; |
| } |
| |
| /* This include contains the heart and soul of formatted floating point. */ |
| #include "write_float.def" |
| |
| /* Write out default char4. */ |
| |
| static void |
| write_default_char4 (st_parameter_dt *dtp, const gfc_char4_t *source, |
| int src_len, int w_len) |
| { |
| char *p; |
| int j, k = 0; |
| gfc_char4_t c; |
| uchar d; |
| |
| /* Take care of preceding blanks. */ |
| if (w_len > src_len) |
| { |
| k = w_len - src_len; |
| p = write_block (dtp, k); |
| if (p == NULL) |
| return; |
| if (is_char4_unit (dtp)) |
| { |
| gfc_char4_t *p4 = (gfc_char4_t *) p; |
| memset4 (p4, ' ', k); |
| } |
| else |
| memset (p, ' ', k); |
| } |
| |
| /* Get ready to handle delimiters if needed. */ |
| switch (dtp->u.p.current_unit->delim_status) |
| { |
| case DELIM_APOSTROPHE: |
| d = '\''; |
| break; |
| case DELIM_QUOTE: |
| d = '"'; |
| break; |
| default: |
| d = ' '; |
| break; |
| } |
| |
| /* Now process the remaining characters, one at a time. */ |
| for (j = 0; j < src_len; j++) |
| { |
| c = source[j]; |
| if (is_char4_unit (dtp)) |
| { |
| gfc_char4_t *q; |
| /* Handle delimiters if any. */ |
| if (c == d && d != ' ') |
| { |
| p = write_block (dtp, 2); |
| if (p == NULL) |
| return; |
| q = (gfc_char4_t *) p; |
| *q++ = c; |
| } |
| else |
| { |
| p = write_block (dtp, 1); |
| if (p == NULL) |
| return; |
| q = (gfc_char4_t *) p; |
| } |
| *q = c; |
| } |
| else |
| { |
| /* Handle delimiters if any. */ |
| if (c == d && d != ' ') |
| { |
| p = write_block (dtp, 2); |
| if (p == NULL) |
| return; |
| *p++ = (uchar) c; |
| } |
| else |
| { |
| p = write_block (dtp, 1); |
| if (p == NULL) |
| return; |
| } |
| *p = c > 255 ? '?' : (uchar) c; |
| } |
| } |
| } |
| |
| |
| /* Write out UTF-8 converted from char4. */ |
| |
| static void |
| write_utf8_char4 (st_parameter_dt *dtp, gfc_char4_t *source, |
| int src_len, int w_len) |
| { |
| char *p; |
| int j, k = 0; |
| gfc_char4_t c; |
| static const uchar masks[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC }; |
| static const uchar limits[6] = { 0x80, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE }; |
| int nbytes; |
| uchar buf[6], d, *q; |
| |
| /* Take care of preceding blanks. */ |
| if (w_len > src_len) |
| { |
| k = w_len - src_len; |
| p = write_block (dtp, k); |
| if (p == NULL) |
| return; |
| memset (p, ' ', k); |
| } |
| |
| /* Get ready to handle delimiters if needed. */ |
| switch (dtp->u.p.current_unit->delim_status) |
| { |
| case DELIM_APOSTROPHE: |
| d = '\''; |
| break; |
| case DELIM_QUOTE: |
| d = '"'; |
| break; |
| default: |
| d = ' '; |
| break; |
| } |
| |
| /* Now process the remaining characters, one at a time. */ |
| for (j = k; j < src_len; j++) |
| { |
| c = source[j]; |
| if (c < 0x80) |
| { |
| /* Handle the delimiters if any. */ |
| if (c == d && d != ' ') |
| { |
| p = write_block (dtp, 2); |
| if (p == NULL) |
| return; |
| *p++ = (uchar) c; |
| } |
| else |
| { |
| p = write_block (dtp, 1); |
| if (p == NULL) |
| return; |
| } |
| *p = (uchar) c; |
| } |
| else |
| { |
| /* Convert to UTF-8 sequence. */ |
| nbytes = 1; |
| q = &buf[6]; |
| |
| do |
| { |
| *--q = ((c & 0x3F) | 0x80); |
| c >>= 6; |
| nbytes++; |
| } |
| while (c >= 0x3F || (c & limits[nbytes-1])); |
| |
| *--q = (c | masks[nbytes-1]); |
| |
| p = write_block (dtp, nbytes); |
| if (p == NULL) |
| return; |
| |
| while (q < &buf[6]) |
| *p++ = *q++; |
| } |
| } |
| } |
| |
| |
| /* Check the first character in source if we are using CC_FORTRAN |
| and set the cc.type appropriately. The cc.type is used later by write_cc |
| to determine the output start-of-record, and next_record_cc to determine the |
| output end-of-record. |
| This function is called before the output buffer is allocated, so alloc_len |
| is set to the appropriate size to allocate. */ |
| |
| static void |
| write_check_cc (st_parameter_dt *dtp, const char **source, size_t *alloc_len) |
| { |
| /* Only valid for CARRIAGECONTROL=FORTRAN. */ |
| if (dtp->u.p.current_unit->flags.cc != CC_FORTRAN |
| || alloc_len == NULL || source == NULL) |
| return; |
| |
| /* Peek at the first character. */ |
| int c = (*alloc_len > 0) ? (*source)[0] : EOF; |
| if (c != EOF) |
| { |
| /* The start-of-record character which will be printed. */ |
| dtp->u.p.cc.u.start = '\n'; |
| /* The number of characters to print at the start-of-record. |
| len > 1 means copy the SOR character multiple times. |
| len == 0 means no SOR will be output. */ |
| dtp->u.p.cc.len = 1; |
| |
| switch (c) |
| { |
| case '+': |
| dtp->u.p.cc.type = CCF_OVERPRINT; |
| dtp->u.p.cc.len = 0; |
| break; |
| case '-': |
| dtp->u.p.cc.type = CCF_ONE_LF; |
| dtp->u.p.cc.len = 1; |
| break; |
| case '0': |
| dtp->u.p.cc.type = CCF_TWO_LF; |
| dtp->u.p.cc.len = 2; |
| break; |
| case '1': |
| dtp->u.p.cc.type = CCF_PAGE_FEED; |
| dtp->u.p.cc.len = 1; |
| dtp->u.p.cc.u.start = '\f'; |
| break; |
| case '$': |
| dtp->u.p.cc.type = CCF_PROMPT; |
| dtp->u.p.cc.len = 1; |
| break; |
| case '\0': |
| dtp->u.p.cc.type = CCF_OVERPRINT_NOA; |
| dtp->u.p.cc.len = 0; |
| break; |
| default: |
| /* In the default case we copy ONE_LF. */ |
| dtp->u.p.cc.type = CCF_DEFAULT; |
| dtp->u.p.cc.len = 1; |
| break; |
| } |
| |
| /* We add n-1 to alloc_len so our write buffer is the right size. |
| We are replacing the first character, and possibly prepending some |
| additional characters. Note for n==0, we actually subtract one from |
| alloc_len, which is correct, since that character is skipped. */ |
| if (*alloc_len > 0) |
| { |
| *source += 1; |
| *alloc_len += dtp->u.p.cc.len - 1; |
| } |
| /* If we have no input, there is no first character to replace. Make |
| sure we still allocate enough space for the start-of-record string. */ |
| else |
| *alloc_len = dtp->u.p.cc.len; |
| } |
| } |
| |
| |
| /* Write the start-of-record character(s) for CC_FORTRAN. |
| Also adjusts the 'cc' struct to contain the end-of-record character |
| for next_record_cc. |
| The source_len is set to the remaining length to copy from the source, |
| after the start-of-record string was inserted. */ |
| |
| static char * |
| write_cc (st_parameter_dt *dtp, char *p, size_t *source_len) |
| { |
| /* Only valid for CARRIAGECONTROL=FORTRAN. */ |
| if (dtp->u.p.current_unit->flags.cc != CC_FORTRAN || source_len == NULL) |
| return p; |
| |
| /* Write the start-of-record string to the output buffer. Note that len is |
| never more than 2. */ |
| if (dtp->u.p.cc.len > 0) |
| { |
| *(p++) = dtp->u.p.cc.u.start; |
| if (dtp->u.p.cc.len > 1) |
| *(p++) = dtp->u.p.cc.u.start; |
| |
| /* source_len comes from write_check_cc where it is set to the full |
| allocated length of the output buffer. Therefore we subtract off the |
| length of the SOR string to obtain the remaining source length. */ |
| *source_len -= dtp->u.p.cc.len; |
| } |
| |
| /* Common case. */ |
| dtp->u.p.cc.len = 1; |
| dtp->u.p.cc.u.end = '\r'; |
| |
| /* Update end-of-record character for next_record_w. */ |
