| /* Extended regular expression matching and search library, |
| version 0.12. |
| (Implements POSIX draft P1003.2/D11.2, except for some of the |
| internationalization features.) |
| |
| Copyright (C) 1993-2021 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU C Library; if not, write to the Free |
| Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| 02110-1301 USA. */ |
| |
| /* This file has been modified for usage in libiberty. It includes "xregex.h" |
| instead of <regex.h>. The "xregex.h" header file renames all external |
| routines with an "x" prefix so they do not collide with the native regex |
| routines or with other components regex routines. */ |
| /* AIX requires this to be the first thing in the file. */ |
| #if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC |
| #pragma alloca |
| #endif |
| |
| #undef _GNU_SOURCE |
| #define _GNU_SOURCE |
| |
| #ifndef INSIDE_RECURSION |
| # ifdef HAVE_CONFIG_H |
| # include <config.h> |
| # endif |
| #endif |
| |
| #include <ansidecl.h> |
| |
| #ifndef INSIDE_RECURSION |
| |
| # if defined STDC_HEADERS && !defined emacs |
| # include <stddef.h> |
| # define PTR_INT_TYPE ptrdiff_t |
| # else |
| /* We need this for `regex.h', and perhaps for the Emacs include files. */ |
| # include <sys/types.h> |
| # define PTR_INT_TYPE long |
| # endif |
| |
| # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC) |
| |
| /* For platform which support the ISO C amendement 1 functionality we |
| support user defined character classes. */ |
| # if defined _LIBC || WIDE_CHAR_SUPPORT |
| /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */ |
| # include <wchar.h> |
| # include <wctype.h> |
| # endif |
| |
| # ifdef _LIBC |
| /* We have to keep the namespace clean. */ |
| # define regfree(preg) __regfree (preg) |
| # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef) |
| # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags) |
| # define regerror(errcode, preg, errbuf, errbuf_size) \ |
| __regerror(errcode, preg, errbuf, errbuf_size) |
| # define re_set_registers(bu, re, nu, st, en) \ |
| __re_set_registers (bu, re, nu, st, en) |
| # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \ |
| __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) |
| # define re_match(bufp, string, size, pos, regs) \ |
| __re_match (bufp, string, size, pos, regs) |
| # define re_search(bufp, string, size, startpos, range, regs) \ |
| __re_search (bufp, string, size, startpos, range, regs) |
| # define re_compile_pattern(pattern, length, bufp) \ |
| __re_compile_pattern (pattern, length, bufp) |
| # define re_set_syntax(syntax) __re_set_syntax (syntax) |
| # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \ |
| __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop) |
| # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp) |
| |
| # define btowc __btowc |
| |
| /* We are also using some library internals. */ |
| # include <locale/localeinfo.h> |
| # include <locale/elem-hash.h> |
| # include <langinfo.h> |
| # include <locale/coll-lookup.h> |
| # endif |
| |
| /* This is for other GNU distributions with internationalized messages. */ |
| # if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC |
| # include <libintl.h> |
| # ifdef _LIBC |
| # undef gettext |
| # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES) |
| # endif |
| # else |
| # define gettext(msgid) (msgid) |
| # endif |
| |
| # ifndef gettext_noop |
| /* This define is so xgettext can find the internationalizable |
| strings. */ |
| # define gettext_noop(String) String |
| # endif |
| |
| /* The `emacs' switch turns on certain matching commands |
| that make sense only in Emacs. */ |
| # ifdef emacs |
| |
| # include "lisp.h" |
| # include "buffer.h" |
| # include "syntax.h" |
| |
| # else /* not emacs */ |
| |
| /* If we are not linking with Emacs proper, |
| we can't use the relocating allocator |
| even if config.h says that we can. */ |
| # undef REL_ALLOC |
| |
| # if defined STDC_HEADERS || defined _LIBC |
| # include <stdlib.h> |
| # else |
| char *malloc (); |
| char *realloc (); |
| # endif |
| |
| /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow. |
| If nothing else has been done, use the method below. */ |
| # ifdef INHIBIT_STRING_HEADER |
| # if !(defined HAVE_BZERO && defined HAVE_BCOPY) |
| # if !defined bzero && !defined bcopy |
| # undef INHIBIT_STRING_HEADER |
| # endif |
| # endif |
| # endif |
| |
| /* This is the normal way of making sure we have a bcopy and a bzero. |
| This is used in most programs--a few other programs avoid this |
| by defining INHIBIT_STRING_HEADER. */ |
| # ifndef INHIBIT_STRING_HEADER |
| # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC |
| # include <string.h> |
| # ifndef bzero |
| # ifndef _LIBC |
| # define bzero(s, n) ((void) memset (s, '\0', n)) |
| # else |
| # define bzero(s, n) __bzero (s, n) |
| # endif |
| # endif |
| # else |
| # include <strings.h> |
| # ifndef memcmp |
| # define memcmp(s1, s2, n) bcmp (s1, s2, n) |
| # endif |
| # ifndef memcpy |
| # define memcpy(d, s, n) (bcopy (s, d, n), (d)) |
| # endif |
| # endif |
| # endif |
| |
| /* Define the syntax stuff for \<, \>, etc. */ |
| |
| /* This must be nonzero for the wordchar and notwordchar pattern |
| commands in re_match_2. */ |
| # ifndef Sword |
| # define Sword 1 |
| # endif |
| |
| # ifdef SWITCH_ENUM_BUG |
| # define SWITCH_ENUM_CAST(x) ((int)(x)) |
| # else |
| # define SWITCH_ENUM_CAST(x) (x) |
| # endif |
| |
| # endif /* not emacs */ |
| |
| # if defined _LIBC || HAVE_LIMITS_H |
| # include <limits.h> |
| # endif |
| |
| # ifndef MB_LEN_MAX |
| # define MB_LEN_MAX 1 |
| # endif |
| |
| /* Get the interface, including the syntax bits. */ |
| # include "xregex.h" /* change for libiberty */ |
| |
| /* isalpha etc. are used for the character classes. */ |
| # include <ctype.h> |
| |
| /* Jim Meyering writes: |
| |
| "... Some ctype macros are valid only for character codes that |
| isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when |
| using /bin/cc or gcc but without giving an ansi option). So, all |
| ctype uses should be through macros like ISPRINT... If |
| STDC_HEADERS is defined, then autoconf has verified that the ctype |
| macros don't need to be guarded with references to isascii. ... |
| Defining isascii to 1 should let any compiler worth its salt |
| eliminate the && through constant folding." |
| Solaris defines some of these symbols so we must undefine them first. */ |
| |
| # undef ISASCII |
| # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII) |
| # define ISASCII(c) 1 |
| # else |
| # define ISASCII(c) isascii(c) |
| # endif |
| |
| # ifdef isblank |
| # define ISBLANK(c) (ISASCII (c) && isblank (c)) |
| # else |
| # define ISBLANK(c) ((c) == ' ' || (c) == '\t') |
| # endif |
| # ifdef isgraph |
| # define ISGRAPH(c) (ISASCII (c) && isgraph (c)) |
| # else |
| # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c)) |
| # endif |
| |
| # undef ISPRINT |
| # define ISPRINT(c) (ISASCII (c) && isprint (c)) |
| # define ISDIGIT(c) (ISASCII (c) && isdigit (c)) |
| # define ISALNUM(c) (ISASCII (c) && isalnum (c)) |
| # define ISALPHA(c) (ISASCII (c) && isalpha (c)) |
| # define ISCNTRL(c) (ISASCII (c) && iscntrl (c)) |
| # define ISLOWER(c) (ISASCII (c) && islower (c)) |
| # define ISPUNCT(c) (ISASCII (c) && ispunct (c)) |
| # define ISSPACE(c) (ISASCII (c) && isspace (c)) |
| # define ISUPPER(c) (ISASCII (c) && isupper (c)) |
| # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c)) |
| |
| # ifdef _tolower |
| # define TOLOWER(c) _tolower(c) |
| # else |
| # define TOLOWER(c) tolower(c) |
| # endif |
| |
| # ifndef NULL |
| # define NULL (void *)0 |
| # endif |
| |
| /* We remove any previous definition of `SIGN_EXTEND_CHAR', |
| since ours (we hope) works properly with all combinations of |
| machines, compilers, `char' and `unsigned char' argument types. |
| (Per Bothner suggested the basic approach.) */ |
| # undef SIGN_EXTEND_CHAR |
| # if __STDC__ |
| # define SIGN_EXTEND_CHAR(c) ((signed char) (c)) |
| # else /* not __STDC__ */ |
| /* As in Harbison and Steele. */ |
| # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) |
| # endif |
| |
| # ifndef emacs |
| /* How many characters in the character set. */ |
| # define CHAR_SET_SIZE 256 |
| |
| # ifdef SYNTAX_TABLE |
| |
| extern char *re_syntax_table; |
| |
| # else /* not SYNTAX_TABLE */ |
| |
| static char re_syntax_table[CHAR_SET_SIZE]; |
| |
| static void init_syntax_once (void); |
| |
| static void |
| init_syntax_once (void) |
| { |
| register int c; |
| static int done = 0; |
| |
| if (done) |
| return; |
| bzero (re_syntax_table, sizeof re_syntax_table); |
| |
| for (c = 0; c < CHAR_SET_SIZE; ++c) |
| if (ISALNUM (c)) |
| re_syntax_table[c] = Sword; |
| |
| re_syntax_table['_'] = Sword; |
| |
| done = 1; |
| } |
| |
| # endif /* not SYNTAX_TABLE */ |
| |
| # define SYNTAX(c) re_syntax_table[(unsigned char) (c)] |
| |
| # endif /* emacs */ |
| |
| /* Integer type for pointers. */ |
| # if !defined _LIBC && !defined HAVE_UINTPTR_T |
| typedef unsigned long int uintptr_t; |
| # endif |
| |
| /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we |
| use `alloca' instead of `malloc'. This is because using malloc in |
| re_search* or re_match* could cause memory leaks when C-g is used in |
| Emacs; also, malloc is slower and causes storage fragmentation. On |
| the other hand, malloc is more portable, and easier to debug. |
| |
| Because we sometimes use alloca, some routines have to be macros, |
| not functions -- `alloca'-allocated space disappears at the end of the |
| function it is called in. */ |
| |
| # ifdef REGEX_MALLOC |
| |
| # define REGEX_ALLOCATE malloc |
| # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize) |
| # define REGEX_FREE free |
| |
| # else /* not REGEX_MALLOC */ |
| |
| /* Emacs already defines alloca, sometimes. */ |
| # ifndef alloca |
| |
| /* Make alloca work the best possible way. */ |
| # ifdef __GNUC__ |
| # define alloca __builtin_alloca |
| # else /* not __GNUC__ */ |
| # if HAVE_ALLOCA_H |
| # include <alloca.h> |
| # endif /* HAVE_ALLOCA_H */ |
| # endif /* not __GNUC__ */ |
| |
| # endif /* not alloca */ |
| |
| # define REGEX_ALLOCATE alloca |
| |
| /* Assumes a `char *destination' variable. */ |
| # define REGEX_REALLOCATE(source, osize, nsize) \ |
| (destination = (char *) alloca (nsize), \ |
| memcpy (destination, source, osize)) |
| |
| /* No need to do anything to free, after alloca. */ |
| # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */ |
| |
| # endif /* not REGEX_MALLOC */ |
| |
| /* Define how to allocate the failure stack. */ |
| |
| # if defined REL_ALLOC && defined REGEX_MALLOC |
| |
| # define REGEX_ALLOCATE_STACK(size) \ |
| r_alloc (&failure_stack_ptr, (size)) |
| # define REGEX_REALLOCATE_STACK(source, osize, nsize) \ |
| r_re_alloc (&failure_stack_ptr, (nsize)) |
| # define REGEX_FREE_STACK(ptr) \ |
| r_alloc_free (&failure_stack_ptr) |
| |
| # else /* not using relocating allocator */ |
| |
| # ifdef REGEX_MALLOC |
| |
| # define REGEX_ALLOCATE_STACK malloc |
| # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize) |
| # define REGEX_FREE_STACK free |
| |
| # else /* not REGEX_MALLOC */ |
| |
| # define REGEX_ALLOCATE_STACK alloca |
| |
| # define REGEX_REALLOCATE_STACK(source, osize, nsize) \ |
| REGEX_REALLOCATE (source, osize, nsize) |
| /* No need to explicitly free anything. */ |
| # define REGEX_FREE_STACK(arg) |
| |
| # endif /* not REGEX_MALLOC */ |
| # endif /* not using relocating allocator */ |
| |
| |
| /* True if `size1' is non-NULL and PTR is pointing anywhere inside |
| `string1' or just past its end. This works if PTR is NULL, which is |
| a good thing. */ |
| # define FIRST_STRING_P(ptr) \ |
| (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) |
| |
| /* (Re)Allocate N items of type T using malloc, or fail. */ |
| # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) |
| # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) |
| # define RETALLOC_IF(addr, n, t) \ |
| if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t) |
| # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) |
| |
| # define BYTEWIDTH 8 /* In bits. */ |
| |
| # define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) |
| |
| # undef MAX |
| # undef MIN |
| # define MAX(a, b) ((a) > (b) ? (a) : (b)) |
| # define MIN(a, b) ((a) < (b) ? (a) : (b)) |
| |
| typedef char boolean; |