| switch (dtp->u.p.cc.type) |
| { |
| case CCF_PROMPT: |
| case CCF_OVERPRINT_NOA: |
| /* No end-of-record. */ |
| dtp->u.p.cc.len = 0; |
| dtp->u.p.cc.u.end = '\0'; |
| break; |
| case CCF_OVERPRINT: |
| case CCF_ONE_LF: |
| case CCF_TWO_LF: |
| case CCF_PAGE_FEED: |
| case CCF_DEFAULT: |
| default: |
| /* Carriage return. */ |
| dtp->u.p.cc.len = 1; |
| dtp->u.p.cc.u.end = '\r'; |
| break; |
| } |
| |
| return p; |
| } |
| |
| void |
| |
| write_a (st_parameter_dt *dtp, const fnode *f, const char *source, size_t len) |
| { |
| size_t wlen; |
| char *p; |
| |
| wlen = f->u.string.length < 0 |
| || (f->format == FMT_G && f->u.string.length == 0) |
| ? len : (size_t) f->u.string.length; |
| |
| #ifdef HAVE_CRLF |
| /* If this is formatted STREAM IO convert any embedded line feed characters |
| to CR_LF on systems that use that sequence for newlines. See F2003 |
| Standard sections 10.6.3 and 9.9 for further information. */ |
| if (is_stream_io (dtp)) |
| { |
| const char crlf[] = "\r\n"; |
| size_t q, bytes; |
| q = bytes = 0; |
| |
| /* Write out any padding if needed. */ |
| if (len < wlen) |
| { |
| p = write_block (dtp, wlen - len); |
| if (p == NULL) |
| return; |
| memset (p, ' ', wlen - len); |
| } |
| |
| /* Scan the source string looking for '\n' and convert it if found. */ |
| for (size_t i = 0; i < wlen; i++) |
| { |
| if (source[i] == '\n') |
| { |
| /* Write out the previously scanned characters in the string. */ |
| if (bytes > 0) |
| { |
| p = write_block (dtp, bytes); |
| if (p == NULL) |
| return; |
| memcpy (p, &source[q], bytes); |
| q += bytes; |
| bytes = 0; |
| } |
| |
| /* Write out the CR_LF sequence. */ |
| q++; |
| p = write_block (dtp, 2); |
| if (p == NULL) |
| return; |
| memcpy (p, crlf, 2); |
| } |
| else |
| bytes++; |
| } |
| |
| /* Write out any remaining bytes if no LF was found. */ |
| if (bytes > 0) |
| { |
| p = write_block (dtp, bytes); |
| if (p == NULL) |
| return; |
| memcpy (p, &source[q], bytes); |
| } |
| } |
| else |
| { |
| #endif |
| if (dtp->u.p.current_unit->flags.cc == CC_FORTRAN) |
| write_check_cc (dtp, &source, &wlen); |
| |
| p = write_block (dtp, wlen); |
| if (p == NULL) |
| return; |
| |
| if (dtp->u.p.current_unit->flags.cc == CC_FORTRAN) |
| p = write_cc (dtp, p, &wlen); |
| |
| if (unlikely (is_char4_unit (dtp))) |
| { |
| gfc_char4_t *p4 = (gfc_char4_t *) p; |
| if (wlen < len) |
| memcpy4 (p4, source, wlen); |
| else |
| { |
| memset4 (p4, ' ', wlen - len); |
| memcpy4 (p4 + wlen - len, source, len); |
| } |
| return; |
| } |
| |
| if (wlen < len) |
| memcpy (p, source, wlen); |
| else |
| { |
| memset (p, ' ', wlen - len); |
| memcpy (p + wlen - len, source, len); |
| } |
| #ifdef HAVE_CRLF |
| } |
| #endif |
| } |
| |
| |
| /* The primary difference between write_a_char4 and write_a is that we have to |
| deal with writing from the first byte of the 4-byte character and pay |
| attention to the most significant bytes. For ENCODING="default" write the |
| lowest significant byte. If the 3 most significant bytes contain |
| non-zero values, emit a '?'. For ENCODING="utf-8", convert the UCS-32 value |
| to the UTF-8 encoded string before writing out. */ |
| |
| void |
| write_a_char4 (st_parameter_dt *dtp, const fnode *f, const char *source, size_t len) |
| { |
| size_t wlen; |
| gfc_char4_t *q; |
| |
| wlen = f->u.string.length < 0 |
| || (f->format == FMT_G && f->u.string.length == 0) |
| ? len : (size_t) f->u.string.length; |
| |
| q = (gfc_char4_t *) source; |
| #ifdef HAVE_CRLF |
| /* If this is formatted STREAM IO convert any embedded line feed characters |
| to CR_LF on systems that use that sequence for newlines. See F2003 |
| Standard sections 10.6.3 and 9.9 for further information. */ |
| if (is_stream_io (dtp)) |
| { |
| const gfc_char4_t crlf[] = {0x000d,0x000a}; |
| size_t bytes; |
| gfc_char4_t *qq; |
| bytes = 0; |
| |
| /* Write out any padding if needed. */ |
| if (len < wlen) |
| { |
| char *p; |
| p = write_block (dtp, wlen - len); |
| if (p == NULL) |
| return; |
| memset (p, ' ', wlen - len); |
| } |
| |
| /* Scan the source string looking for '\n' and convert it if found. */ |
| qq = (gfc_char4_t *) source; |
| for (size_t i = 0; i < wlen; i++) |
| { |
| if (qq[i] == '\n') |
| { |
| /* Write out the previously scanned characters in the string. */ |
| if (bytes > 0) |
| { |
| if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8) |
| write_utf8_char4 (dtp, q, bytes, 0); |
| else |
| write_default_char4 (dtp, q, bytes, 0); |
| bytes = 0; |
| } |
| |
| /* Write out the CR_LF sequence. */ |
| write_default_char4 (dtp, crlf, 2, 0); |
| } |
| else |
| bytes++; |
| } |
| |
| /* Write out any remaining bytes if no LF was found. */ |
| if (bytes > 0) |
| { |
| if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8) |
| write_utf8_char4 (dtp, q, bytes, 0); |
| else |
| write_default_char4 (dtp, q, bytes, 0); |
| } |
| } |
| else |
| { |
| #endif |
| if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8) |
| write_utf8_char4 (dtp, q, len, wlen); |
| else |
| write_default_char4 (dtp, q, len, wlen); |
| #ifdef HAVE_CRLF |
| } |
| #endif |
| } |
| |
| |
| static GFC_INTEGER_LARGEST |
| extract_int (const void *p, int len) |
| { |
| GFC_INTEGER_LARGEST i = 0; |
| |
| if (p == NULL) |
| return i; |
| |
| switch (len) |
| { |
| case 1: |
| { |
| GFC_INTEGER_1 tmp; |
| memcpy ((void *) &tmp, p, len); |
| i = tmp; |
| } |
| break; |
| case 2: |
| { |
| GFC_INTEGER_2 tmp; |
| memcpy ((void *) &tmp, p, len); |
| i = tmp; |
| } |
| break; |
| case 4: |
| { |
| GFC_INTEGER_4 tmp; |
| memcpy ((void *) &tmp, p, len); |
| i = tmp; |
| } |
| break; |
| case 8: |
| { |
| GFC_INTEGER_8 tmp; |
| memcpy ((void *) &tmp, p, len); |
| i = tmp; |
| } |
| break; |
| #ifdef HAVE_GFC_INTEGER_16 |
| case 16: |
| { |
| GFC_INTEGER_16 tmp; |
| memcpy ((void *) &tmp, p, len); |
| i = tmp; |
| } |
| break; |
| #endif |
| default: |
| internal_error (NULL, "bad integer kind"); |
| } |
| |
| return i; |
| } |
| |
| static GFC_UINTEGER_LARGEST |
| extract_uint (const void *p, int len) |
| { |
| GFC_UINTEGER_LARGEST i = 0; |
| |
| if (p == NULL) |
| return i; |
| |
| switch (len) |
| { |
| case 1: |
| { |
| GFC_INTEGER_1 tmp; |
| memcpy ((void *) &tmp, p, len); |
| i = (GFC_UINTEGER_1) tmp; |
| } |
| break; |
| case 2: |
| { |
| GFC_INTEGER_2 tmp; |
| memcpy ((void *) &tmp, p, len); |
| i = (GFC_UINTEGER_2) tmp; |
| } |
| break; |
| case 4: |
| { |
| GFC_INTEGER_4 tmp; |
| memcpy ((void *) &tmp, p, len); |
| i = (GFC_UINTEGER_4) tmp; |
| } |
| break; |
| case 8: |
| { |
| GFC_INTEGER_8 tmp; |
| memcpy ((void *) &tmp, p, len); |
| i = (GFC_UINTEGER_8) tmp; |
| } |
| break; |
| #ifdef HAVE_GFC_INTEGER_16 |
| case 10: |
| case 16: |
| { |
| GFC_INTEGER_16 tmp = 0; |
| memcpy ((void *) &tmp, p, len); |
| i = (GFC_UINTEGER_16) tmp; |
| } |
| break; |
| #endif |
| default: |
| internal_error (NULL, "bad integer kind"); |
| } |
| |
| return i; |
| } |
| |
| |