| # define false 0 |
| # define true 1 |
| |
| static reg_errcode_t byte_regex_compile (const char *pattern, size_t size, |
| reg_syntax_t syntax, |
| struct re_pattern_buffer *bufp); |
| |
| static int byte_re_match_2_internal (struct re_pattern_buffer *bufp, |
| const char *string1, int size1, |
| const char *string2, int size2, |
| int pos, |
| struct re_registers *regs, |
| int stop); |
| static int byte_re_search_2 (struct re_pattern_buffer *bufp, |
| const char *string1, int size1, |
| const char *string2, int size2, |
| int startpos, int range, |
| struct re_registers *regs, int stop); |
| static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp); |
| |
| #ifdef MBS_SUPPORT |
| static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size, |
| reg_syntax_t syntax, |
| struct re_pattern_buffer *bufp); |
| |
| |
| static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp, |
| const char *cstring1, int csize1, |
| const char *cstring2, int csize2, |
| int pos, |
| struct re_registers *regs, |
| int stop, |
| wchar_t *string1, int size1, |
| wchar_t *string2, int size2, |
| int *mbs_offset1, int *mbs_offset2); |
| static int wcs_re_search_2 (struct re_pattern_buffer *bufp, |
| const char *string1, int size1, |
| const char *string2, int size2, |
| int startpos, int range, |
| struct re_registers *regs, int stop); |
| static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp); |
| #endif |
| |
| /* These are the command codes that appear in compiled regular |
| expressions. Some opcodes are followed by argument bytes. A |
| command code can specify any interpretation whatsoever for its |
| arguments. Zero bytes may appear in the compiled regular expression. */ |
| |
| typedef enum |
| { |
| no_op = 0, |
| |
| /* Succeed right away--no more backtracking. */ |
| succeed, |
| |
| /* Followed by one byte giving n, then by n literal bytes. */ |
| exactn, |
| |
| # ifdef MBS_SUPPORT |
| /* Same as exactn, but contains binary data. */ |
| exactn_bin, |
| # endif |
| |
| /* Matches any (more or less) character. */ |
| anychar, |
| |
| /* Matches any one char belonging to specified set. First |
| following byte is number of bitmap bytes. Then come bytes |
| for a bitmap saying which chars are in. Bits in each byte |
| are ordered low-bit-first. A character is in the set if its |
| bit is 1. A character too large to have a bit in the map is |
| automatically not in the set. */ |
| /* ifdef MBS_SUPPORT, following element is length of character |
| classes, length of collating symbols, length of equivalence |
| classes, length of character ranges, and length of characters. |
| Next, character class element, collating symbols elements, |
| equivalence class elements, range elements, and character |
| elements follow. |
| See regex_compile function. */ |
| charset, |
| |
| /* Same parameters as charset, but match any character that is |
| not one of those specified. */ |
| charset_not, |
| |
| /* Start remembering the text that is matched, for storing in a |
| register. Followed by one byte with the register number, in |
| the range 0 to one less than the pattern buffer's re_nsub |
| field. Then followed by one byte with the number of groups |
| inner to this one. (This last has to be part of the |
| start_memory only because we need it in the on_failure_jump |
| of re_match_2.) */ |
| start_memory, |
| |
| /* Stop remembering the text that is matched and store it in a |
| memory register. Followed by one byte with the register |
| number, in the range 0 to one less than `re_nsub' in the |
| pattern buffer, and one byte with the number of inner groups, |
| just like `start_memory'. (We need the number of inner |
| groups here because we don't have any easy way of finding the |
| corresponding start_memory when we're at a stop_memory.) */ |
| stop_memory, |
| |
| /* Match a duplicate of something remembered. Followed by one |
| byte containing the register number. */ |
| duplicate, |
| |
| /* Fail unless at beginning of line. */ |
| begline, |
| |
| /* Fail unless at end of line. */ |
| endline, |
| |
| /* Succeeds if at beginning of buffer (if emacs) or at beginning |
| of string to be matched (if not). */ |
| begbuf, |
| |
| /* Analogously, for end of buffer/string. */ |
| endbuf, |
| |
| /* Followed by two byte relative address to which to jump. */ |
| jump, |
| |
| /* Same as jump, but marks the end of an alternative. */ |
| jump_past_alt, |
| |
| /* Followed by two-byte relative address of place to resume at |
| in case of failure. */ |
| /* ifdef MBS_SUPPORT, the size of address is 1. */ |
| on_failure_jump, |
| |
| /* Like on_failure_jump, but pushes a placeholder instead of the |
| current string position when executed. */ |
| on_failure_keep_string_jump, |
| |
| /* Throw away latest failure point and then jump to following |
| two-byte relative address. */ |
| /* ifdef MBS_SUPPORT, the size of address is 1. */ |
| pop_failure_jump, |
| |
| /* Change to pop_failure_jump if know won't have to backtrack to |
| match; otherwise change to jump. This is used to jump |
| back to the beginning of a repeat. If what follows this jump |
| clearly won't match what the repeat does, such that we can be |
| sure that there is no use backtracking out of repetitions |
| already matched, then we change it to a pop_failure_jump. |
| Followed by two-byte address. */ |
| /* ifdef MBS_SUPPORT, the size of address is 1. */ |
| maybe_pop_jump, |
| |
| /* Jump to following two-byte address, and push a dummy failure |
| point. This failure point will be thrown away if an attempt |
| is made to use it for a failure. A `+' construct makes this |
| before the first repeat. Also used as an intermediary kind |
| of jump when compiling an alternative. */ |
| /* ifdef MBS_SUPPORT, the size of address is 1. */ |
| dummy_failure_jump, |
| |
| /* Push a dummy failure point and continue. Used at the end of |
| alternatives. */ |
| push_dummy_failure, |
| |
| /* Followed by two-byte relative address and two-byte number n. |
| After matching N times, jump to the address upon failure. */ |
| /* ifdef MBS_SUPPORT, the size of address is 1. */ |
| succeed_n, |
| |
| /* Followed by two-byte relative address, and two-byte number n. |
| Jump to the address N times, then fail. */ |
| /* ifdef MBS_SUPPORT, the size of address is 1. */ |
| jump_n, |
| |
| /* Set the following two-byte relative address to the |
| subsequent two-byte number. The address *includes* the two |
| bytes of number. */ |
| /* ifdef MBS_SUPPORT, the size of address is 1. */ |
| set_number_at, |
| |
| wordchar, /* Matches any word-constituent character. */ |
| notwordchar, /* Matches any char that is not a word-constituent. */ |
| |
| wordbeg, /* Succeeds if at word beginning. */ |
| wordend, /* Succeeds if at word end. */ |
| |
| wordbound, /* Succeeds if at a word boundary. */ |
| notwordbound /* Succeeds if not at a word boundary. */ |
| |
| # ifdef emacs |
| ,before_dot, /* Succeeds if before point. */ |
| at_dot, /* Succeeds if at point. */ |
| after_dot, /* Succeeds if after point. */ |
| |
| /* Matches any character whose syntax is specified. Followed by |
| a byte which contains a syntax code, e.g., Sword. */ |
| syntaxspec, |
| |
| /* Matches any character whose syntax is not that specified. */ |
| notsyntaxspec |
| # endif /* emacs */ |
| } re_opcode_t; |
| #endif /* not INSIDE_RECURSION */ |
| |
| |
| #ifdef BYTE |
| # define CHAR_T char |
| # define UCHAR_T unsigned char |
| # define COMPILED_BUFFER_VAR bufp->buffer |
| # define OFFSET_ADDRESS_SIZE 2 |
| # define PREFIX(name) byte_##name |
| # define ARG_PREFIX(name) name |
| # define PUT_CHAR(c) putchar (c) |
| #else |
| # ifdef WCHAR |
| # define CHAR_T wchar_t |
| # define UCHAR_T wchar_t |
| # define COMPILED_BUFFER_VAR wc_buffer |
| # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */ |
| # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1) |
| # define PREFIX(name) wcs_##name |
| # define ARG_PREFIX(name) c##name |
| /* Should we use wide stream?? */ |
| # define PUT_CHAR(c) printf ("%C", c); |
| # define TRUE 1 |
| # define FALSE 0 |
| # else |
| # ifdef MBS_SUPPORT |
| # define WCHAR |
| # define INSIDE_RECURSION |
| # include "regex.c" |
| # undef INSIDE_RECURSION |
| # endif |
| # define BYTE |
| # define INSIDE_RECURSION |
| # include "regex.c" |
| # undef INSIDE_RECURSION |
| # endif |
| #endif |
| |
| #ifdef INSIDE_RECURSION |
| /* Common operations on the compiled pattern. */ |
| |
| /* Store NUMBER in two contiguous bytes starting at DESTINATION. */ |
| /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */ |
| |
| # ifdef WCHAR |
| # define STORE_NUMBER(destination, number) \ |
| do { \ |
| *(destination) = (UCHAR_T)(number); \ |
| } while (0) |
| # else /* BYTE */ |
| # define STORE_NUMBER(destination, number) \ |
| do { \ |
| (destination)[0] = (number) & 0377; \ |
| (destination)[1] = (number) >> 8; \ |
| } while (0) |
| # endif /* WCHAR */ |
| |
| /* Same as STORE_NUMBER, except increment DESTINATION to |
| the byte after where the number is stored. Therefore, DESTINATION |
| must be an lvalue. */ |
| /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */ |
| |
| # define STORE_NUMBER_AND_INCR(destination, number) \ |
| do { \ |
| STORE_NUMBER (destination, number); \ |
| (destination) += OFFSET_ADDRESS_SIZE; \ |
| } while (0) |
| |
| /* Put into DESTINATION a number stored in two contiguous bytes starting |
| at SOURCE. */ |
| /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */ |
| |
| # ifdef WCHAR |
| # define EXTRACT_NUMBER(destination, source) \ |
| do { \ |
| (destination) = *(source); \ |
| } while (0) |
| # else /* BYTE */ |
| # define EXTRACT_NUMBER(destination, source) \ |
| do { \ |
| (destination) = *(source) & 0377; \ |
| (destination) += ((unsigned) SIGN_EXTEND_CHAR (*((source) + 1))) << 8; \ |
| } while (0) |
| # endif |
| |
| # ifdef DEBUG |
| static void PREFIX(extract_number) (int *dest, UCHAR_T *source); |
| static void |
| PREFIX(extract_number) (int *dest, UCHAR_T *source) |
| { |
| # ifdef WCHAR |
| *dest = *source; |
| # else /* BYTE */ |
| int temp = SIGN_EXTEND_CHAR (*(source + 1)); |
| *dest = *source & 0377; |
| *dest += temp << 8; |
| # endif |
| } |
| |
| # ifndef EXTRACT_MACROS /* To debug the macros. */ |
| # undef EXTRACT_NUMBER |
| # define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src) |
| # endif /* not EXTRACT_MACROS */ |
| |
| # endif /* DEBUG */ |
| |
| /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. |
| SOURCE must be an lvalue. */ |
| |
| # define EXTRACT_NUMBER_AND_INCR(destination, source) \ |
| do { \ |
| EXTRACT_NUMBER (destination, source); \ |
| (source) += OFFSET_ADDRESS_SIZE; \ |
| } while (0) |
| |
| # ifdef DEBUG |
| static void PREFIX(extract_number_and_incr) (int *destination, |
| UCHAR_T **source); |
| static void |
| PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source) |
| { |
| PREFIX(extract_number) (destination, *source); |
| *source += OFFSET_ADDRESS_SIZE; |
| } |
| |
| # ifndef EXTRACT_MACROS |
| # undef EXTRACT_NUMBER_AND_INCR |
| # define EXTRACT_NUMBER_AND_INCR(dest, src) \ |
| PREFIX(extract_number_and_incr) (&dest, &src) |
| # endif /* not EXTRACT_MACROS */ |
| |
| # endif /* DEBUG */ |
| |
| |
| |
| /* If DEBUG is defined, Regex prints many voluminous messages about what |
| it is doing (if the variable `debug' is nonzero). If linked with the |
| main program in `iregex.c', you can enter patterns and strings |
| interactively. And if linked with the main program in `main.c' and |
| the other test files, you can run the already-written tests. */ |
| |
| # ifdef DEBUG |
| |
| # ifndef DEFINED_ONCE |
| |
| /* We use standard I/O for debugging. */ |
| # include <stdio.h> |
| |
| /* It is useful to test things that ``must'' be true when debugging. */ |
| # include <assert.h> |
| |
| static int debug; |
| |
| # define DEBUG_STATEMENT(e) e |
| # define DEBUG_PRINT1(x) if (debug) printf (x) |
| # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) |
| # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) |
| # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) |
| # endif /* not DEFINED_ONCE */ |
| |
| # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ |
| if (debug) PREFIX(print_partial_compiled_pattern) (s, e) |
| # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ |
| if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2) |
| |
| |
| /* Print the fastmap in human-readable form. */ |
| |
| # ifndef DEFINED_ONCE |
| void |
| print_fastmap (char *fastmap) |
| { |
| unsigned was_a_range = 0; |
| unsigned i = 0; |
| |
| while (i < (1 << BYTEWIDTH)) |
| { |
| if (fastmap[i++]) |
| { |
| was_a_range = 0; |
| putchar (i - 1); |
| while (i < (1 << BYTEWIDTH) && fastmap[i]) |
| { |
| was_a_range = 1; |
| i++; |
| } |
| if (was_a_range) |
| { |
| printf ("-"); |
| putchar (i - 1); |
| } |
| } |
| } |
| putchar ('\n'); |
| } |
| # endif /* not DEFINED_ONCE */ |
| |
| |
| /* Print a compiled pattern string in human-readable form, starting at |
| the START pointer into it and ending just before the pointer END. */ |
| |
| void |
| PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end) |
| { |
| int mcnt, mcnt2; |
| UCHAR_T *p1; |
| UCHAR_T *p = start; |
| UCHAR_T *pend = end; |
| |
| if (start == NULL) |
| { |
| printf ("(null)\n"); |
| return; |
| } |
| |
| /* Loop over pattern commands. */ |
| while (p < pend) |
| { |
| # ifdef _LIBC |
| printf ("%td:\t", p - start); |
| # else |
| printf ("%ld:\t", (long int) (p - start)); |
| # endif |
| |
| switch ((re_opcode_t) *p++) |
| { |
| case no_op: |
| printf ("/no_op"); |
| break; |
| |
| case exactn: |
| mcnt = *p++; |
| printf ("/exactn/%d", mcnt); |
| do |
| { |
| putchar ('/'); |
| PUT_CHAR (*p++); |
| } |
| while (--mcnt); |
| break; |
| |
| # ifdef MBS_SUPPORT |
| case exactn_bin: |
| mcnt = *p++; |
| printf ("/exactn_bin/%d", mcnt); |
| do |
| { |
| printf("/%lx", (long int) *p++); |
| } |
| while (--mcnt); |
| break; |
| # endif /* MBS_SUPPORT */ |
| |
| case start_memory: |
| mcnt = *p++; |
| printf ("/start_memory/%d/%ld", mcnt, (long int) *p++); |
| break; |
| |
| case stop_memory: |
| mcnt = *p++; |
| printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++); |
| break; |
| |
| case duplicate: |
| printf ("/duplicate/%ld", (long int) *p++); |
| break; |
| |
| case anychar: |
| printf ("/anychar"); |
| break; |
| |
| case charset: |
| case charset_not: |
| { |
| # ifdef WCHAR |
| int i, length; |
| wchar_t *workp = p; |
| printf ("/charset [%s", |
| (re_opcode_t) *(workp - 1) == charset_not ? "^" : ""); |
| p += 5; |
| length = *workp++; /* the length of char_classes */ |
| for (i=0 ; i<length ; i++) |
| printf("[:%lx:]", (long int) *p++); |
| length = *workp++; /* the length of collating_symbol */ |
| for (i=0 ; i<length ;) |
| { |
| printf("[."); |
| while(*p != 0) |
| PUT_CHAR((i++,*p++)); |
| i++,p++; |
| printf(".]"); |
| } |
| length = *workp++; /* the length of equivalence_class */ |
| for (i=0 ; i<length ;) |
| { |
| printf("[="); |
| while(*p != 0) |
| PUT_CHAR((i++,*p++)); |
| i++,p++; |
| printf("=]"); |
| } |
| length = *workp++; /* the length of char_range */ |
| for (i=0 ; i<length ; i++) |
| { |
| wchar_t range_start = *p++; |
| wchar_t range_end = *p++; |
| printf("%C-%C", range_start, range_end); |
| } |
| length = *workp++; /* the length of char */ |
| for (i=0 ; i<length ; i++) |
| printf("%C", *p++); |
| putchar (']'); |
| # else |
| register int c, last = -100; |
| register int in_range = 0; |
| |
| printf ("/charset [%s", |
| (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); |
| |
| assert (p + *p < pend); |
| |
| for (c = 0; c < 256; c++) |
| if (c / 8 < *p |
| && (p[1 + (c/8)] & (1 << (c % 8)))) |
| { |
| /* Are we starting a range? */ |
| if (last + 1 == c && ! in_range) |
| { |
| putchar ('-'); |
| in_range = 1; |
| } |
| /* Have we broken a range? */ |
| else if (last + 1 != c && in_range) |
| { |
| putchar (last); |
| in_range = 0; |
| } |
| |
| if (! in_range) |
| putchar (c); |
| |
| last = c; |
| } |
| |
| if (in_range) |
| putchar (last); |
| |
| putchar (']'); |
| |
| p += 1 + *p; |
| # endif /* WCHAR */ |
| } |
| break; |
| |
| case begline: |
| printf ("/begline"); |
| break; |
| |
| case endline: |
| printf ("/endline"); |
| break; |
| |
| case on_failure_jump: |
| PREFIX(extract_number_and_incr) (&mcnt, &p); |
| # ifdef _LIBC |
| printf ("/on_failure_jump to %td", p + mcnt - start); |
| # else |
| printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start)); |
| # endif |
| break; |
| |
| case on_failure_keep_string_jump: |
| PREFIX(extract_number_and_incr) (&mcnt, &p); |
| # ifdef _LIBC |
| printf ("/on_failure_keep_string_jump to %td", p + mcnt - start); |
| # else |
| printf ("/on_failure_keep_string_jump to %ld", |
| (long int) (p + mcnt - start)); |
| # endif |
| break; |
| |
| case dummy_failure_jump: |
| PREFIX(extract_number_and_incr) (&mcnt, &p); |
| # ifdef _LIBC |
| printf ("/dummy_failure_jump to %td", p + mcnt - start); |
| # else |
| printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start)); |
| # endif |
| break; |
| |
| case push_dummy_failure: |
| printf ("/push_dummy_failure"); |
| break; |
| |
| case maybe_pop_jump: |
| PREFIX(extract_number_and_incr) (&mcnt, &p); |
| # ifdef _LIBC |
| printf ("/maybe_pop_jump to %td", p + mcnt - start); |
| # else |
| printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start)); |
| # endif |
| break; |
| |
| case pop_failure_jump: |
| PREFIX(extract_number_and_incr) (&mcnt, &p); |
| # ifdef _LIBC |
| printf ("/pop_failure_jump to %td", p + mcnt - start); |
| # else |
| printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start)); |
| # endif |
| break; |
| |
| case jump_past_alt: |
| PREFIX(extract_number_and_incr) (&mcnt, &p); |
| # ifdef _LIBC |
| printf ("/jump_past_alt to %td", p + mcnt - start); |
| # else |
| printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start)); |
| # endif |
| break; |
| |
| case jump: |
| PREFIX(extract_number_and_incr) (&mcnt, &p); |
| # ifdef _LIBC |
| printf ("/jump to %td", p + mcnt - start); |
| # else |
| printf ("/jump to %ld", (long int) (p + mcnt - start)); |
| # endif |
| break; |
| |
| case succeed_n: |
| PREFIX(extract_number_and_incr) (&mcnt, &p); |
| p1 = p + mcnt; |
| PREFIX(extract_number_and_incr) (&mcnt2, &p); |
| # ifdef _LIBC |
| printf ("/succeed_n to %td, %d times", p1 - start, mcnt2); |
| # else |
| printf ("/succeed_n to %ld, %d times", |
| (long int) (p1 - start), mcnt2); |
| # endif |
| break; |
| |
| case jump_n: |
| PREFIX(extract_number_and_incr) (&mcnt, &p); |
| p1 = p + mcnt; |
| PREFIX(extract_number_and_incr) (&mcnt2, &p); |
| printf ("/jump_n to %d, %d times", p1 - start, mcnt2); |
| break; |
| |
| case set_number_at: |
| PREFIX(extract_number_and_incr) (&mcnt, &p); |
| p1 = p + mcnt; |
| PREFIX(extract_number_and_incr) (&mcnt2, &p); |
| # ifdef _LIBC |
| printf ("/set_number_at location %td to %d", p1 - start, mcnt2); |
| # else |
| printf ("/set_number_at location %ld to %d", |
| (long int) (p1 - start), mcnt2); |
| # endif |
| break; |
| |
| case wordbound: |
| printf ("/wordbound"); |
| break; |
| |
| case notwordbound: |
| printf ("/notwordbound"); |
| break; |
| |
| case wordbeg: |
| printf ("/wordbeg"); |
| break; |
| |
| case wordend: |
| printf ("/wordend"); |
| break; |
| |
| # ifdef emacs |
| case before_dot: |
| printf ("/before_dot"); |
| break; |
| |
| case at_dot: |
| printf ("/at_dot"); |
| break; |
| |
| case after_dot: |
| printf ("/after_dot"); |
| break; |
| |
| case syntaxspec: |
| printf ("/syntaxspec"); |
| mcnt = *p++; |
| printf ("/%d", mcnt); |
| break; |
| |
| case notsyntaxspec: |
| printf ("/notsyntaxspec"); |
| mcnt = *p++; |
| printf ("/%d", mcnt); |
| break; |
| # endif /* emacs */ |
| |
| case wordchar: |
| printf ("/wordchar"); |
| break; |
| |
| case notwordchar: |
| printf ("/notwordchar"); |
| break; |
| |
| case begbuf: |
| printf ("/begbuf"); |
| break; |
| |
| case endbuf: |
| printf ("/endbuf"); |
| break; |
| |
| default: |
| printf ("?%ld", (long int) *(p-1)); |
| } |
| |
| putchar ('\n'); |
| } |
| |
| # ifdef _LIBC |
| printf ("%td:\tend of pattern.\n", p - start); |
| # else |
| printf ("%ld:\tend of pattern.\n", (long int) (p - start)); |
| # endif |
| } |
| |
| |
| void |
| PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp) |
| { |
| UCHAR_T *buffer = (UCHAR_T*) bufp->buffer; |
| |
| PREFIX(print_partial_compiled_pattern) (buffer, buffer |
| + bufp->used / sizeof(UCHAR_T)); |
| printf ("%ld bytes used/%ld bytes allocated.\n", |
| bufp->used, bufp->allocated); |
| |
| if (bufp->fastmap_accurate && bufp->fastmap) |
| { |
| printf ("fastmap: "); |
| print_fastmap (bufp->fastmap); |
| } |
| |
| # ifdef _LIBC |
| printf ("re_nsub: %Zd\t", bufp->re_nsub); |
| # else |
| printf ("re_nsub: %ld\t", (long int) bufp->re_nsub); |
| # endif |
| printf ("regs_alloc: %d\t", bufp->regs_allocated); |
| printf ("can_be_null: %d\t", bufp->can_be_null); |
| printf ("newline_anchor: %d\n", bufp->newline_anchor); |
| printf ("no_sub: %d\t", bufp->no_sub); |
| printf ("not_bol: %d\t", bufp->not_bol); |
| printf ("not_eol: %d\t", bufp->not_eol); |
| printf ("syntax: %lx\n", bufp->syntax); |
| /* Perhaps we should print the translate table? */ |
| } |
| |
| |
| void |
| PREFIX(print_double_string) (const CHAR_T *where, const CHAR_T *string1, |
| int size1, const CHAR_T *string2, int size2) |
| { |
| int this_char; |
| |
| if (where == NULL) |
| printf ("(null)"); |
| else |
| { |
| int cnt; |
| |
| if (FIRST_STRING_P (where)) |
| { |
| for (this_char = where - string1; this_char < size1; this_char++) |
| PUT_CHAR (string1[this_char]); |
| |
| where = string2; |
| } |
| |
| cnt = 0; |
| for (this_char = where - string2; this_char < size2; this_char++) |
| { |
| PUT_CHAR (string2[this_char]); |
| if (++cnt > 100) |
| { |
| fputs ("...", stdout); |
| break; |
| } |
| } |
| } |
| } |
| |
| # ifndef DEFINED_ONCE |
| void |
| printchar (int c) |
| { |
| putc (c, stderr); |
| } |
| # endif |
| |
| # else /* not DEBUG */ |
| |
| # ifndef DEFINED_ONCE |
| # undef assert |
| # define assert(e) |
| |
| # define DEBUG_STATEMENT(e) |
| # define DEBUG_PRINT1(x) |
| # define DEBUG_PRINT2(x1, x2) |
| # define DEBUG_PRINT3(x1, x2, x3) |
| # define DEBUG_PRINT4(x1, x2, x3, x4) |
| # endif /* not DEFINED_ONCE */ |
| # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) |
| # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) |
| |
| # endif /* not DEBUG */ |
| |
| |
| |
| # ifdef WCHAR |
| /* This convert a multibyte string to a wide character string. |
| And write their correspondances to offset_buffer(see below) |
| and write whether each wchar_t is binary data to is_binary. |
| This assume invalid multibyte sequences as binary data. |
| We assume offset_buffer and is_binary is already allocated |
| enough space. */ |
| |
| static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src, |
| size_t len, int *offset_buffer, |
| char *is_binary); |
| static size_t |
| convert_mbs_to_wcs (CHAR_T *dest, const unsigned char*src, size_t len, |
| int *offset_buffer, char *is_binary) |
| /* It hold correspondances between src(char string) and |
| dest(wchar_t string) for optimization. |
| e.g. src = "xxxyzz" |
| dest = {'X', 'Y', 'Z'} |
| (each "xxx", "y" and "zz" represent one multibyte character |
| corresponding to 'X', 'Y' and 'Z'.) |
| offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")} |
| = {0, 3, 4, 6} |
| */ |
| { |
| wchar_t *pdest = dest; |
| const unsigned char *psrc = src; |
| size_t wc_count = 0; |
| |
| mbstate_t mbs; |
| int i, consumed; |
| size_t mb_remain = len; |
| size_t mb_count = 0; |
| |
| /* Initialize the conversion state. */ |
| memset (&mbs, 0, sizeof (mbstate_t)); |
| |
| offset_buffer[0] = 0; |
| for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed, |
| psrc += consumed) |
| { |
| #ifdef _LIBC |
| consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs); |
| #else |
| consumed = mbrtowc (pdest, psrc, mb_remain, &mbs); |
| #endif |
| |
| if (consumed <= 0) |
| /* failed to convert. maybe src contains binary data. |
| So we consume 1 byte manualy. */ |
| { |
| *pdest = *psrc; |
| consumed = 1; |
| is_binary[wc_count] = TRUE; |
| } |
| else |
| is_binary[wc_count] = FALSE; |
| /* In sjis encoding, we use yen sign as escape character in |
| place of reverse solidus. So we convert 0x5c(yen sign in |
| sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse |
| solidus in UCS2). */ |
| if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5) |
| *pdest = (wchar_t) *psrc; |
| |
| offset_buffer[wc_count + 1] = mb_count += consumed; |
| } |
| |
| /* Fill remain of the buffer with sentinel. */ |
| for (i = wc_count + 1 ; i <= len ; i++) |
| offset_buffer[i] = mb_count + 1; |
| |
| return wc_count; |
| } |
| |
| # endif /* WCHAR */ |
| |
| #else /* not INSIDE_RECURSION */ |