| void |
| write_l (st_parameter_dt *dtp, const fnode *f, char *source, int len) |
| { |
| char *p; |
| int wlen; |
| GFC_INTEGER_LARGEST n; |
| |
| wlen = (f->format == FMT_G && f->u.w == 0) ? 1 : f->u.w; |
| |
| p = write_block (dtp, wlen); |
| if (p == NULL) |
| return; |
| |
| n = extract_int (source, len); |
| |
| if (unlikely (is_char4_unit (dtp))) |
| { |
| gfc_char4_t *p4 = (gfc_char4_t *) p; |
| memset4 (p4, ' ', wlen -1); |
| p4[wlen - 1] = (n) ? 'T' : 'F'; |
| return; |
| } |
| |
| memset (p, ' ', wlen -1); |
| p[wlen - 1] = (n) ? 'T' : 'F'; |
| } |
| |
| static void |
| write_boz (st_parameter_dt *dtp, const fnode *f, const char *q, int n, int len) |
| { |
| int w, m, digits, nzero, nblank; |
| char *p; |
| |
| w = f->u.integer.w; |
| m = f->u.integer.m; |
| |
| /* Special case: */ |
| |
| if (m == 0 && n == 0) |
| { |
| if (w == 0) |
| w = 1; |
| |
| p = write_block (dtp, w); |
| if (p == NULL) |
| return; |
| if (unlikely (is_char4_unit (dtp))) |
| { |
| gfc_char4_t *p4 = (gfc_char4_t *) p; |
| memset4 (p4, ' ', w); |
| } |
| else |
| memset (p, ' ', w); |
| goto done; |
| } |
| |
| digits = strlen (q); |
| |
| /* Select a width if none was specified. The idea here is to always |
| print something. */ |
| |
| if (w == DEFAULT_WIDTH) |
| w = default_width_for_integer (len); |
| |
| if (w == 0) |
| w = ((digits < m) ? m : digits); |
| |
| p = write_block (dtp, w); |
| if (p == NULL) |
| return; |
| |
| nzero = 0; |
| if (digits < m) |
| nzero = m - digits; |
| |
| /* See if things will work. */ |
| |
| nblank = w - (nzero + digits); |
| |
| if (unlikely (is_char4_unit (dtp))) |
| { |
| gfc_char4_t *p4 = (gfc_char4_t *) p; |
| if (nblank < 0) |
| { |
| memset4 (p4, '*', w); |
| return; |
| } |
| |
| if (!dtp->u.p.no_leading_blank) |
| { |
| memset4 (p4, ' ', nblank); |
| q += nblank; |
| memset4 (p4, '0', nzero); |
| q += nzero; |
| memcpy4 (p4, q, digits); |
| } |
| else |
| { |
| memset4 (p4, '0', nzero); |
| q += nzero; |
| memcpy4 (p4, q, digits); |
| q += digits; |
| memset4 (p4, ' ', nblank); |
| dtp->u.p.no_leading_blank = 0; |
| } |
| return; |
| } |
| |
| if (nblank < 0) |
| { |
| star_fill (p, w); |
| goto done; |
| } |
| |
| if (!dtp->u.p.no_leading_blank) |
| { |
| memset (p, ' ', nblank); |
| p += nblank; |
| memset (p, '0', nzero); |
| p += nzero; |
| memcpy (p, q, digits); |
| } |
| else |
| { |
| memset (p, '0', nzero); |
| p += nzero; |
| memcpy (p, q, digits); |
| p += digits; |
| memset (p, ' ', nblank); |
| dtp->u.p.no_leading_blank = 0; |
| } |
| |
| done: |
| return; |
| } |
| |
| static void |
| write_decimal (st_parameter_dt *dtp, const fnode *f, const char *source, |
| int len, |
| const char *(*conv) (GFC_INTEGER_LARGEST, char *, size_t)) |
| { |
| GFC_INTEGER_LARGEST n = 0; |
| int w, m, digits, nsign, nzero, nblank; |
| char *p; |
| const char *q; |
| sign_t sign; |
| char itoa_buf[GFC_BTOA_BUF_SIZE]; |
| |
| w = f->u.integer.w; |
| m = f->format == FMT_G ? -1 : f->u.integer.m; |
| |
| n = extract_int (source, len); |
| |
| /* Special case: */ |
| if (m == 0 && n == 0) |
| { |
| if (w == 0) |
| w = 1; |
| |
| p = write_block (dtp, w); |
| if (p == NULL) |
| return; |
| if (unlikely (is_char4_unit (dtp))) |
| { |
| gfc_char4_t *p4 = (gfc_char4_t *) p; |
| memset4 (p4, ' ', w); |
| } |
| else |
| memset (p, ' ', w); |
| goto done; |
| } |
| |
| sign = calculate_sign (dtp, n < 0); |
| if (n < 0) |
| n = -n; |
| nsign = sign == S_NONE ? 0 : 1; |
| |
| /* conv calls itoa which sets the negative sign needed |
| by write_integer. The sign '+' or '-' is set below based on sign |
| calculated above, so we just point past the sign in the string |
| before proceeding to avoid double signs in corner cases. |
| (see PR38504) */ |
| q = conv (n, itoa_buf, sizeof (itoa_buf)); |
| if (*q == '-') |
| q++; |
| |
| digits = strlen (q); |
| |
| /* Select a width if none was specified. The idea here is to always |
| print something. */ |
| if (w == DEFAULT_WIDTH) |
| w = default_width_for_integer (len); |
| |
| if (w == 0) |
| w = ((digits < m) ? m : digits) + nsign; |
| |
| p = write_block (dtp, w); |
| if (p == NULL) |
| return; |
| |
| nzero = 0; |
| if (digits < m) |
| nzero = m - digits; |
| |
| /* See if things will work. */ |
| |
| nblank = w - (nsign + nzero + digits); |
| |
| if (unlikely (is_char4_unit (dtp))) |
| { |
| gfc_char4_t *p4 = (gfc_char4_t *)p; |
| if (nblank < 0) |
| { |
| memset4 (p4, '*', w); |
| goto done; |
| } |
| |
| if (!dtp->u.p.namelist_mode) |
| { |
| memset4 (p4, ' ', nblank); |
| p4 += nblank; |
| } |
| |
| switch (sign) |
| { |
| case S_PLUS: |
| *p4++ = '+'; |
| break; |
| case S_MINUS: |
| *p4++ = '-'; |
| break; |
| case S_NONE: |
| break; |
| } |
| |
| memset4 (p4, '0', nzero); |
| p4 += nzero; |
| |
| memcpy4 (p4, q, digits); |
| return; |
| |
| if (dtp->u.p.namelist_mode) |
| { |
| p4 += digits; |
| memset4 (p4, ' ', nblank); |
| } |
| } |
| |
| if (nblank < 0) |
| { |
| star_fill (p, w); |
| goto done; |
| } |
| |
| if (!dtp->u.p.namelist_mode) |
| { |
| memset (p, ' ', nblank); |
| p += nblank; |
| } |
| |
| switch (sign) |
| { |
| case S_PLUS: |
| *p++ = '+'; |
| break; |
| case S_MINUS: |
| *p++ = '-'; |
| break; |
| case S_NONE: |
| break; |
| } |
| |
| memset (p, '0', nzero); |
| p += nzero; |
| |
| memcpy (p, q, digits); |
| |
| if (dtp->u.p.namelist_mode) |
| { |
| p += digits; |
| memset (p, ' ', nblank); |
| } |
| |
| done: |
| return; |
| } |
| |
| |
| /* Convert unsigned octal to ascii. */ |
| |
| static const char * |
| otoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len) |
| { |
| char *p; |
| |
| assert (len >= GFC_OTOA_BUF_SIZE); |
| |
| if (n == 0) |
| return "0"; |
| |
| p = buffer + GFC_OTOA_BUF_SIZE - 1; |
| *p = '\0'; |
| |
| while (n != 0) |
| { |
| *--p = '0' + (n & 7); |
| n >>= 3; |
| } |
| |
| return p; |
| } |
| |
| |
| /* Convert unsigned binary to ascii. */ |
| |
| static const char * |
| btoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len) |
| { |
| char *p; |
| |
| assert (len >= GFC_BTOA_BUF_SIZE); |
| |
| if (n == 0) |
| return "0"; |
| |
| p = buffer + GFC_BTOA_BUF_SIZE - 1; |
| *p = '\0'; |
| |
| while (n != 0) |
| { |
| *--p = '0' + (n & 1); |
| n >>= 1; |
| } |
| |
| return p; |
| } |
| |
| /* The following three functions, btoa_big, otoa_big, and ztoa_big, are needed |
| to convert large reals with kind sizes that exceed the largest integer type |
| available on certain platforms. In these cases, byte by byte conversion is |
| performed. Endianess is taken into account. */ |
| |
| /* Conversion to binary. */ |
| |
| static const char * |
| btoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n) |
| { |
| char *q; |
| int i, j; |
| |
| q = buffer; |
| if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
| { |
| const char *p = s; |
| for (i = 0; i < len; i++) |
| { |
| char c = *p; |
| |
| /* Test for zero. Needed by write_boz later. */ |
| if (*p != 0) |
| *n = 1; |
| |
| for (j = 0; j < 8; j++) |
| { |