| |
| /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can |
| also be assigned to arbitrarily: each pattern buffer stores its own |
| syntax, so it can be changed between regex compilations. */ |
| /* This has no initializer because initialized variables in Emacs |
| become read-only after dumping. */ |
| reg_syntax_t re_syntax_options; |
| |
| |
| /* Specify the precise syntax of regexps for compilation. This provides |
| for compatibility for various utilities which historically have |
| different, incompatible syntaxes. |
| |
| The argument SYNTAX is a bit mask comprised of the various bits |
| defined in regex.h. We return the old syntax. */ |
| |
| reg_syntax_t |
| re_set_syntax (reg_syntax_t syntax) |
| { |
| reg_syntax_t ret = re_syntax_options; |
| |
| re_syntax_options = syntax; |
| # ifdef DEBUG |
| if (syntax & RE_DEBUG) |
| debug = 1; |
| else if (debug) /* was on but now is not */ |
| debug = 0; |
| # endif /* DEBUG */ |
| return ret; |
| } |
| # ifdef _LIBC |
| weak_alias (__re_set_syntax, re_set_syntax) |
| # endif |
| |
| /* This table gives an error message for each of the error codes listed |
| in regex.h. Obviously the order here has to be same as there. |
| POSIX doesn't require that we do anything for REG_NOERROR, |
| but why not be nice? */ |
| |
| static const char *re_error_msgid[] = |
| { |
| gettext_noop ("Success"), /* REG_NOERROR */ |
| gettext_noop ("No match"), /* REG_NOMATCH */ |
| gettext_noop ("Invalid regular expression"), /* REG_BADPAT */ |
| gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */ |
| gettext_noop ("Invalid character class name"), /* REG_ECTYPE */ |
| gettext_noop ("Trailing backslash"), /* REG_EESCAPE */ |
| gettext_noop ("Invalid back reference"), /* REG_ESUBREG */ |
| gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */ |
| gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */ |
| gettext_noop ("Unmatched \\{"), /* REG_EBRACE */ |
| gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */ |
| gettext_noop ("Invalid range end"), /* REG_ERANGE */ |
| gettext_noop ("Memory exhausted"), /* REG_ESPACE */ |
| gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */ |
| gettext_noop ("Premature end of regular expression"), /* REG_EEND */ |
| gettext_noop ("Regular expression too big"), /* REG_ESIZE */ |
| gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */ |
| }; |
| |
| #endif /* INSIDE_RECURSION */ |
| |
| #ifndef DEFINED_ONCE |
| /* Avoiding alloca during matching, to placate r_alloc. */ |
| |
| /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the |
| searching and matching functions should not call alloca. On some |
| systems, alloca is implemented in terms of malloc, and if we're |
| using the relocating allocator routines, then malloc could cause a |
| relocation, which might (if the strings being searched are in the |
| ralloc heap) shift the data out from underneath the regexp |
| routines. |
| |
| Here's another reason to avoid allocation: Emacs |
| processes input from X in a signal handler; processing X input may |
| call malloc; if input arrives while a matching routine is calling |
| malloc, then we're scrod. But Emacs can't just block input while |
| calling matching routines; then we don't notice interrupts when |
| they come in. So, Emacs blocks input around all regexp calls |
| except the matching calls, which it leaves unprotected, in the |
| faith that they will not malloc. */ |
| |
| /* Normally, this is fine. */ |
| # define MATCH_MAY_ALLOCATE |
| |
| /* When using GNU C, we are not REALLY using the C alloca, no matter |
| what config.h may say. So don't take precautions for it. */ |
| # ifdef __GNUC__ |
| # undef C_ALLOCA |
| # endif |
| |
| /* The match routines may not allocate if (1) they would do it with malloc |
| and (2) it's not safe for them to use malloc. |
| Note that if REL_ALLOC is defined, matching would not use malloc for the |
| failure stack, but we would still use it for the register vectors; |
| so REL_ALLOC should not affect this. */ |
| # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs |
| # undef MATCH_MAY_ALLOCATE |
| # endif |
| #endif /* not DEFINED_ONCE */ |
| |
| #ifdef INSIDE_RECURSION |
| /* Failure stack declarations and macros; both re_compile_fastmap and |
| re_match_2 use a failure stack. These have to be macros because of |
| REGEX_ALLOCATE_STACK. */ |
| |
| |
| /* Number of failure points for which to initially allocate space |
| when matching. If this number is exceeded, we allocate more |
| space, so it is not a hard limit. */ |
| # ifndef INIT_FAILURE_ALLOC |
| # define INIT_FAILURE_ALLOC 5 |
| # endif |
| |
| /* Roughly the maximum number of failure points on the stack. Would be |
| exactly that if always used MAX_FAILURE_ITEMS items each time we failed. |
| This is a variable only so users of regex can assign to it; we never |
| change it ourselves. */ |
| |
| # ifdef INT_IS_16BIT |
| |
| # ifndef DEFINED_ONCE |
| # if defined MATCH_MAY_ALLOCATE |
| /* 4400 was enough to cause a crash on Alpha OSF/1, |
| whose default stack limit is 2mb. */ |
| long int re_max_failures = 4000; |
| # else |
| long int re_max_failures = 2000; |
| # endif |
| # endif |
| |
| union PREFIX(fail_stack_elt) |
| { |
| UCHAR_T *pointer; |
| long int integer; |
| }; |
| |
| typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t); |
| |
| typedef struct |
| { |
| PREFIX(fail_stack_elt_t) *stack; |
| unsigned long int size; |
| unsigned long int avail; /* Offset of next open position. */ |
| } PREFIX(fail_stack_type); |
| |
| # else /* not INT_IS_16BIT */ |
| |
| # ifndef DEFINED_ONCE |
| # if defined MATCH_MAY_ALLOCATE |
| /* 4400 was enough to cause a crash on Alpha OSF/1, |
| whose default stack limit is 2mb. */ |
| int re_max_failures = 4000; |
| # else |
| int re_max_failures = 2000; |
| # endif |
| # endif |
| |
| union PREFIX(fail_stack_elt) |
| { |
| UCHAR_T *pointer; |
| int integer; |
| }; |
| |
| typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t); |
| |
| typedef struct |
| { |
| PREFIX(fail_stack_elt_t) *stack; |
| unsigned size; |
| unsigned avail; /* Offset of next open position. */ |
| } PREFIX(fail_stack_type); |
| |
| # endif /* INT_IS_16BIT */ |
| |
| # ifndef DEFINED_ONCE |
| # define FAIL_STACK_EMPTY() (fail_stack.avail == 0) |
| # define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) |
| # define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) |
| # endif |
| |
| |
| /* Define macros to initialize and free the failure stack. |
| Do `return -2' if the alloc fails. */ |
| |
| # ifdef MATCH_MAY_ALLOCATE |
| # define INIT_FAIL_STACK() \ |
| do { \ |
| fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \ |
| REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \ |
| \ |
| if (fail_stack.stack == NULL) \ |
| return -2; \ |
| \ |
| fail_stack.size = INIT_FAILURE_ALLOC; \ |
| fail_stack.avail = 0; \ |
| } while (0) |
| |
| # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack) |
| # else |
| # define INIT_FAIL_STACK() \ |
| do { \ |
| fail_stack.avail = 0; \ |
| } while (0) |
| |
| # define RESET_FAIL_STACK() |
| # endif |
| |
| |
| /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. |
| |
| Return 1 if succeeds, and 0 if either ran out of memory |
| allocating space for it or it was already too large. |
| |
| REGEX_REALLOCATE_STACK requires `destination' be declared. */ |
| |
| # define DOUBLE_FAIL_STACK(fail_stack) \ |
| ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \ |
| ? 0 \ |
| : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \ |
| REGEX_REALLOCATE_STACK ((fail_stack).stack, \ |
| (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \ |
| ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\ |
| \ |
| (fail_stack).stack == NULL \ |
| ? 0 \ |
| : ((fail_stack).size <<= 1, \ |
| 1))) |
| |
| |
| /* Push pointer POINTER on FAIL_STACK. |
| Return 1 if was able to do so and 0 if ran out of memory allocating |
| space to do so. */ |
| # define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \ |
| ((FAIL_STACK_FULL () \ |
| && !DOUBLE_FAIL_STACK (FAIL_STACK)) \ |
| ? 0 \ |
| : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \ |
| 1)) |
| |
| /* Push a pointer value onto the failure stack. |
| Assumes the variable `fail_stack'. Probably should only |
| be called from within `PUSH_FAILURE_POINT'. */ |
| # define PUSH_FAILURE_POINTER(item) \ |
| fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item) |
| |
| /* This pushes an integer-valued item onto the failure stack. |
| Assumes the variable `fail_stack'. Probably should only |
| be called from within `PUSH_FAILURE_POINT'. */ |
| # define PUSH_FAILURE_INT(item) \ |
| fail_stack.stack[fail_stack.avail++].integer = (item) |
| |
| /* Push a fail_stack_elt_t value onto the failure stack. |
| Assumes the variable `fail_stack'. Probably should only |
| be called from within `PUSH_FAILURE_POINT'. */ |
| # define PUSH_FAILURE_ELT(item) \ |
| fail_stack.stack[fail_stack.avail++] = (item) |
| |
| /* These three POP... operations complement the three PUSH... operations. |
| All assume that `fail_stack' is nonempty. */ |
| # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer |
| # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer |
| # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail] |
| |
| /* Used to omit pushing failure point id's when we're not debugging. */ |
| # ifdef DEBUG |
| # define DEBUG_PUSH PUSH_FAILURE_INT |
| # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT () |
| # else |
| # define DEBUG_PUSH(item) |
| # define DEBUG_POP(item_addr) |
| # endif |
| |
| |
| /* Push the information about the state we will need |
| if we ever fail back to it. |
| |
| Requires variables fail_stack, regstart, regend, reg_info, and |
| num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination' |
| be declared. |
| |
| Does `return FAILURE_CODE' if runs out of memory. */ |
| |
| # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \ |
| do { \ |
| char *destination; \ |
| /* Must be int, so when we don't save any registers, the arithmetic \ |
| of 0 + -1 isn't done as unsigned. */ \ |
| /* Can't be int, since there is not a shred of a guarantee that int \ |
| is wide enough to hold a value of something to which pointer can \ |
| be assigned */ \ |
| active_reg_t this_reg; \ |
| \ |
| DEBUG_STATEMENT (failure_id++); \ |
| DEBUG_STATEMENT (nfailure_points_pushed++); \ |
| DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ |
| DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ |
| DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ |
| \ |
| DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \ |
| DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ |
| \ |
| /* Ensure we have enough space allocated for what we will push. */ \ |
| while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ |
| { \ |
| if (!DOUBLE_FAIL_STACK (fail_stack)) \ |
| return failure_code; \ |
| \ |
| DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ |
| (fail_stack).size); \ |
| DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ |
| } \ |
| \ |
| /* Push the info, starting with the registers. */ \ |
| DEBUG_PRINT1 ("\n"); \ |
| \ |
| if (1) \ |
| for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ |
| this_reg++) \ |
| { \ |
| DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \ |
| DEBUG_STATEMENT (num_regs_pushed++); \ |
| \ |
| DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \ |
| PUSH_FAILURE_POINTER (regstart[this_reg]); \ |
| \ |
| DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \ |
| PUSH_FAILURE_POINTER (regend[this_reg]); \ |
| \ |
| DEBUG_PRINT2 (" info: %p\n ", \ |
| reg_info[this_reg].word.pointer); \ |
| DEBUG_PRINT2 (" match_null=%d", \ |
| REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ |
| DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ |
| DEBUG_PRINT2 (" matched_something=%d", \ |
| MATCHED_SOMETHING (reg_info[this_reg])); \ |
| DEBUG_PRINT2 (" ever_matched=%d", \ |
| EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ |
| DEBUG_PRINT1 ("\n"); \ |
| PUSH_FAILURE_ELT (reg_info[this_reg].word); \ |
| } \ |
| \ |
| DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\ |
| PUSH_FAILURE_INT (lowest_active_reg); \ |
| \ |
| DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\ |
| PUSH_FAILURE_INT (highest_active_reg); \ |
| \ |
| DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \ |
| DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ |
| PUSH_FAILURE_POINTER (pattern_place); \ |
| \ |
| DEBUG_PRINT2 (" Pushing string %p: `", string_place); \ |
| DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ |
| size2); \ |
| DEBUG_PRINT1 ("'\n"); \ |
| PUSH_FAILURE_POINTER (string_place); \ |
| \ |
| DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ |
| DEBUG_PUSH (failure_id); \ |
| } while (0) |
| |
| # ifndef DEFINED_ONCE |
| /* This is the number of items that are pushed and popped on the stack |
| for each register. */ |
| # define NUM_REG_ITEMS 3 |
| |
| /* Individual items aside from the registers. */ |
| # ifdef DEBUG |
| # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */ |
| # else |
| # define NUM_NONREG_ITEMS 4 |
| # endif |
| |
| /* We push at most this many items on the stack. */ |
| /* We used to use (num_regs - 1), which is the number of registers |
| this regexp will save; but that was changed to 5 |
| to avoid stack overflow for a regexp with lots of parens. */ |
| # define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS) |
| |
| /* We actually push this many items. */ |
| # define NUM_FAILURE_ITEMS \ |
| (((0 \ |
| ? 0 : highest_active_reg - lowest_active_reg + 1) \ |
| * NUM_REG_ITEMS) \ |
| + NUM_NONREG_ITEMS) |
| |
| /* How many items can still be added to the stack without overflowing it. */ |
| # define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) |
| # endif /* not DEFINED_ONCE */ |
| |
| |
| /* Pops what PUSH_FAIL_STACK pushes. |
| |
| We restore into the parameters, all of which should be lvalues: |
| STR -- the saved data position. |
| PAT -- the saved pattern position. |
| LOW_REG, HIGH_REG -- the highest and lowest active registers. |
| REGSTART, REGEND -- arrays of string positions. |
| REG_INFO -- array of information about each subexpression. |
| |
| Also assumes the variables `fail_stack' and (if debugging), `bufp', |
| `pend', `string1', `size1', `string2', and `size2'. */ |
| # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ |
| { \ |
| DEBUG_STATEMENT (unsigned failure_id;) \ |
| active_reg_t this_reg; \ |
| const UCHAR_T *string_temp; \ |
| \ |
| assert (!FAIL_STACK_EMPTY ()); \ |
| \ |
| /* Remove failure points and point to how many regs pushed. */ \ |
| DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ |
| DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ |
| DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ |
| \ |
| assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ |
| \ |
| DEBUG_POP (&failure_id); \ |
| DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ |
| \ |
| /* If the saved string location is NULL, it came from an \ |
| on_failure_keep_string_jump opcode, and we want to throw away the \ |
| saved NULL, thus retaining our current position in the string. */ \ |
| string_temp = POP_FAILURE_POINTER (); \ |
| if (string_temp != NULL) \ |
| str = (const CHAR_T *) string_temp; \ |
| \ |
| DEBUG_PRINT2 (" Popping string %p: `", str); \ |
| DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ |
| DEBUG_PRINT1 ("'\n"); \ |
| \ |
| pat = (UCHAR_T *) POP_FAILURE_POINTER (); \ |
| DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \ |
| DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ |
| \ |
| /* Restore register info. */ \ |
| high_reg = (active_reg_t) POP_FAILURE_INT (); \ |
| DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \ |
| \ |
| low_reg = (active_reg_t) POP_FAILURE_INT (); \ |
| DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \ |
| \ |
| if (1) \ |
| for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ |
| { \ |
| DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \ |
| \ |
| reg_info[this_reg].word = POP_FAILURE_ELT (); \ |
| DEBUG_PRINT2 (" info: %p\n", \ |
| reg_info[this_reg].word.pointer); \ |
| \ |
| regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \ |
| DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \ |
| \ |
| regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \ |
| DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \ |
| } \ |
| else \ |
| { \ |
| for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \ |
| { \ |
| reg_info[this_reg].word.integer = 0; \ |
| regend[this_reg] = 0; \ |
| regstart[this_reg] = 0; \ |
| } \ |
| highest_active_reg = high_reg; \ |
| } \ |
| \ |
| set_regs_matched_done = 0; \ |
| DEBUG_STATEMENT (nfailure_points_popped++); \ |
| } /* POP_FAILURE_POINT */ |
| |
| /* Structure for per-register (a.k.a. per-group) information. |
| Other register information, such as the |
| starting and ending positions (which are addresses), and the list of |
| inner groups (which is a bits list) are maintained in separate |
| variables. |
| |
| We are making a (strictly speaking) nonportable assumption here: that |
| the compiler will pack our bit fields into something that fits into |
| the type of `word', i.e., is something that fits into one item on the |
| failure stack. */ |
| |
| |
| /* Declarations and macros for re_match_2. */ |
| |
| typedef union |
| { |
| PREFIX(fail_stack_elt_t) word; |
| struct |
| { |
| /* This field is one if this group can match the empty string, |
| zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ |
| # define MATCH_NULL_UNSET_VALUE 3 |
| unsigned match_null_string_p : 2; |
| unsigned is_active : 1; |
| unsigned matched_something : 1; |
| unsigned ever_matched_something : 1; |
| } bits; |
| } PREFIX(register_info_type); |
| |
| # ifndef DEFINED_ONCE |
| # define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p) |
| # define IS_ACTIVE(R) ((R).bits.is_active) |
| # define MATCHED_SOMETHING(R) ((R).bits.matched_something) |
| # define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something) |
| |
| |
| /* Call this when have matched a real character; it sets `matched' flags |
| for the subexpressions which we are currently inside. Also records |
| that those subexprs have matched. */ |
| # define SET_REGS_MATCHED() \ |
| do \ |
| { \ |
| if (!set_regs_matched_done) \ |
| { \ |
| active_reg_t r; \ |
| set_regs_matched_done = 1; \ |
| for (r = lowest_active_reg; r <= highest_active_reg; r++) \ |
| { \ |
| MATCHED_SOMETHING (reg_info[r]) \ |
| = EVER_MATCHED_SOMETHING (reg_info[r]) \ |
| = 1; \ |
| } \ |
| } \ |
| } \ |
| while (0) |
| # endif /* not DEFINED_ONCE */ |
| |
| /* Registers are set to a sentinel when they haven't yet matched. */ |
| static CHAR_T PREFIX(reg_unset_dummy); |
| # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy)) |
| # define REG_UNSET(e) ((e) == REG_UNSET_VALUE) |
| |
| /* Subroutine declarations and macros for regex_compile. */ |
| static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg); |
| static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, |
| int arg1, int arg2); |
| static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, |
| int arg, UCHAR_T *end); |
| static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, |
| int arg1, int arg2, UCHAR_T *end); |
| static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern, |
| const CHAR_T *p, |
| reg_syntax_t syntax); |
| static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p, |
| const CHAR_T *pend, |
| reg_syntax_t syntax); |
| # ifdef WCHAR |
| static reg_errcode_t wcs_compile_range (CHAR_T range_start, |
| const CHAR_T **p_ptr, |
| const CHAR_T *pend, |
| char *translate, |
| reg_syntax_t syntax, |
| UCHAR_T *b, |
| CHAR_T *char_set); |
| static void insert_space (int num, CHAR_T *loc, CHAR_T *end); |
| # else /* BYTE */ |
| static reg_errcode_t byte_compile_range (unsigned int range_start, |
| const char **p_ptr, |
| const char *pend, |
| char *translate, |
| reg_syntax_t syntax, |
| unsigned char *b); |
| # endif /* WCHAR */ |
| |
| /* Fetch the next character in the uncompiled pattern---translating it |
| if necessary. Also cast from a signed character in the constant |
| string passed to us by the user to an unsigned char that we can use |
| as an array index (in, e.g., `translate'). */ |
| /* ifdef MBS_SUPPORT, we translate only if character <= 0xff, |
| because it is impossible to allocate 4GB array for some encodings |
| which have 4 byte character_set like UCS4. */ |
| # ifndef PATFETCH |
| # ifdef WCHAR |
| # define PATFETCH(c) \ |
| do {if (p == pend) return REG_EEND; \ |
| c = (UCHAR_T) *p++; \ |
| if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \ |
| } while (0) |
| # else /* BYTE */ |
| # define PATFETCH(c) \ |
| do {if (p == pend) return REG_EEND; \ |
| c = (unsigned char) *p++; \ |
| if (translate) c = (unsigned char) translate[c]; \ |
| } while (0) |
| # endif /* WCHAR */ |
| # endif |
| |
| /* Fetch the next character in the uncompiled pattern, with no |
| translation. */ |
| # define PATFETCH_RAW(c) \ |
| do {if (p == pend) return REG_EEND; \ |
| c = (UCHAR_T) *p++; \ |
| } while (0) |
| |
| /* Go backwards one character in the pattern. */ |
| # define PATUNFETCH p-- |
| |
| |
| /* If `translate' is non-null, return translate[D], else just D. We |
| cast the subscript to translate because some data is declared as |
| `char *', to avoid warnings when a string constant is passed. But |
| when we use a character as a subscript we must make it unsigned. */ |
| /* ifdef MBS_SUPPORT, we translate only if character <= 0xff, |
| because it is impossible to allocate 4GB array for some encodings |
| which have 4 byte character_set like UCS4. */ |
| |
| # ifndef TRANSLATE |
| # ifdef WCHAR |
| # define TRANSLATE(d) \ |
| ((translate && ((UCHAR_T) (d)) <= 0xff) \ |
| ? (char) translate[(unsigned char) (d)] : (d)) |
| # else /* BYTE */ |
| # define TRANSLATE(d) \ |
| (translate ? (char) translate[(unsigned char) (d)] : (char) (d)) |
| # endif /* WCHAR */ |
| # endif |
| |
| |
| /* Macros for outputting the compiled pattern into `buffer'. */ |
| |
| /* If the buffer isn't allocated when it comes in, use this. */ |
| # define INIT_BUF_SIZE (32 * sizeof(UCHAR_T)) |
| |
| /* Make sure we have at least N more bytes of space in buffer. */ |
| # ifdef WCHAR |
| # define GET_BUFFER_SPACE(n) \ |
| while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \ |
| + (n)*sizeof(CHAR_T)) > bufp->allocated) \ |
| EXTEND_BUFFER () |
| # else /* BYTE */ |
| # define GET_BUFFER_SPACE(n) \ |
| while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \ |
| EXTEND_BUFFER () |
| # endif /* WCHAR */ |
| |
| /* Make sure we have one more byte of buffer space and then add C to it. */ |
| # define BUF_PUSH(c) \ |
| do { \ |
| GET_BUFFER_SPACE (1); \ |
| *b++ = (UCHAR_T) (c); \ |
| } while (0) |
| |
| |
| /* Ensure we have two more bytes of buffer space and then append C1 and C2. */ |
| # define BUF_PUSH_2(c1, c2) \ |
| do { \ |
| GET_BUFFER_SPACE (2); \ |
| *b++ = (UCHAR_T) (c1); \ |
| *b++ = (UCHAR_T) (c2); \ |
| } while (0) |
| |
| |
| /* As with BUF_PUSH_2, except for three bytes. */ |
| # define BUF_PUSH_3(c1, c2, c3) \ |
| do { \ |
| GET_BUFFER_SPACE (3); \ |
| *b++ = (UCHAR_T) (c1); \ |
| *b++ = (UCHAR_T) (c2); \ |
| *b++ = (UCHAR_T) (c3); \ |
| } while (0) |
| |
| /* Store a jump with opcode OP at LOC to location TO. We store a |
| relative address offset by the three bytes the jump itself occupies. */ |
| # define STORE_JUMP(op, loc, to) \ |
| PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE))) |
| |
| /* Likewise, for a two-argument jump. */ |
| # define STORE_JUMP2(op, loc, to, arg) \ |
| PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg) |
| |
| /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ |
| # define INSERT_JUMP(op, loc, to) \ |
| PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b) |
| |
| /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ |
| # define INSERT_JUMP2(op, loc, to, arg) \ |
| PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\ |
| arg, b) |
| |
| /* This is not an arbitrary limit: the arguments which represent offsets |
| into the pattern are two bytes long. So if 2^16 bytes turns out to |
| be too small, many things would have to change. */ |
| /* Any other compiler which, like MSC, has allocation limit below 2^16 |
| bytes will have to use approach similar to what was done below for |
| MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up |
| reallocating to 0 bytes. Such thing is not going to work too well. |
| You have been warned!! */ |
| # ifndef DEFINED_ONCE |
| # if defined _MSC_VER && !defined WIN32 |
| /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. |
| The REALLOC define eliminates a flurry of conversion warnings, |