| *q++ = (c & 128) ? '1' : '0'; |
| c <<= 1; |
| } |
| p++; |
| } |
| } |
| else |
| { |
| const char *p = s + len - 1; |
| for (i = 0; i < len; i++) |
| { |
| char c = *p; |
| |
| /* Test for zero. Needed by write_boz later. */ |
| if (*p != 0) |
| *n = 1; |
| |
| for (j = 0; j < 8; j++) |
| { |
| *q++ = (c & 128) ? '1' : '0'; |
| c <<= 1; |
| } |
| p--; |
| } |
| } |
| |
| if (*n == 0) |
| return "0"; |
| |
| /* Move past any leading zeros. */ |
| while (*buffer == '0') |
| buffer++; |
| |
| return buffer; |
| |
| } |
| |
| /* Conversion to octal. */ |
| |
| static const char * |
| otoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n) |
| { |
| char *q; |
| int i, j, k; |
| uint8_t octet; |
| |
| q = buffer + GFC_OTOA_BUF_SIZE - 1; |
| *q = '\0'; |
| i = k = octet = 0; |
| |
| if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
| { |
| const char *p = s + len - 1; |
| char c = *p; |
| while (i < len) |
| { |
| /* Test for zero. Needed by write_boz later. */ |
| if (*p != 0) |
| *n = 1; |
| |
| for (j = 0; j < 3 && i < len; j++) |
| { |
| octet |= (c & 1) << j; |
| c >>= 1; |
| if (++k > 7) |
| { |
| i++; |
| k = 0; |
| c = *--p; |
| } |
| } |
| *--q = '0' + octet; |
| octet = 0; |
| } |
| } |
| else |
| { |
| const char *p = s; |
| char c = *p; |
| while (i < len) |
| { |
| /* Test for zero. Needed by write_boz later. */ |
| if (*p != 0) |
| *n = 1; |
| |
| for (j = 0; j < 3 && i < len; j++) |
| { |
| octet |= (c & 1) << j; |
| c >>= 1; |
| if (++k > 7) |
| { |
| i++; |
| k = 0; |
| c = *++p; |
| } |
| } |
| *--q = '0' + octet; |
| octet = 0; |
| } |
| } |
| |
| if (*n == 0) |
| return "0"; |
| |
| /* Move past any leading zeros. */ |
| while (*q == '0') |
| q++; |
| |
| return q; |
| } |
| |
| /* Conversion to hexidecimal. */ |
| |
| static const char * |
| ztoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n) |
| { |
| static char a[16] = {'0', '1', '2', '3', '4', '5', '6', '7', |
| '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'}; |
| |
| char *q; |
| uint8_t h, l; |
| int i; |
| |
| q = buffer; |
| |
| if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
| { |
| const char *p = s; |
| for (i = 0; i < len; i++) |
| { |
| /* Test for zero. Needed by write_boz later. */ |
| if (*p != 0) |
| *n = 1; |
| |
| h = (*p >> 4) & 0x0F; |
| l = *p++ & 0x0F; |
| *q++ = a[h]; |
| *q++ = a[l]; |
| } |
| } |
| else |
| { |
| const char *p = s + len - 1; |
| for (i = 0; i < len; i++) |
| { |
| /* Test for zero. Needed by write_boz later. */ |
| if (*p != 0) |
| *n = 1; |
| |
| h = (*p >> 4) & 0x0F; |
| l = *p-- & 0x0F; |
| *q++ = a[h]; |
| *q++ = a[l]; |
| } |
| } |
| |
| /* write_z, which calls ztoa_big, is called from transfer.c, |
| formatted_transfer_scalar_write. There it is passed the kind as |
| argument, which means a maximum of 16. The buffer is large |
| enough, but the compiler does not know that, so shut up the |
| warning here. */ |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wstringop-overflow" |
| *q = '\0'; |
| #pragma GCC diagnostic pop |
| |
| if (*n == 0) |
| return "0"; |
| |
| /* Move past any leading zeros. */ |
| while (*buffer == '0') |
| buffer++; |
| |
| return buffer; |
| } |
| |
| |
| void |
| write_i (st_parameter_dt *dtp, const fnode *f, const char *p, int len) |
| { |
| write_decimal (dtp, f, p, len, (void *) gfc_itoa); |
| } |
| |
| |
| void |
| write_b (st_parameter_dt *dtp, const fnode *f, const char *source, int len) |
| { |
| const char *p; |
| char itoa_buf[GFC_BTOA_BUF_SIZE]; |
| GFC_UINTEGER_LARGEST n = 0; |
| |
| /* Ensure we end up with a null terminated string. */ |
| memset(itoa_buf, '\0', GFC_BTOA_BUF_SIZE); |
| |
| if (len > (int) sizeof (GFC_UINTEGER_LARGEST)) |
| { |
| p = btoa_big (source, itoa_buf, len, &n); |
| write_boz (dtp, f, p, n, len); |
| } |
| else |
| { |
| n = extract_uint (source, len); |
| p = btoa (n, itoa_buf, sizeof (itoa_buf)); |
| write_boz (dtp, f, p, n, len); |
| } |
| } |
| |
| |
| void |
| write_o (st_parameter_dt *dtp, const fnode *f, const char *source, int len) |
| { |
| const char *p; |
| char itoa_buf[GFC_OTOA_BUF_SIZE]; |
| GFC_UINTEGER_LARGEST n = 0; |
| |
| if (len > (int) sizeof (GFC_UINTEGER_LARGEST)) |
| { |
| p = otoa_big (source, itoa_buf, len, &n); |
| write_boz (dtp, f, p, n, len); |
| } |
| else |
| { |
| n = extract_uint (source, len); |
| p = otoa (n, itoa_buf, sizeof (itoa_buf)); |
| write_boz (dtp, f, p, n, len); |
| } |
| } |
| |
| void |
| write_z (st_parameter_dt *dtp, const fnode *f, const char *source, int len) |
| { |
| const char *p; |
| char itoa_buf[GFC_XTOA_BUF_SIZE]; |
| GFC_UINTEGER_LARGEST n = 0; |
| |
| if (len > (int) sizeof (GFC_UINTEGER_LARGEST)) |
| { |
| p = ztoa_big (source, itoa_buf, len, &n); |
| write_boz (dtp, f, p, n, len); |
| } |
| else |
| { |
| n = extract_uint (source, len); |
| p = gfc_xtoa (n, itoa_buf, sizeof (itoa_buf)); |
| write_boz (dtp, f, p, n, len); |
| } |
| } |
| |
| /* Take care of the X/TR descriptor. */ |
| |
| void |
| write_x (st_parameter_dt *dtp, int len, int nspaces) |
| { |
| char *p; |
| |
| p = write_block (dtp, len); |
| if (p == NULL) |
| return; |
| if (nspaces > 0 && len - nspaces >= 0) |
| { |
| if (unlikely (is_char4_unit (dtp))) |
| { |
| gfc_char4_t *p4 = (gfc_char4_t *) p; |
| memset4 (&p4[len - nspaces], ' ', nspaces); |
| } |
| else |
| memset (&p[len - nspaces], ' ', nspaces); |
| } |
| } |
| |
| |
| /* List-directed writing. */ |
| |
| |
| /* Write a single character to the output. Returns nonzero if |
| something goes wrong. */ |
| |
| static int |
| write_char (st_parameter_dt *dtp, int c) |
| { |
| char *p; |
| |
| p = write_block (dtp, 1); |
| if (p == NULL) |
| return 1; |
| if (unlikely (is_char4_unit (dtp))) |
| { |
| gfc_char4_t *p4 = (gfc_char4_t *) p; |
| *p4 = c; |
| return 0; |
| } |
| |
| *p = (uchar) c; |
| |
| return 0; |
| } |
| |
| |
| /* Write a list-directed logical value. */ |
| |
| static void |
| write_logical (st_parameter_dt *dtp, const char *source, int length) |
| { |
| write_char (dtp, extract_int (source, length) ? 'T' : 'F'); |
| } |
| |
| |
| /* Write a list-directed integer value. */ |
| |
| static void |
| write_integer (st_parameter_dt *dtp, const char *source, int kind) |
| { |
| int width; |
| fnode f; |
| |
| switch (kind) |
| { |
| case 1: |
| width = 4; |
| break; |
| |
| case 2: |
| width = 6; |
| break; |
| |
| case 4: |
| width = 11; |
| break; |
| |
| case 8: |
| width = 20; |
| break; |
| |
| case 16: |
| width = 40; |
| break; |
| |
| default: |
| width = 0; |
| break; |
| } |
| f.u.integer.w = width; |
| f.u.integer.m = -1; |
| f.format = FMT_NONE; |
| write_decimal (dtp, &f, source, kind, (void *) gfc_itoa); |
| } |
| |
| |
| /* Write a list-directed string. We have to worry about delimiting |
| the strings if the file has been opened in that mode. */ |
| |
| #define DELIM 1 |
| #define NODELIM 0 |
| |
| static void |
| write_character (st_parameter_dt *dtp, const char *source, int kind, size_t length, int mode) |
| { |
| size_t extra; |
| char *p, d; |
| |
| if (mode == DELIM) |
| { |
| switch (dtp->u.p.current_unit->delim_status) |
| { |
| case DELIM_APOSTROPHE: |
| d = '\''; |
| break; |
| case DELIM_QUOTE: |
| d = '"'; |
| break; |
| default: |
| d = ' '; |
| break; |
| } |
| } |
| else |
| d = ' '; |
| |
| if (kind == 1) |
| { |
| if (d == ' ') |
| extra = 0; |
| else |
| { |
| extra = 2; |
| |
| for (size_t i = 0; i < length; i++) |
| if (source[i] == d) |
| extra++; |
| } |
| |
| p = write_block (dtp, length + extra); |
| if (p == NULL) |
| return; |
| |
| if (unlikely (is_char4_unit (dtp))) |
| { |
| gfc_char4_t d4 = (gfc_char4_t) d; |
| gfc_char4_t *p4 = (gfc_char4_t *) p; |
| |
| if (d4 == ' ') |
| memcpy4 (p4, source, length); |
| else |
| { |
| *p4++ = d4; |
| |
| for (size_t i = 0; i < length; i++) |
| { |
| *p4++ = (gfc_char4_t) source[i]; |
| if (source[i] == d) |
| *p4++ = d4; |
| } |
| |
| *p4 = d4; |
| } |
| return; |
| } |
| |
| if (d == ' ') |
| memcpy (p, source, length); |
| else |
| { |
| *p++ = d; |
| |
| for (size_t i = 0; i < length; i++) |
| { |
| *p++ = source[i]; |
| if (source[i] == d) |
| *p++ = d; |
| } |
| |
| *p = d; |
| } |
| } |
| else |
| { |
| if (d == ' ') |
| { |
| if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8) |
| write_utf8_char4 (dtp, (gfc_char4_t *) source, length, 0); |
| else |
| write_default_char4 (dtp, (gfc_char4_t *) source, length, 0); |
| } |
| else |
| { |
| p = write_block (dtp, 1); |
| *p = d; |
| |
| if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8) |
| write_utf8_char4 (dtp, (gfc_char4_t *) source, length, 0); |
| else |
| write_default_char4 (dtp, (gfc_char4_t *) source, length, 0); |
| |
| p = write_block (dtp, 1); |
| *p = d; |
| } |
| } |
| } |
| |
| /* Floating point helper functions. */ |
| |
| #define BUF_STACK_SZ 384 |
| |
| static int |
| get_precision (st_parameter_dt *dtp, const fnode *f, const char *source, int kind) |
| { |
| if (f->format != FMT_EN) |
| return determine_precision (dtp, f, kind); |
| else |
| return determine_en_precision (dtp, f, source, kind); |
| } |
| |
| /* 4932 is the maximum exponent of long double and quad precision, 3 |
| extra characters for the sign, the decimal point, and the |
| trailing null. Extra digits are added by the calling functions for |
| requested precision. Likewise for float and double. F0 editing produces |
| full precision output. */ |
| static int |
| size_from_kind (st_parameter_dt *dtp, const fnode *f, int kind) |
| { |
| int size; |
| |
| if ((f->format == FMT_F && f->u.real.w == 0) || f->u.real.w == DEFAULT_WIDTH) |
| { |
| switch (kind) |
| { |
| case 4: |
| size = 38 + 3; /* These constants shown for clarity. */ |
| break; |
| case 8: |
| size = 308 + 3; |
| break; |
| case 10: |
| size = 4932 + 3; |
| break; |
| case 16: |
| size = 4932 + 3; |
| break; |
| default: |
| internal_error (&dtp->common, "bad real kind"); |
| break; |
| } |
| } |
| else |
| size = f->u.real.w + 1; /* One byte for a NULL character. */ |
| |
| return size; |
| } |
| |
| static char * |
| select_buffer (st_parameter_dt *dtp, const fnode *f, int precision, |
| char *buf, size_t *size, int kind) |
| { |
| char *result; |
| |
| /* The buffer needs at least one more byte to allow room for |
| normalizing and 1 to hold null terminator. */ |
| *size = size_from_kind (dtp, f, kind) + precision + 1 + 1; |
| |
| if (*size > BUF_STACK_SZ) |
| result = xmalloc (*size); |
| else |
| result = buf; |
| return result; |
| } |
| |
| static char * |
| select_string (st_parameter_dt *dtp, const fnode *f, char *buf, size_t *size, |
| int kind) |
| { |
| char *result; |
| *size = size_from_kind (dtp, f, kind) + f->u.real.d + 1; |
| if (*size > BUF_STACK_SZ) |
| result = xmalloc (*size); |
| else |
| result = buf; |
| return result; |
| } |
| |
| static void |
| write_float_string (st_parameter_dt *dtp, char *fstr, size_t len) |
| { |
| char *p = write_block (dtp, len); |
| if (p == NULL) |
| return; |
| |
| if (unlikely (is_char4_unit (dtp))) |
| { |
| gfc_char4_t *p4 = (gfc_char4_t *) p; |
| memcpy4 (p4, fstr, len); |
| return; |
| } |
| memcpy (p, fstr, len); |
| } |
| |
| |
| static void |
| write_float_0 (st_parameter_dt *dtp, const fnode *f, const char *source, int kind) |
| { |
| char buf_stack[BUF_STACK_SZ]; |
| char str_buf[BUF_STACK_SZ]; |
| char *buffer, *result; |
| size_t buf_size, res_len, flt_str_len; |
| |
| /* Precision for snprintf call. */ |
| int precision = get_precision (dtp, f, source, kind); |
| |
| /* String buffer to hold final result. */ |
| result = select_string (dtp, f, str_buf, &res_len, kind); |
| |
| buffer = select_buffer (dtp, f, precision, buf_stack, &buf_size, kind); |
| |
| get_float_string (dtp, f, source , kind, 0, buffer, |
| precision, buf_size, result, &flt_str_len); |
| write_float_string (dtp, result, flt_str_len); |
| |
| if (buf_size > BUF_STACK_SZ) |
| free (buffer); |
| if (res_len > BUF_STACK_SZ) |
| free (result); |
| } |
| |
| void |
| write_d (st_parameter_dt *dtp, const fnode *f, const char *p, int len) |
| { |
| write_float_0 (dtp, f, p, len); |
| } |
| |
| |
| void |
| write_e (st_parameter_dt *dtp, const fnode *f, const char *p, int len) |
| { |
| write_float_0 (dtp, f, p, len); |
| } |
| |
| |
| void |
| write_f (st_parameter_dt *dtp, const fnode *f, const char *p, int len) |
| { |
| write_float_0 (dtp, f, p, len); |
| } |
| |
| |
| void |
| write_en (st_parameter_dt *dtp, const fnode *f, const char *p, int len) |
| { |
| write_float_0 (dtp, f, p, len); |
| } |
| |
| |
| void |
| write_es (st_parameter_dt *dtp, const fnode *f, const char *p, int len) |
| { |
| write_float_0 (dtp, f, p, len); |
| } |
| |
| |
| /* Set an fnode to default format. */ |
| |
| static void |
| set_fnode_default (st_parameter_dt *dtp, fnode *f, int length) |
| { |
| f->format = FMT_G; |
| switch (length) |
| { |
| case 4: |
| f->u.real.w = 16; |
| f->u.real.d = 9; |
| f->u.real.e = 2; |
| break; |
| case 8: |
| f->u.real.w = 25; |
| f->u.real.d = 17; |
| f->u.real.e = 3; |
| break; |
| case 10: |
| f->u.real.w = 30; |
| f->u.real.d = 21; |
| f->u.real.e = 4; |
| break; |
| case 16: |
| /* Adjust decimal precision depending on binary precision, 106 or 113. */ |
| #if GFC_REAL_16_DIGITS == 113 |
| f->u.real.w = 45; |
| f->u.real.d = 36; |
| f->u.real.e = 4; |
| #else |
| f->u.real.w = 41; |
| f->u.real.d = 32; |
| f->u.real.e = 4; |
| #endif |
| break; |
| default: |
| internal_error (&dtp->common, "bad real kind"); |
| break; |
| } |
| } |
| |
| /* Output a real number with default format. |
| To guarantee that a binary -> decimal -> binary roundtrip conversion |
| recovers the original value, IEEE 754-2008 requires 9, 17, 21 and 36 |
| significant digits for REAL kinds 4, 8, 10, and 16, respectively. |
| Thus, we use 1PG16.9E2 for REAL(4), 1PG25.17E3 for REAL(8), 1PG30.21E4 |
| for REAL(10) and 1PG45.36E4 for REAL(16). The exception is that the |