| but is not required. */ |
| # define MAX_BUF_SIZE 65500L |
| # define REALLOC(p,s) realloc ((p), (size_t) (s)) |
| # else |
| # define MAX_BUF_SIZE (1L << 16) |
| # define REALLOC(p,s) realloc ((p), (s)) |
| # endif |
| |
| /* Extend the buffer by twice its current size via realloc and |
| reset the pointers that pointed into the old block to point to the |
| correct places in the new one. If extending the buffer results in it |
| being larger than MAX_BUF_SIZE, then flag memory exhausted. */ |
| # if __BOUNDED_POINTERS__ |
| # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated) |
| # define MOVE_BUFFER_POINTER(P) \ |
| (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr) |
| # define ELSE_EXTEND_BUFFER_HIGH_BOUND \ |
| else \ |
| { \ |
| SET_HIGH_BOUND (b); \ |
| SET_HIGH_BOUND (begalt); \ |
| if (fixup_alt_jump) \ |
| SET_HIGH_BOUND (fixup_alt_jump); \ |
| if (laststart) \ |
| SET_HIGH_BOUND (laststart); \ |
| if (pending_exact) \ |
| SET_HIGH_BOUND (pending_exact); \ |
| } |
| # else |
| # define MOVE_BUFFER_POINTER(P) (P) += incr |
| # define ELSE_EXTEND_BUFFER_HIGH_BOUND |
| # endif |
| # endif /* not DEFINED_ONCE */ |
| |
| # ifdef WCHAR |
| # define EXTEND_BUFFER() \ |
| do { \ |
| UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \ |
| int wchar_count; \ |
| if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \ |
| return REG_ESIZE; \ |
| bufp->allocated <<= 1; \ |
| if (bufp->allocated > MAX_BUF_SIZE) \ |
| bufp->allocated = MAX_BUF_SIZE; \ |
| /* How many characters the new buffer can have? */ \ |
| wchar_count = bufp->allocated / sizeof(UCHAR_T); \ |
| if (wchar_count == 0) wchar_count = 1; \ |
| /* Truncate the buffer to CHAR_T align. */ \ |
| bufp->allocated = wchar_count * sizeof(UCHAR_T); \ |
| RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \ |
| bufp->buffer = (char*)COMPILED_BUFFER_VAR; \ |
| if (COMPILED_BUFFER_VAR == NULL) \ |
| return REG_ESPACE; \ |
| /* If the buffer moved, move all the pointers into it. */ \ |
| if (old_buffer != COMPILED_BUFFER_VAR) \ |
| { \ |
| PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer; \ |
| MOVE_BUFFER_POINTER (b); \ |
| MOVE_BUFFER_POINTER (begalt); \ |
| if (fixup_alt_jump) \ |
| MOVE_BUFFER_POINTER (fixup_alt_jump); \ |
| if (laststart) \ |
| MOVE_BUFFER_POINTER (laststart); \ |
| if (pending_exact) \ |
| MOVE_BUFFER_POINTER (pending_exact); \ |
| } \ |
| ELSE_EXTEND_BUFFER_HIGH_BOUND \ |
| } while (0) |
| # else /* BYTE */ |
| # define EXTEND_BUFFER() \ |
| do { \ |
| UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \ |
| if (bufp->allocated == MAX_BUF_SIZE) \ |
| return REG_ESIZE; \ |
| bufp->allocated <<= 1; \ |
| if (bufp->allocated > MAX_BUF_SIZE) \ |
| bufp->allocated = MAX_BUF_SIZE; \ |
| bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \ |
| bufp->allocated); \ |
| if (COMPILED_BUFFER_VAR == NULL) \ |
| return REG_ESPACE; \ |
| /* If the buffer moved, move all the pointers into it. */ \ |
| if (old_buffer != COMPILED_BUFFER_VAR) \ |
| { \ |
| PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer; \ |
| MOVE_BUFFER_POINTER (b); \ |
| MOVE_BUFFER_POINTER (begalt); \ |
| if (fixup_alt_jump) \ |
| MOVE_BUFFER_POINTER (fixup_alt_jump); \ |
| if (laststart) \ |
| MOVE_BUFFER_POINTER (laststart); \ |
| if (pending_exact) \ |
| MOVE_BUFFER_POINTER (pending_exact); \ |
| } \ |
| ELSE_EXTEND_BUFFER_HIGH_BOUND \ |
| } while (0) |
| # endif /* WCHAR */ |
| |
| # ifndef DEFINED_ONCE |
| /* Since we have one byte reserved for the register number argument to |
| {start,stop}_memory, the maximum number of groups we can report |
| things about is what fits in that byte. */ |
| # define MAX_REGNUM 255 |
| |
| /* But patterns can have more than `MAX_REGNUM' registers. We just |
| ignore the excess. */ |
| typedef unsigned regnum_t; |
| |
| |
| /* Macros for the compile stack. */ |
| |
| /* Since offsets can go either forwards or backwards, this type needs to |
| be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ |
| /* int may be not enough when sizeof(int) == 2. */ |
| typedef long pattern_offset_t; |
| |
| typedef struct |
| { |
| pattern_offset_t begalt_offset; |
| pattern_offset_t fixup_alt_jump; |
| pattern_offset_t inner_group_offset; |
| pattern_offset_t laststart_offset; |
| regnum_t regnum; |
| } compile_stack_elt_t; |
| |
| |
| typedef struct |
| { |
| compile_stack_elt_t *stack; |
| unsigned size; |
| unsigned avail; /* Offset of next open position. */ |
| } compile_stack_type; |
| |
| |
| # define INIT_COMPILE_STACK_SIZE 32 |
| |
| # define COMPILE_STACK_EMPTY (compile_stack.avail == 0) |
| # define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) |
| |
| /* The next available element. */ |
| # define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) |
| |
| # endif /* not DEFINED_ONCE */ |
| |
| /* Set the bit for character C in a list. */ |
| # ifndef DEFINED_ONCE |
| # define SET_LIST_BIT(c) \ |
| (b[((unsigned char) (c)) / BYTEWIDTH] \ |
| |= 1 << (((unsigned char) c) % BYTEWIDTH)) |
| # endif /* DEFINED_ONCE */ |
| |
| /* Get the next unsigned number in the uncompiled pattern. */ |
| # define GET_UNSIGNED_NUMBER(num) \ |
| { \ |
| while (p != pend) \ |
| { \ |
| PATFETCH (c); \ |
| if (c < '0' || c > '9') \ |
| break; \ |
| if (num <= RE_DUP_MAX) \ |
| { \ |
| if (num < 0) \ |
| num = 0; \ |
| num = num * 10 + c - '0'; \ |
| } \ |
| } \ |
| } |
| |
| # ifndef DEFINED_ONCE |
| # if defined _LIBC || WIDE_CHAR_SUPPORT |
| /* The GNU C library provides support for user-defined character classes |
| and the functions from ISO C amendement 1. */ |
| # ifdef CHARCLASS_NAME_MAX |
| # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX |
| # else |
| /* This shouldn't happen but some implementation might still have this |
| problem. Use a reasonable default value. */ |
| # define CHAR_CLASS_MAX_LENGTH 256 |
| # endif |
| |
| # ifdef _LIBC |
| # define IS_CHAR_CLASS(string) __wctype (string) |
| # else |
| # define IS_CHAR_CLASS(string) wctype (string) |
| # endif |
| # else |
| # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ |
| |
| # define IS_CHAR_CLASS(string) \ |
| (STREQ (string, "alpha") || STREQ (string, "upper") \ |
| || STREQ (string, "lower") || STREQ (string, "digit") \ |
| || STREQ (string, "alnum") || STREQ (string, "xdigit") \ |
| || STREQ (string, "space") || STREQ (string, "print") \ |
| || STREQ (string, "punct") || STREQ (string, "graph") \ |
| || STREQ (string, "cntrl") || STREQ (string, "blank")) |
| # endif |
| # endif /* DEFINED_ONCE */ |
| |
| # ifndef MATCH_MAY_ALLOCATE |
| |
| /* If we cannot allocate large objects within re_match_2_internal, |
| we make the fail stack and register vectors global. |
| The fail stack, we grow to the maximum size when a regexp |
| is compiled. |
| The register vectors, we adjust in size each time we |
| compile a regexp, according to the number of registers it needs. */ |
| |
| static PREFIX(fail_stack_type) fail_stack; |
| |
| /* Size with which the following vectors are currently allocated. |
| That is so we can make them bigger as needed, |
| but never make them smaller. */ |
| # ifdef DEFINED_ONCE |
| static int regs_allocated_size; |
| |
| static const char ** regstart, ** regend; |
| static const char ** old_regstart, ** old_regend; |
| static const char **best_regstart, **best_regend; |
| static const char **reg_dummy; |
| # endif /* DEFINED_ONCE */ |
| |
| static PREFIX(register_info_type) *PREFIX(reg_info); |
| static PREFIX(register_info_type) *PREFIX(reg_info_dummy); |
| |
| /* Make the register vectors big enough for NUM_REGS registers, |
| but don't make them smaller. */ |
| |
| static void |
| PREFIX(regex_grow_registers) (int num_regs) |
| { |
| if (num_regs > regs_allocated_size) |
| { |
| RETALLOC_IF (regstart, num_regs, const char *); |
| RETALLOC_IF (regend, num_regs, const char *); |
| RETALLOC_IF (old_regstart, num_regs, const char *); |
| RETALLOC_IF (old_regend, num_regs, const char *); |
| RETALLOC_IF (best_regstart, num_regs, const char *); |
| RETALLOC_IF (best_regend, num_regs, const char *); |
| RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type)); |
| RETALLOC_IF (reg_dummy, num_regs, const char *); |
| RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type)); |
| |
| regs_allocated_size = num_regs; |
| } |
| } |
| |
| # endif /* not MATCH_MAY_ALLOCATE */ |
| |
| # ifndef DEFINED_ONCE |
| static boolean group_in_compile_stack (compile_stack_type compile_stack, |
| regnum_t regnum); |
| # endif /* not DEFINED_ONCE */ |
| |
| /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. |
| Returns one of error codes defined in `regex.h', or zero for success. |
| |
| Assumes the `allocated' (and perhaps `buffer') and `translate' |
| fields are set in BUFP on entry. |
| |
| If it succeeds, results are put in BUFP (if it returns an error, the |
| contents of BUFP are undefined): |
| `buffer' is the compiled pattern; |
| `syntax' is set to SYNTAX; |
| `used' is set to the length of the compiled pattern; |
| `fastmap_accurate' is zero; |
| `re_nsub' is the number of subexpressions in PATTERN; |
| `not_bol' and `not_eol' are zero; |
| |
| The `fastmap' and `newline_anchor' fields are neither |
| examined nor set. */ |
| |
| /* Return, freeing storage we allocated. */ |
| # ifdef WCHAR |
| # define FREE_STACK_RETURN(value) \ |
| return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value) |
| # else |
| # define FREE_STACK_RETURN(value) \ |
| return (free (compile_stack.stack), value) |
| # endif /* WCHAR */ |
| |
| static reg_errcode_t |
| PREFIX(regex_compile) (const char *ARG_PREFIX(pattern), |
| size_t ARG_PREFIX(size), reg_syntax_t syntax, |
| struct re_pattern_buffer *bufp) |
| { |
| /* We fetch characters from PATTERN here. Even though PATTERN is |
| `char *' (i.e., signed), we declare these variables as unsigned, so |
| they can be reliably used as array indices. */ |
| register UCHAR_T c, c1; |
| |
| #ifdef WCHAR |
| /* A temporary space to keep wchar_t pattern and compiled pattern. */ |
| CHAR_T *pattern, *COMPILED_BUFFER_VAR; |
| size_t size; |
| /* offset buffer for optimization. See convert_mbs_to_wc. */ |
| int *mbs_offset = NULL; |
| /* It hold whether each wchar_t is binary data or not. */ |
| char *is_binary = NULL; |
| /* A flag whether exactn is handling binary data or not. */ |
| char is_exactn_bin = FALSE; |
| #endif /* WCHAR */ |
| |
| /* A random temporary spot in PATTERN. */ |
| const CHAR_T *p1; |
| |
| /* Points to the end of the buffer, where we should append. */ |
| register UCHAR_T *b; |
| |
| /* Keeps track of unclosed groups. */ |
| compile_stack_type compile_stack; |
| |
| /* Points to the current (ending) position in the pattern. */ |
| #ifdef WCHAR |
| const CHAR_T *p; |
| const CHAR_T *pend; |
| #else /* BYTE */ |
| const CHAR_T *p = pattern; |
| const CHAR_T *pend = pattern + size; |
| #endif /* WCHAR */ |
| |
| /* How to translate the characters in the pattern. */ |
| RE_TRANSLATE_TYPE translate = bufp->translate; |
| |
| /* Address of the count-byte of the most recently inserted `exactn' |
| command. This makes it possible to tell if a new exact-match |
| character can be added to that command or if the character requires |
| a new `exactn' command. */ |
| UCHAR_T *pending_exact = 0; |
| |
| /* Address of start of the most recently finished expression. |
| This tells, e.g., postfix * where to find the start of its |
| operand. Reset at the beginning of groups and alternatives. */ |
| UCHAR_T *laststart = 0; |
| |
| /* Address of beginning of regexp, or inside of last group. */ |
| UCHAR_T *begalt; |
| |
| /* Address of the place where a forward jump should go to the end of |
| the containing expression. Each alternative of an `or' -- except the |
| last -- ends with a forward jump of this sort. */ |
| UCHAR_T *fixup_alt_jump = 0; |
| |
| /* Counts open-groups as they are encountered. Remembered for the |
| matching close-group on the compile stack, so the same register |
| number is put in the stop_memory as the start_memory. */ |
| regnum_t regnum = 0; |
| |
| #ifdef WCHAR |
| /* Initialize the wchar_t PATTERN and offset_buffer. */ |
| p = pend = pattern = TALLOC(csize + 1, CHAR_T); |
| mbs_offset = TALLOC(csize + 1, int); |
| is_binary = TALLOC(csize + 1, char); |
| if (pattern == NULL || mbs_offset == NULL || is_binary == NULL) |
| { |
| free(pattern); |
| free(mbs_offset); |
| free(is_binary); |
| return REG_ESPACE; |
| } |
| pattern[csize] = L'\0'; /* sentinel */ |