| Fortran standard requires outputting an extra digit when the scale |
| factor is 1 and when the magnitude of the value is such that E |
| editing is used. However, gfortran compensates for this, and thus |
| for list formatted the same number of significant digits is |
| generated both when using F and E editing. */ |
| |
| void |
| write_real (st_parameter_dt *dtp, const char *source, int kind) |
| { |
| fnode f ; |
| char buf_stack[BUF_STACK_SZ]; |
| char str_buf[BUF_STACK_SZ]; |
| char *buffer, *result; |
| size_t buf_size, res_len, flt_str_len; |
| int orig_scale = dtp->u.p.scale_factor; |
| dtp->u.p.scale_factor = 1; |
| set_fnode_default (dtp, &f, kind); |
| |
| /* Precision for snprintf call. */ |
| int precision = get_precision (dtp, &f, source, kind); |
| |
| /* String buffer to hold final result. */ |
| result = select_string (dtp, &f, str_buf, &res_len, kind); |
| |
| /* Scratch buffer to hold final result. */ |
| buffer = select_buffer (dtp, &f, precision, buf_stack, &buf_size, kind); |
| |
| get_float_string (dtp, &f, source , kind, 1, buffer, |
| precision, buf_size, result, &flt_str_len); |
| write_float_string (dtp, result, flt_str_len); |
| |
| dtp->u.p.scale_factor = orig_scale; |
| if (buf_size > BUF_STACK_SZ) |
| free (buffer); |
| if (res_len > BUF_STACK_SZ) |
| free (result); |
| } |
| |
| /* Similar to list formatted REAL output, for kPG0 where k > 0 we |
| compensate for the extra digit. */ |
| |
| void |
| write_real_w0 (st_parameter_dt *dtp, const char *source, int kind, |
| const fnode* f) |
| { |
| fnode ff; |
| char buf_stack[BUF_STACK_SZ]; |
| char str_buf[BUF_STACK_SZ]; |
| char *buffer, *result; |
| size_t buf_size, res_len, flt_str_len; |
| int comp_d = 0; |
| |
| set_fnode_default (dtp, &ff, kind); |
| |
| if (f->u.real.d > 0) |
| ff.u.real.d = f->u.real.d; |
| ff.format = f->format; |
| |
| /* For FMT_G, Compensate for extra digits when using scale factor, d |
| is not specified, and the magnitude is such that E editing |
| is used. */ |
| if (f->format == FMT_G) |
| { |
| if (dtp->u.p.scale_factor > 0 && f->u.real.d == 0) |
| comp_d = 1; |
| else |
| comp_d = 0; |
| } |
| |
| if (f->u.real.e >= 0) |
| ff.u.real.e = f->u.real.e; |
| |
| dtp->u.p.g0_no_blanks = 1; |
| |
| /* Precision for snprintf call. */ |
| int precision = get_precision (dtp, &ff, source, kind); |
| |
| /* String buffer to hold final result. */ |
| result = select_string (dtp, &ff, str_buf, &res_len, kind); |
| |
| buffer = select_buffer (dtp, &ff, precision, buf_stack, &buf_size, kind); |
| |
| get_float_string (dtp, &ff, source , kind, comp_d, buffer, |
| precision, buf_size, result, &flt_str_len); |
| write_float_string (dtp, result, flt_str_len); |
| |
| dtp->u.p.g0_no_blanks = 0; |
| if (buf_size > BUF_STACK_SZ) |
| free (buffer); |
| if (res_len > BUF_STACK_SZ) |
| free (result); |
| } |
| |
| |
| static void |
| write_complex (st_parameter_dt *dtp, const char *source, int kind, size_t size) |
| { |
| char semi_comma = |
| dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';'; |
| |
| /* Set for no blanks so we get a string result with no leading |
| blanks. We will pad left later. */ |
| dtp->u.p.g0_no_blanks = 1; |
| |
| fnode f ; |
| char buf_stack[BUF_STACK_SZ]; |
| char str1_buf[BUF_STACK_SZ]; |
| char str2_buf[BUF_STACK_SZ]; |
| char *buffer, *result1, *result2; |
| size_t buf_size, res_len1, res_len2, flt_str_len1, flt_str_len2; |
| int width, lblanks, orig_scale = dtp->u.p.scale_factor; |
| |
| dtp->u.p.scale_factor = 1; |
| set_fnode_default (dtp, &f, kind); |
| |
| /* Set width for two values, parenthesis, and comma. */ |
| width = 2 * f.u.real.w + 3; |
| |
| /* Set for no blanks so we get a string result with no leading |
| blanks. We will pad left later. */ |
| dtp->u.p.g0_no_blanks = 1; |
| |
| /* Precision for snprintf call. */ |
| int precision = get_precision (dtp, &f, source, kind); |
| |
| /* String buffers to hold final result. */ |
| result1 = select_string (dtp, &f, str1_buf, &res_len1, kind); |
| result2 = select_string (dtp, &f, str2_buf, &res_len2, kind); |
| |
| buffer = select_buffer (dtp, &f, precision, buf_stack, &buf_size, kind); |
| |
| get_float_string (dtp, &f, source , kind, 0, buffer, |
| precision, buf_size, result1, &flt_str_len1); |
| get_float_string (dtp, &f, source + size / 2 , kind, 0, buffer, |
| precision, buf_size, result2, &flt_str_len2); |
| if (!dtp->u.p.namelist_mode) |
| { |
| lblanks = width - flt_str_len1 - flt_str_len2 - 3; |
| write_x (dtp, lblanks, lblanks); |
| } |
| write_char (dtp, '('); |
| write_float_string (dtp, result1, flt_str_len1); |
| write_char (dtp, semi_comma); |
| write_float_string (dtp, result2, flt_str_len2); |
| write_char (dtp, ')'); |
| |
| dtp->u.p.scale_factor = orig_scale; |
| dtp->u.p.g0_no_blanks = 0; |
| if (buf_size > BUF_STACK_SZ) |
| free (buffer); |
| if (res_len1 > BUF_STACK_SZ) |
| free (result1); |
| if (res_len2 > BUF_STACK_SZ) |
| free (result2); |
| } |
| |
| |
| /* Write the separator between items. */ |
| |
| static void |
| write_separator (st_parameter_dt *dtp) |
| { |
| char *p; |
| |
| p = write_block (dtp, options.separator_len); |
| if (p == NULL) |
| return; |
| if (unlikely (is_char4_unit (dtp))) |
| { |
| gfc_char4_t *p4 = (gfc_char4_t *) p; |
| memcpy4 (p4, options.separator, options.separator_len); |
| } |
| else |
| memcpy (p, options.separator, options.separator_len); |
| } |
| |
| |
| /* Write an item with list formatting. |
| TODO: handle skipping to the next record correctly, particularly |
| with strings. */ |
| |
| static void |
| list_formatted_write_scalar (st_parameter_dt *dtp, bt type, void *p, int kind, |
| size_t size) |
| { |
| if (dtp->u.p.current_unit == NULL) |
| return; |
| |
| if (dtp->u.p.first_item) |
| { |
| dtp->u.p.first_item = 0; |
| if (dtp->u.p.current_unit->flags.cc != CC_FORTRAN) |
| write_char (dtp, ' '); |
| } |
| else |
| { |
| if (type != BT_CHARACTER || !dtp->u.p.char_flag || |
| (dtp->u.p.current_unit->delim_status != DELIM_NONE |
| && dtp->u.p.current_unit->delim_status != DELIM_UNSPECIFIED)) |
| write_separator (dtp); |
| } |
| |
| switch (type) |
| { |
| case BT_INTEGER: |
| write_integer (dtp, p, kind); |
| break; |
| case BT_LOGICAL: |
| write_logical (dtp, p, kind); |
| break; |
| case BT_CHARACTER: |
| write_character (dtp, p, kind, size, DELIM); |
| break; |
| case BT_REAL: |
| write_real (dtp, p, kind); |
| break; |
| case BT_COMPLEX: |
| write_complex (dtp, p, kind, size); |
| break; |
| case BT_CLASS: |
| { |
| int unit = dtp->u.p.current_unit->unit_number; |
| char iotype[] = "LISTDIRECTED"; |
| gfc_charlen_type iotype_len = 12; |
| char tmp_iomsg[IOMSG_LEN] = ""; |
| char *child_iomsg; |
| gfc_charlen_type child_iomsg_len; |
| int noiostat; |
| int *child_iostat = NULL; |
| gfc_full_array_i4 vlist; |
| |
| GFC_DESCRIPTOR_DATA(&vlist) = NULL; |
| GFC_DIMENSION_SET(vlist.dim[0],1, 0, 0); |
| |
| /* Set iostat, intent(out). */ |
| noiostat = 0; |
| child_iostat = (dtp->common.flags & IOPARM_HAS_IOSTAT) ? |