| size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary); |
| pend = p + size; |
| if (size < 0) |
| { |
| free(pattern); |
| free(mbs_offset); |
| free(is_binary); |
| return REG_BADPAT; |
| } |
| #endif |
| |
| #ifdef DEBUG |
| DEBUG_PRINT1 ("\nCompiling pattern: "); |
| if (debug) |
| { |
| unsigned debug_count; |
| |
| for (debug_count = 0; debug_count < size; debug_count++) |
| PUT_CHAR (pattern[debug_count]); |
| putchar ('\n'); |
| } |
| #endif /* DEBUG */ |
| |
| /* Initialize the compile stack. */ |
| compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); |
| if (compile_stack.stack == NULL) |
| { |
| #ifdef WCHAR |
| free(pattern); |
| free(mbs_offset); |
| free(is_binary); |
| #endif |
| return REG_ESPACE; |
| } |
| |
| compile_stack.size = INIT_COMPILE_STACK_SIZE; |
| compile_stack.avail = 0; |
| |
| /* Initialize the pattern buffer. */ |
| bufp->syntax = syntax; |
| bufp->fastmap_accurate = 0; |
| bufp->not_bol = bufp->not_eol = 0; |
| |
| /* Set `used' to zero, so that if we return an error, the pattern |
| printer (for debugging) will think there's no pattern. We reset it |
| at the end. */ |
| bufp->used = 0; |
| |
| /* Always count groups, whether or not bufp->no_sub is set. */ |
| bufp->re_nsub = 0; |
| |
| #if !defined emacs && !defined SYNTAX_TABLE |
| /* Initialize the syntax table. */ |
| init_syntax_once (); |
| #endif |
| |
| if (bufp->allocated == 0) |
| { |
| if (bufp->buffer) |
| { /* If zero allocated, but buffer is non-null, try to realloc |
| enough space. This loses if buffer's address is bogus, but |
| that is the user's responsibility. */ |
| #ifdef WCHAR |
| /* Free bufp->buffer and allocate an array for wchar_t pattern |
| buffer. */ |
| free(bufp->buffer); |
| COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T), |
| UCHAR_T); |
| #else |
| RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T); |
| #endif /* WCHAR */ |
| } |
| else |
| { /* Caller did not allocate a buffer. Do it for them. */ |
| COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T), |
| UCHAR_T); |
| } |
| |
| if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE); |
| #ifdef WCHAR |
| bufp->buffer = (char*)COMPILED_BUFFER_VAR; |
| #endif /* WCHAR */ |
| bufp->allocated = INIT_BUF_SIZE; |
| } |
| #ifdef WCHAR |
| else |
| COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer; |
| #endif |
| |
| begalt = b = COMPILED_BUFFER_VAR; |
| |
| /* Loop through the uncompiled pattern until we're at the end. */ |
| while (p != pend) |
| { |
| PATFETCH (c); |
| |
| switch (c) |
| { |
| case '^': |
| { |
| if ( /* If at start of pattern, it's an operator. */ |
| p == pattern + 1 |
| /* If context independent, it's an operator. */ |
| || syntax & RE_CONTEXT_INDEP_ANCHORS |
| /* Otherwise, depends on what's come before. */ |
| || PREFIX(at_begline_loc_p) (pattern, p, syntax)) |
| BUF_PUSH (begline); |
| else |
| goto normal_char; |
| } |
| break; |
| |
| |
| case '$': |
| { |
| if ( /* If at end of pattern, it's an operator. */ |
| p == pend |
| /* If context independent, it's an operator. */ |
| || syntax & RE_CONTEXT_INDEP_ANCHORS |
| /* Otherwise, depends on what's next. */ |
| || PREFIX(at_endline_loc_p) (p, pend, syntax)) |
| BUF_PUSH (endline); |
| else |
| goto normal_char; |
| } |
| break; |
| |
| |
| case '+': |
| case '?': |
| if ((syntax & RE_BK_PLUS_QM) |
| || (syntax & RE_LIMITED_OPS)) |
| goto normal_char; |
| /* Fall through. */ |
| handle_plus: |
| case '*': |
| /* If there is no previous pattern... */ |
| if (!laststart) |
| { |
| if (syntax & RE_CONTEXT_INVALID_OPS) |
| FREE_STACK_RETURN (REG_BADRPT); |
| else if (!(syntax & RE_CONTEXT_INDEP_OPS)) |
| goto normal_char; |
| } |
| |
| { |
| /* Are we optimizing this jump? */ |
| boolean keep_string_p = false; |
| |
| /* 1 means zero (many) matches is allowed. */ |
| char zero_times_ok = 0, many_times_ok = 0; |
| |
| /* If there is a sequence of repetition chars, collapse it |
| down to just one (the right one). We can't combine |
| interval operators with these because of, e.g., `a{2}*', |
| which should only match an even number of `a's. */ |
| |
| for (;;) |
| { |
| zero_times_ok |= c != '+'; |
| many_times_ok |= c != '?'; |
| |
| if (p == pend) |
| break; |
| |
| PATFETCH (c); |
| |
| if (c == '*' |
| || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))) |
| ; |
| |
| else if (syntax & RE_BK_PLUS_QM && c == '\\') |
| { |
| if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); |
| |
| PATFETCH (c1); |
| if (!(c1 == '+' || c1 == '?')) |
| { |
| PATUNFETCH; |
| PATUNFETCH; |
| break; |
| } |
| |
| c = c1; |
| } |
| else |
| { |
| PATUNFETCH; |
| break; |
| } |
| |
| /* If we get here, we found another repeat character. */ |
| } |
| |
| /* Star, etc. applied to an empty pattern is equivalent |
| to an empty pattern. */ |
| if (!laststart) |
| break; |
| |
| /* Now we know whether or not zero matches is allowed |
| and also whether or not two or more matches is allowed. */ |
| if (many_times_ok) |
| { /* More than one repetition is allowed, so put in at the |
| end a backward relative jump from `b' to before the next |
| jump we're going to put in below (which jumps from |
| laststart to after this jump). |
| |
| But if we are at the `*' in the exact sequence `.*\n', |
| insert an unconditional jump backwards to the ., |
| instead of the beginning of the loop. This way we only |
| push a failure point once, instead of every time |
| through the loop. */ |
| assert (p - 1 > pattern); |
| |
| /* Allocate the space for the jump. */ |
| GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE); |
| |
| /* We know we are not at the first character of the pattern, |
| because laststart was nonzero. And we've already |
| incremented `p', by the way, to be the character after |
| the `*'. Do we have to do something analogous here |
| for null bytes, because of RE_DOT_NOT_NULL? */ |
| if (TRANSLATE (*(p - 2)) == TRANSLATE ('.') |
| && zero_times_ok |
| && p < pend && TRANSLATE (*p) == TRANSLATE ('\n') |
| && !(syntax & RE_DOT_NEWLINE)) |
| { /* We have .*\n. */ |
| STORE_JUMP (jump, b, laststart); |
| keep_string_p = true; |
| } |
| else |
| /* Anything else. */ |
| STORE_JUMP (maybe_pop_jump, b, laststart - |
| (1 + OFFSET_ADDRESS_SIZE)); |
| |
| /* We've added more stuff to the buffer. */ |
| b += 1 + OFFSET_ADDRESS_SIZE; |
| } |
| |
| /* On failure, jump from laststart to b + 3, which will be the |
| end of the buffer after this jump is inserted. */ |
| /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of |
| 'b + 3'. */ |
| GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE); |
| INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump |
| : on_failure_jump, |
| laststart, b + 1 + OFFSET_ADDRESS_SIZE); |
| pending_exact = 0; |
| b += 1 + OFFSET_ADDRESS_SIZE; |
| |
| if (!zero_times_ok) |
| { |
| /* At least one repetition is required, so insert a |
| `dummy_failure_jump' before the initial |
| `on_failure_jump' instruction of the loop. This |
| effects a skip over that instruction the first time |
| we hit that loop. */ |
| GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE); |
| INSERT_JUMP (dummy_failure_jump, laststart, laststart + |
| 2 + 2 * OFFSET_ADDRESS_SIZE); |
| b += 1 + OFFSET_ADDRESS_SIZE; |
| } |
| } |
| break; |
| |
| |
| case '.': |
| laststart = b; |
| BUF_PUSH (anychar); |
| break; |
| |
| |
| case '[': |
| { |
| boolean had_char_class = false; |
| #ifdef WCHAR |
| CHAR_T range_start = 0xffffffff; |
| #else |
| unsigned int range_start = 0xffffffff; |
| #endif |
| if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
| |
| #ifdef WCHAR |
| /* We assume a charset(_not) structure as a wchar_t array. |
| charset[0] = (re_opcode_t) charset(_not) |
| charset[1] = l (= length of char_classes) |
| charset[2] = m (= length of collating_symbols) |
| charset[3] = n (= length of equivalence_classes) |
| charset[4] = o (= length of char_ranges) |
| charset[5] = p (= length of chars) |
| |
| charset[6] = char_class (wctype_t) |
| charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t) |
| ... |
| charset[l+5] = char_class (wctype_t) |
| |
| charset[l+6] = collating_symbol (wchar_t) |
| ... |
| charset[l+m+5] = collating_symbol (wchar_t) |
| ifdef _LIBC we use the index if |
| _NL_COLLATE_SYMB_EXTRAMB instead of |
| wchar_t string. |
| |
| charset[l+m+6] = equivalence_classes (wchar_t) |
| ... |
| charset[l+m+n+5] = equivalence_classes (wchar_t) |
| ifdef _LIBC we use the index in |
| _NL_COLLATE_WEIGHT instead of |
| wchar_t string. |
| |
| charset[l+m+n+6] = range_start |
| charset[l+m+n+7] = range_end |
| ... |
| charset[l+m+n+2o+4] = range_start |
| charset[l+m+n+2o+5] = range_end |
| ifdef _LIBC we use the value looked up |
| in _NL_COLLATE_COLLSEQ instead of |
| wchar_t character. |
| |
| charset[l+m+n+2o+6] = char |
| ... |
| charset[l+m+n+2o+p+5] = char |
| |
| */ |
| |
| /* We need at least 6 spaces: the opcode, the length of |
| char_classes, the length of collating_symbols, the length of |
| equivalence_classes, the length of char_ranges, the length of |
| chars. */ |
| GET_BUFFER_SPACE (6); |
| |
| /* Save b as laststart. And We use laststart as the pointer |
| to the first element of the charset here. |
| In other words, laststart[i] indicates charset[i]. */ |
| laststart = b; |
| |
| /* We test `*p == '^' twice, instead of using an if |
| statement, so we only need one BUF_PUSH. */ |
| BUF_PUSH (*p == '^' ? charset_not : charset); |
| if (*p == '^') |
| p++; |
| |
| /* Push the length of char_classes, the length of |
| collating_symbols, the length of equivalence_classes, the |
| length of char_ranges and the length of chars. */ |
| BUF_PUSH_3 (0, 0, 0); |
| BUF_PUSH_2 (0, 0); |
| |
| /* Remember the first position in the bracket expression. */ |
| p1 = p; |
| |
| /* charset_not matches newline according to a syntax bit. */ |
| if ((re_opcode_t) b[-6] == charset_not |
| && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) |
| { |
| BUF_PUSH('\n'); |
| laststart[5]++; /* Update the length of characters */ |
| } |
| |
| /* Read in characters and ranges, setting map bits. */ |
| for (;;) |
| { |
| if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
| |
| PATFETCH (c); |
| |
| /* \ might escape characters inside [...] and [^...]. */ |
| if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') |
| { |
| if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); |
| |
| PATFETCH (c1); |
| BUF_PUSH(c1); |
| laststart[5]++; /* Update the length of chars */ |
| range_start = c1; |
| continue; |
| } |
| |
| /* Could be the end of the bracket expression. If it's |
| not (i.e., when the bracket expression is `[]' so |
| far), the ']' character bit gets set way below. */ |
| if (c == ']' && p != p1 + 1) |
| break; |
| |
| /* Look ahead to see if it's a range when the last thing |
| was a character class. */ |
| if (had_char_class && c == '-' && *p != ']') |
| FREE_STACK_RETURN (REG_ERANGE); |
| |
| /* Look ahead to see if it's a range when the last thing |
| was a character: if this is a hyphen not at the |
| beginning or the end of a list, then it's the range |
| operator. */ |
| if (c == '-' |
| && !(p - 2 >= pattern && p[-2] == '[') |
| && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') |
| && *p != ']') |
| { |
| reg_errcode_t ret; |
| /* Allocate the space for range_start and range_end. */ |
| GET_BUFFER_SPACE (2); |
| /* Update the pointer to indicate end of buffer. */ |
| b += 2; |
| ret = wcs_compile_range (range_start, &p, pend, translate, |
| syntax, b, laststart); |
| if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); |
| range_start = 0xffffffff; |
| } |
| else if (p[0] == '-' && p[1] != ']') |
| { /* This handles ranges made up of characters only. */ |
| reg_errcode_t ret; |
| |
| /* Move past the `-'. */ |
| PATFETCH (c1); |
| /* Allocate the space for range_start and range_end. */ |
| GET_BUFFER_SPACE (2); |
| /* Update the pointer to indicate end of buffer. */ |
| b += 2; |
| ret = wcs_compile_range (c, &p, pend, translate, syntax, b, |
| laststart); |
| if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); |
| range_start = 0xffffffff; |
| } |
| |
| /* See if we're at the beginning of a possible character |
| class. */ |
| else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') |
| { /* Leave room for the null. */ |
| char str[CHAR_CLASS_MAX_LENGTH + 1]; |
| |
| PATFETCH (c); |
| c1 = 0; |
| |
| /* If pattern is `[[:'. */ |