| dtp->common.iostat : &noiostat; |
| |
| /* Set iomsge, intent(inout). */ |
| if (dtp->common.flags & IOPARM_HAS_IOMSG) |
| { |
| child_iomsg = dtp->common.iomsg; |
| child_iomsg_len = dtp->common.iomsg_len; |
| } |
| else |
| { |
| child_iomsg = tmp_iomsg; |
| child_iomsg_len = IOMSG_LEN; |
| } |
| |
| /* Call the user defined formatted WRITE procedure. */ |
| dtp->u.p.current_unit->child_dtio++; |
| dtp->u.p.fdtio_ptr (p, &unit, iotype, &vlist, |
| child_iostat, child_iomsg, |
| iotype_len, child_iomsg_len); |
| dtp->u.p.current_unit->child_dtio--; |
| } |
| break; |
| default: |
| internal_error (&dtp->common, "list_formatted_write(): Bad type"); |
| } |
| |
| fbuf_flush_list (dtp->u.p.current_unit, LIST_WRITING); |
| dtp->u.p.char_flag = (type == BT_CHARACTER); |
| } |
| |
| |
| void |
| list_formatted_write (st_parameter_dt *dtp, bt type, void *p, int kind, |
| size_t size, size_t nelems) |
| { |
| size_t elem; |
| char *tmp; |
| size_t stride = type == BT_CHARACTER ? |
| size * GFC_SIZE_OF_CHAR_KIND(kind) : size; |
| |
| tmp = (char *) p; |
| |
| /* Big loop over all the elements. */ |
| for (elem = 0; elem < nelems; elem++) |
| { |
| dtp->u.p.item_count++; |
| list_formatted_write_scalar (dtp, type, tmp + elem * stride, kind, size); |
| } |
| } |
| |
| /* NAMELIST OUTPUT |
| |
| nml_write_obj writes a namelist object to the output stream. It is called |
| recursively for derived type components: |
| obj = is the namelist_info for the current object. |
| offset = the offset relative to the address held by the object for |
| derived type arrays. |
| base = is the namelist_info of the derived type, when obj is a |
| component. |
| base_name = the full name for a derived type, including qualifiers |
| if any. |
| The returned value is a pointer to the object beyond the last one |
| accessed, including nested derived types. Notice that the namelist is |
| a linear linked list of objects, including derived types and their |
| components. A tree, of sorts, is implied by the compound names of |
| the derived type components and this is how this function recurses through |
| the list. */ |
| |
| /* A generous estimate of the number of characters needed to print |
| repeat counts and indices, including commas, asterices and brackets. */ |
| |
| #define NML_DIGITS 20 |
| |
| static void |
| namelist_write_newline (st_parameter_dt *dtp) |
| { |
| if (!is_internal_unit (dtp)) |
| { |
| #ifdef HAVE_CRLF |
| write_character (dtp, "\r\n", 1, 2, NODELIM); |
| #else |
| write_character (dtp, "\n", 1, 1, NODELIM); |
| #endif |
| return; |
| } |
| |
| if (is_array_io (dtp)) |
| { |
| gfc_offset record; |
| int finished; |
| char *p; |
| int length = dtp->u.p.current_unit->bytes_left; |
| |
| p = write_block (dtp, length); |
| if (p == NULL) |
| return; |
| |
| if (unlikely (is_char4_unit (dtp))) |
| { |
| gfc_char4_t *p4 = (gfc_char4_t *) p; |
| memset4 (p4, ' ', length); |
| } |
| else |
| memset (p, ' ', length); |
| |
| /* Now that the current record has been padded out, |
| determine where the next record in the array is. */ |
| record = next_array_record (dtp, dtp->u.p.current_unit->ls, |
| &finished); |
| if (finished) |
| dtp->u.p.current_unit->endfile = AT_ENDFILE; |
| else |
| { |
| /* Now seek to this record */ |
| record = record * dtp->u.p.current_unit->recl; |
| |
| if (sseek (dtp->u.p.current_unit->s, record, SEEK_SET) < 0) |
| { |
| generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL); |
| return; |
| } |
| |
| dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl; |
| } |
| } |
| else |
| write_character (dtp, " ", 1, 1, NODELIM); |
| } |
| |
| |
| static namelist_info * |
| nml_write_obj (st_parameter_dt *dtp, namelist_info *obj, index_type offset, |
| namelist_info *base, char *base_name) |
| { |
| int rep_ctr; |
| int num; |
| int nml_carry; |
| int len; |
| index_type obj_size; |
| index_type nelem; |
| size_t dim_i; |
| size_t clen; |
| index_type elem_ctr; |
| size_t obj_name_len; |
| void *p; |
| char cup; |
| char *obj_name; |
| char *ext_name; |
| char *q; |
| size_t ext_name_len; |
| char rep_buff[NML_DIGITS]; |
| namelist_info *cmp; |
| namelist_info *retval = obj->next; |
| size_t base_name_len; |
| size_t base_var_name_len; |
| size_t tot_len; |
| |
| /* Set the character to be used to separate values |
| to a comma or semi-colon. */ |
| |
| char semi_comma = |
| dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';'; |
| |
| /* Write namelist variable names in upper case. If a derived type, |
| nothing is output. If a component, base and base_name are set. */ |
| |
| if (obj->type != BT_DERIVED || obj->dtio_sub != NULL) |
| { |
| namelist_write_newline (dtp); |
| write_character (dtp, " ", 1, 1, NODELIM); |
| |
| len = 0; |
| if (base) |
| { |
| len = strlen (base->var_name); |
| base_name_len = strlen (base_name); |
| for (dim_i = 0; dim_i < base_name_len; dim_i++) |
| { |
| cup = toupper ((int) base_name[dim_i]); |
| write_character (dtp, &cup, 1, 1, NODELIM); |
| } |
| } |
| clen = strlen (obj->var_name); |
| for (dim_i = len; dim_i < clen; dim_i++) |
| { |
| cup = toupper ((int) obj->var_name[dim_i]); |
| if (cup == '+') |
| cup = '%'; |
| write_character (dtp, &cup, 1, 1, NODELIM); |
| } |
| write_character (dtp, "=", 1, 1, NODELIM); |
| } |
| |
| /* Counts the number of data output on a line, including names. */ |
| |
| num = 1; |
| |
| len = obj->len; |
| |
| switch (obj->type) |
| { |
| |
| case BT_REAL: |
| obj_size = size_from_real_kind (len); |
| break; |
| |
| case BT_COMPLEX: |
| obj_size = size_from_complex_kind (len); |
| break; |
| |
| case BT_CHARACTER: |
| obj_size = obj->string_length; |
| break; |
| |
| default: |
| obj_size = len; |
| } |
| |
| if (obj->var_rank) |
| obj_size = obj->size; |
| |
| /* Set the index vector and count the number of elements. */ |
| |
| nelem = 1; |
| for (dim_i = 0; dim_i < (size_t) obj->var_rank; dim_i++) |
| { |
| obj->ls[dim_i].idx = GFC_DESCRIPTOR_LBOUND(obj, dim_i); |
| nelem = nelem * GFC_DESCRIPTOR_EXTENT (obj, dim_i); |
| } |
| |
| /* Main loop to output the data held in the object. */ |
| |
| rep_ctr = 1; |
| for (elem_ctr = 0; elem_ctr < nelem; elem_ctr++) |
| { |
| |
| /* Build the pointer to the data value. The offset is passed by |
| recursive calls to this function for arrays of derived types. |
| Is NULL otherwise. */ |
| |
| p = (void *)(obj->mem_pos + elem_ctr * obj_size); |
| p += offset; |
| |
| /* Check for repeat counts of intrinsic types. */ |
| |
| if ((elem_ctr < (nelem - 1)) && |
| (obj->type != BT_DERIVED) && |
| !memcmp (p, (void *)(p + obj_size ), obj_size )) |
| { |
| rep_ctr++; |
| } |
| |
| /* Execute a repeated output. Note the flag no_leading_blank that |
| is used in the functions used to output the intrinsic types. */ |
| |
| else |
| { |
| if (rep_ctr > 1) |
| { |
| snprintf(rep_buff, NML_DIGITS, " %d*", rep_ctr); |
| write_character (dtp, rep_buff, 1, strlen (rep_buff), NODELIM); |
| dtp->u.p.no_leading_blank = 1; |
| } |
| num++; |
| |
| /* Output the data, if an intrinsic type, or recurse into this |
| routine to treat derived types. */ |
| |
| switch (obj->type) |
| { |
| |
| case BT_INTEGER: |
| write_integer (dtp, p, len); |
| break; |
| |
| case BT_LOGICAL: |
| write_logical (dtp, p, len); |
| break; |
| |
| case BT_CHARACTER: |
| if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8) |
| write_character (dtp, p, 4, obj->string_length, DELIM); |
| else |
| write_character (dtp, p, 1, obj->string_length, DELIM); |
| break; |
| |
| case BT_REAL: |
| write_real (dtp, p, len); |
| break; |
| |
| case BT_COMPLEX: |
| dtp->u.p.no_leading_blank = 0; |
| num++; |
| write_complex (dtp, p, len, obj_size); |
| break; |
| |
| case BT_DERIVED: |
| case BT_CLASS: |
| /* To treat a derived type, we need to build two strings: |
| ext_name = the name, including qualifiers that prepends |
| component names in the output - passed to |
| nml_write_obj. |
| obj_name = the derived type name with no qualifiers but % |
| appended. This is used to identify the |
| components. */ |
| |
| /* First ext_name => get length of all possible components */ |
| if (obj->dtio_sub != NULL) |
| { |
| int unit = dtp->u.p.current_unit->unit_number; |
| char iotype[] = "NAMELIST"; |
| gfc_charlen_type iotype_len = 8; |
| char tmp_iomsg[IOMSG_LEN] = ""; |
| char *child_iomsg; |
| gfc_charlen_type child_iomsg_len; |
| int noiostat; |
| int *child_iostat = NULL; |
| gfc_full_array_i4 vlist; |
| formatted_dtio dtio_ptr = (formatted_dtio)obj->dtio_sub; |
| |
| GFC_DIMENSION_SET(vlist.dim[0],1, 0, 0); |
| |
| /* Set iostat, intent(out). */ |
| noiostat = 0; |
| child_iostat = (dtp->common.flags & IOPARM_HAS_IOSTAT) ? |
| dtp->common.iostat : &noiostat; |
| |
| /* Set iomsg, intent(inout). */ |
| if (dtp->common.flags & IOPARM_HAS_IOMSG) |
| { |
| child_iomsg = dtp->common.iomsg; |
| child_iomsg_len = dtp->common.iomsg_len; |
| } |
| else |
| { |
| child_iomsg = tmp_iomsg; |
| child_iomsg_len = IOMSG_LEN; |
| } |
| |
| /* Call the user defined formatted WRITE procedure. */ |
| dtp->u.p.current_unit->child_dtio++; |
| if (obj->type == BT_DERIVED) |
| { |
| /* Build a class container. */ |
| gfc_class list_obj; |
| list_obj.data = p; |
| list_obj.vptr = obj->vtable; |
| list_obj.len = 0; |
| dtio_ptr ((void *)&list_obj, &unit, iotype, &vlist, |
| child_iostat, child_iomsg, |
| iotype_len, child_iomsg_len); |
| } |
| else |
| { |
| dtio_ptr (p, &unit, iotype, &vlist, |
| child_iostat, child_iomsg, |
| iotype_len, child_iomsg_len); |
| } |
| dtp->u.p.current_unit->child_dtio--; |
| |
| goto obj_loop; |
| } |
| |
| base_name_len = base_name ? strlen (base_name) : 0; |
| base_var_name_len = base ? strlen (base->var_name) : 0; |
| ext_name_len = base_name_len + base_var_name_len |
| + strlen (obj->var_name) + obj->var_rank * NML_DIGITS + 1; |
| ext_name = xmalloc (ext_name_len); |
| |
| if (base_name) |
| memcpy (ext_name, base_name, base_name_len); |
| clen = strlen (obj->var_name + base_var_name_len); |
| memcpy (ext_name + base_name_len, |
| obj->var_name + base_var_name_len, clen); |
| |
| /* Append the qualifier. */ |
| |
| tot_len = base_name_len + clen; |
| for (dim_i = 0; dim_i < (size_t) obj->var_rank; dim_i++) |
| { |
| if (!dim_i) |
| { |
| ext_name[tot_len] = '('; |
| tot_len++; |
| } |
| snprintf (ext_name + tot_len, ext_name_len - tot_len, "%d", |
| (int) obj->ls[dim_i].idx); |
| tot_len += strlen (ext_name + tot_len); |
| ext_name[tot_len] = ((int) dim_i == obj->var_rank - 1) ? ')' : ','; |
| tot_len++; |
| } |
| |
| ext_name[tot_len] = '\0'; |
| for (q = ext_name; *q; q++) |
| if (*q == '+') |
| *q = '%'; |
| |
| /* Now obj_name. */ |
| |
| obj_name_len = strlen (obj->var_name) + 1; |
| obj_name = xmalloc (obj_name_len + 1); |
| memcpy (obj_name, obj->var_name, obj_name_len-1); |
| memcpy (obj_name + obj_name_len-1, "%", 2); |
| |
| /* Now loop over the components. Update the component pointer |
| with the return value from nml_write_obj => this loop jumps |
| past nested derived types. */ |
| |
| for (cmp = obj->next; |
| cmp && !strncmp (cmp->var_name, obj_name, obj_name_len); |
| cmp = retval) |
| { |
| retval = nml_write_obj (dtp, cmp, |
| (index_type)(p - obj->mem_pos), |
| obj, ext_name); |
| } |
| |
| free (obj_name); |
| free (ext_name); |
| goto obj_loop; |
| |
| default: |
| internal_error (&dtp->common, "Bad type for namelist write"); |
| } |
| |
| /* Reset the leading blank suppression, write a comma (or semi-colon) |
| and, if 5 values have been output, write a newline and advance |
| to column 2. Reset the repeat counter. */ |
| |
| dtp->u.p.no_leading_blank = 0; |
| if (obj->type == BT_CHARACTER) |
| { |
| if (dtp->u.p.nml_delim != '\0') |
| write_character (dtp, &semi_comma, 1, 1, NODELIM); |
| } |
| else |
| write_character (dtp, &semi_comma, 1, 1, NODELIM); |
| if (num > 5) |
| { |
| num = 0; |
| if (dtp->u.p.nml_delim == '\0') |
| write_character (dtp, &semi_comma, 1, 1, NODELIM); |
| namelist_write_newline (dtp); |
| write_character (dtp, " ", 1, 1, NODELIM); |
| } |
| rep_ctr = 1; |
| } |
| |
| /* Cycle through and increment the index vector. */ |
| |
| obj_loop: |
| |
| nml_carry = 1; |
| for (dim_i = 0; nml_carry && (dim_i < (size_t) obj->var_rank); dim_i++) |
| { |
| obj->ls[dim_i].idx += nml_carry ; |
| nml_carry = 0; |
| if (obj->ls[dim_i].idx > GFC_DESCRIPTOR_UBOUND(obj,dim_i)) |
| { |
| obj->ls[dim_i].idx = GFC_DESCRIPTOR_LBOUND(obj,dim_i); |
| nml_carry = 1; |
| } |
| } |
| } |
| |
| /* Return a pointer beyond the furthest object accessed. */ |
| |
| return retval; |
| } |
| |
| |
| /* This is the entry function for namelist writes. It outputs the name |
| of the namelist and iterates through the namelist by calls to |
| nml_write_obj. The call below has dummys in the arguments used in |
| the treatment of derived types. */ |
| |
| void |
| namelist_write (st_parameter_dt *dtp) |
| { |
| namelist_info *t1, *t2, *dummy = NULL; |
| index_type dummy_offset = 0; |
| char c; |
| char *dummy_name = NULL; |
| |
| /* Set the delimiter for namelist output. */ |
| switch (dtp->u.p.current_unit->delim_status) |
| { |
| case DELIM_APOSTROPHE: |
| dtp->u.p.nml_delim = '\''; |
| break; |
| case DELIM_QUOTE: |
| case DELIM_UNSPECIFIED: |
| dtp->u.p.nml_delim = '"'; |
| break; |
| default: |
| dtp->u.p.nml_delim = '\0'; |
| } |
| |
| write_character (dtp, "&", 1, 1, NODELIM); |
| |
| /* Write namelist name in upper case - f95 std. */ |
| for (gfc_charlen_type i = 0; i < dtp->namelist_name_len; i++ ) |
| { |
| c = toupper ((int) dtp->namelist_name[i]); |
| write_character (dtp, &c, 1 ,1, NODELIM); |
| } |
| |
| if (dtp->u.p.ionml != NULL) |
| { |
| t1 = dtp->u.p.ionml; |
| while (t1 != NULL) |
| { |
| t2 = t1; |
| t1 = nml_write_obj (dtp, t2, dummy_offset, dummy, dummy_name); |
| } |
| } |
| |
| namelist_write_newline (dtp); |
| write_character (dtp, " /", 1, 2, NODELIM); |
| } |
| |
| #undef NML_DIGITS |