| if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
| |
| for (;;) |
| { |
| PATFETCH (c); |
| if ((c == ':' && *p == ']') || p == pend) |
| break; |
| if (c1 < CHAR_CLASS_MAX_LENGTH) |
| str[c1++] = c; |
| else |
| /* This is in any case an invalid class name. */ |
| str[0] = '\0'; |
| } |
| str[c1] = '\0'; |
| |
| /* If isn't a word bracketed by `[:' and `:]': |
| undo the ending character, the letters, and leave |
| the leading `:' and `[' (but store them as character). */ |
| if (c == ':' && *p == ']') |
| { |
| wctype_t wt; |
| uintptr_t alignedp; |
| |
| /* Query the character class as wctype_t. */ |
| wt = IS_CHAR_CLASS (str); |
| if (wt == 0) |
| FREE_STACK_RETURN (REG_ECTYPE); |
| |
| /* Throw away the ] at the end of the character |
| class. */ |
| PATFETCH (c); |
| |
| if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
| |
| /* Allocate the space for character class. */ |
| GET_BUFFER_SPACE(CHAR_CLASS_SIZE); |
| /* Update the pointer to indicate end of buffer. */ |
| b += CHAR_CLASS_SIZE; |
| /* Move data which follow character classes |
| not to violate the data. */ |
| insert_space(CHAR_CLASS_SIZE, |
| laststart + 6 + laststart[1], |
| b - 1); |
| alignedp = ((uintptr_t)(laststart + 6 + laststart[1]) |
| + __alignof__(wctype_t) - 1) |
| & ~(uintptr_t)(__alignof__(wctype_t) - 1); |
| /* Store the character class. */ |
| *((wctype_t*)alignedp) = wt; |
| /* Update length of char_classes */ |
| laststart[1] += CHAR_CLASS_SIZE; |
| |
| had_char_class = true; |
| } |
| else |
| { |
| c1++; |
| while (c1--) |
| PATUNFETCH; |
| BUF_PUSH ('['); |
| BUF_PUSH (':'); |
| laststart[5] += 2; /* Update the length of characters */ |
| range_start = ':'; |
| had_char_class = false; |
| } |
| } |
| else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '=' |
| || *p == '.')) |
| { |
| CHAR_T str[128]; /* Should be large enough. */ |
| CHAR_T delim = *p; /* '=' or '.' */ |
| # ifdef _LIBC |
| uint32_t nrules = |
| _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
| # endif |
| PATFETCH (c); |
| c1 = 0; |
| |
| /* If pattern is `[[=' or '[[.'. */ |
| if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
| |
| for (;;) |
| { |
| PATFETCH (c); |
| if ((c == delim && *p == ']') || p == pend) |
| break; |
| if (c1 < sizeof (str) - 1) |
| str[c1++] = c; |
| else |
| /* This is in any case an invalid class name. */ |
| str[0] = '\0'; |
| } |
| str[c1] = '\0'; |
| |
| if (c == delim && *p == ']' && str[0] != '\0') |
| { |
| unsigned int i, offset; |
| /* If we have no collation data we use the default |
| collation in which each character is in a class |
| by itself. It also means that ASCII is the |
| character set and therefore we cannot have character |
| with more than one byte in the multibyte |
| representation. */ |
| |
| /* If not defined _LIBC, we push the name and |
| `\0' for the sake of matching performance. */ |
| int datasize = c1 + 1; |
| |
| # ifdef _LIBC |
| int32_t idx = 0; |
| if (nrules == 0) |
| # endif |
| { |
| if (c1 != 1) |
| FREE_STACK_RETURN (REG_ECOLLATE); |
| } |
| # ifdef _LIBC |
| else |
| { |
| const int32_t *table; |
| const int32_t *weights; |
| const int32_t *extra; |
| const int32_t *indirect; |
| wint_t *cp; |
| |
| /* This #include defines a local function! */ |
| # include <locale/weightwc.h> |
| |
| if(delim == '=') |
| { |
| /* We push the index for equivalence class. */ |
| cp = (wint_t*)str; |
| |
| table = (const int32_t *) |
| _NL_CURRENT (LC_COLLATE, |
| _NL_COLLATE_TABLEWC); |
| weights = (const int32_t *) |
| _NL_CURRENT (LC_COLLATE, |
| _NL_COLLATE_WEIGHTWC); |
| extra = (const int32_t *) |
| _NL_CURRENT (LC_COLLATE, |
| _NL_COLLATE_EXTRAWC); |
| indirect = (const int32_t *) |
| _NL_CURRENT (LC_COLLATE, |
| _NL_COLLATE_INDIRECTWC); |
| |
| idx = findidx ((const wint_t**)&cp); |
| if (idx == 0 || cp < (wint_t*) str + c1) |
| /* This is no valid character. */ |
| FREE_STACK_RETURN (REG_ECOLLATE); |
| |
| str[0] = (wchar_t)idx; |
| } |
| else /* delim == '.' */ |
| { |
| /* We push collation sequence value |
| for collating symbol. */ |
| int32_t table_size; |
| const int32_t *symb_table; |
| const unsigned char *extra; |
| int32_t idx; |
| int32_t elem; |
| int32_t second; |
| int32_t hash; |
| char char_str[c1]; |
| |
| /* We have to convert the name to a single-byte |
| string. This is possible since the names |
| consist of ASCII characters and the internal |
| representation is UCS4. */ |
| for (i = 0; i < c1; ++i) |
| char_str[i] = str[i]; |
| |
| table_size = |
| _NL_CURRENT_WORD (LC_COLLATE, |
| _NL_COLLATE_SYMB_HASH_SIZEMB); |
| symb_table = (const int32_t *) |
| _NL_CURRENT (LC_COLLATE, |
| _NL_COLLATE_SYMB_TABLEMB); |
| extra = (const unsigned char *) |
| _NL_CURRENT (LC_COLLATE, |
| _NL_COLLATE_SYMB_EXTRAMB); |
| |
| /* Locate the character in the hashing table. */ |
| hash = elem_hash (char_str, c1); |
| |
| idx = 0; |
| elem = hash % table_size; |
| second = hash % (table_size - 2); |
| while (symb_table[2 * elem] != 0) |
| { |
| /* First compare the hashing value. */ |
| if (symb_table[2 * elem] == hash |
| && c1 == extra[symb_table[2 * elem + 1]] |
| && memcmp (char_str, |
| &extra[symb_table[2 * elem + 1] |
| + 1], c1) == 0) |
| { |
| /* Yep, this is the entry. */ |
| idx = symb_table[2 * elem + 1]; |
| idx += 1 + extra[idx]; |
| break; |
| } |
| |
| /* Next entry. */ |
| elem += second; |
| } |
| |
| if (symb_table[2 * elem] != 0) |
| { |
| /* Compute the index of the byte sequence |
| in the table. */ |
| idx += 1 + extra[idx]; |
| /* Adjust for the alignment. */ |
| idx = (idx + 3) & ~3; |
| |
| str[0] = (wchar_t) idx + 4; |
| } |
| else if (symb_table[2 * elem] == 0 && c1 == 1) |
| { |
| /* No valid character. Match it as a |
| single byte character. */ |
| had_char_class = false; |
| BUF_PUSH(str[0]); |
| /* Update the length of characters */ |
| laststart[5]++; |
| range_start = str[0]; |
| |
| /* Throw away the ] at the end of the |
| collating symbol. */ |
| PATFETCH (c); |
| /* exit from the switch block. */ |
| continue; |
| } |
| else |
| FREE_STACK_RETURN (REG_ECOLLATE); |
| } |
| datasize = 1; |
| } |
| # endif |
| /* Throw away the ] at the end of the equivalence |
| class (or collating symbol). */ |
| PATFETCH (c); |
| |
| /* Allocate the space for the equivalence class |
| (or collating symbol) (and '\0' if needed). */ |
| GET_BUFFER_SPACE(datasize); |
| /* Update the pointer to indicate end of buffer. */ |
| b += datasize; |
| |
| if (delim == '=') |
| { /* equivalence class */ |
| /* Calculate the offset of char_ranges, |
| which is next to equivalence_classes. */ |
| offset = laststart[1] + laststart[2] |
| + laststart[3] +6; |
| /* Insert space. */ |
| insert_space(datasize, laststart + offset, b - 1); |
| |
| /* Write the equivalence_class and \0. */ |
| for (i = 0 ; i < datasize ; i++) |
| laststart[offset + i] = str[i]; |
| |
| /* Update the length of equivalence_classes. */ |
| laststart[3] += datasize; |
| had_char_class = true; |
| } |
| else /* delim == '.' */ |
| { /* collating symbol */ |
| /* Calculate the offset of the equivalence_classes, |
| which is next to collating_symbols. */ |
| offset = laststart[1] + laststart[2] + 6; |
| /* Insert space and write the collationg_symbol |
| and \0. */ |
| insert_space(datasize, laststart + offset, b-1); |
| for (i = 0 ; i < datasize ; i++) |
| laststart[offset + i] = str[i]; |
| |
| /* In re_match_2_internal if range_start < -1, we |
| assume -range_start is the offset of the |
| collating symbol which is specified as |
| the character of the range start. So we assign |
| -(laststart[1] + laststart[2] + 6) to |
| range_start. */ |
| range_start = -(laststart[1] + laststart[2] + 6); |
| /* Update the length of collating_symbol. */ |
| laststart[2] += datasize; |
| had_char_class = false; |
| } |
| } |
| else |
| { |
| c1++; |
| while (c1--) |
| PATUNFETCH; |
| BUF_PUSH ('['); |
| BUF_PUSH (delim); |
| laststart[5] += 2; /* Update the length of characters */ |
| range_start = delim; |
| had_char_class = false; |
| } |
| } |
| else |
| { |
| had_char_class = false; |
| BUF_PUSH(c); |
| laststart[5]++; /* Update the length of characters */ |
| range_start = c; |
| } |
| } |
| |
| #else /* BYTE */ |
| /* Ensure that we have enough space to push a charset: the |
| opcode, the length count, and the bitset; 34 bytes in all. */ |
| GET_BUFFER_SPACE (34); |
| |
| laststart = b; |
| |
| /* We test `*p == '^' twice, instead of using an if |
| statement, so we only need one BUF_PUSH. */ |
| BUF_PUSH (*p == '^' ? charset_not : charset); |
| if (*p == '^') |
| p++; |
| |
| /* Remember the first position in the bracket expression. */ |
| p1 = p; |
| |
| /* Push the number of bytes in the bitmap. */ |
| BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); |
| |
| /* Clear the whole map. */ |
| bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH); |
| |
| /* charset_not matches newline according to a syntax bit. */ |
| if ((re_opcode_t) b[-2] == charset_not |
| && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) |
| SET_LIST_BIT ('\n'); |
| |
| /* Read in characters and ranges, setting map bits. */ |
| for (;;) |
| { |
| if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
| |
| PATFETCH (c); |
| |
| /* \ might escape characters inside [...] and [^...]. */ |
| if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') |
| { |
| if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); |
| |
| PATFETCH (c1); |
| SET_LIST_BIT (c1); |
| range_start = c1; |
| continue; |
| } |
| |
| /* Could be the end of the bracket expression. If it's |
| not (i.e., when the bracket expression is `[]' so |
| far), the ']' character bit gets set way below. */ |
| if (c == ']' && p != p1 + 1) |
| break; |
| |
| /* Look ahead to see if it's a range when the last thing |
| was a character class. */ |
| if (had_char_class && c == '-' && *p != ']') |
| FREE_STACK_RETURN (REG_ERANGE); |
| |
| /* Look ahead to see if it's a range when the last thing |
| was a character: if this is a hyphen not at the |
| beginning or the end of a list, then it's the range |
| operator. */ |
| if (c == '-' |
| && !(p - 2 >= pattern && p[-2] == '[') |
| && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') |
| && *p != ']') |
| { |
| reg_errcode_t ret |
| = byte_compile_range (range_start, &p, pend, translate, |
| syntax, b); |
| if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); |
| range_start = 0xffffffff; |
| } |
| |
| else if (p[0] == '-' && p[1] != ']') |
| { /* This handles ranges made up of characters only. */ |
| reg_errcode_t ret; |
| |
| /* Move past the `-'. */ |
| PATFETCH (c1); |
| |
| ret = byte_compile_range (c, &p, pend, translate, syntax, b); |
| if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); |
| range_start = 0xffffffff; |
| } |
| |
| /* See if we're at the beginning of a possible character |
| class. */ |
| |
| else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') |
| { /* Leave room for the null. */ |
| char str[CHAR_CLASS_MAX_LENGTH + 1]; |
| |
| PATFETCH (c); |
| c1 = 0; |
| |
| /* If pattern is `[[:'. */ |
| if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
| |
| for (;;) |
| { |
| PATFETCH (c); |
| if ((c == ':' && *p == ']') || p == pend) |
| break; |
| if (c1 < CHAR_CLASS_MAX_LENGTH) |
| str[c1++] = c; |
| else |
| /* This is in any case an invalid class name. */ |
| str[0] = '\0'; |
| } |
| str[c1] = '\0'; |
| |
| /* If isn't a word bracketed by `[:' and `:]': |
| undo the ending character, the letters, and leave |
| the leading `:' and `[' (but set bits for them). */ |
| if (c == ':' && *p == ']') |
| { |
| # if defined _LIBC || WIDE_CHAR_SUPPORT |
| boolean is_lower = STREQ (str, "lower"); |
| boolean is_upper = STREQ (str, "upper"); |
| wctype_t wt; |
| int ch; |
| |
| wt = IS_CHAR_CLASS (str); |
| if (wt == 0) |
| FREE_STACK_RETURN (REG_ECTYPE); |
| |
| /* Throw away the ] at the end of the character |
| class. */ |
| PATFETCH (c); |
| |
| if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
| |
| for (ch = 0; ch < 1 << BYTEWIDTH; ++ch) |
| { |
| # ifdef _LIBC |
| if (__iswctype (__btowc (ch), wt)) |
| SET_LIST_BIT (ch); |
| # else |
| if (iswctype (btowc (ch), wt)) |
| SET_LIST_BIT (ch); |
| # endif |
| |
| if (translate && (is_upper || is_lower) |
| && (ISUPPER (ch) || ISLOWER (ch))) |
| SET_LIST_BIT (ch); |
| } |
| |
| had_char_class = true; |
| # else |
| int ch; |
| boolean is_alnum = STREQ (str, "alnum"); |
| boolean is_alpha = STREQ (str, "alpha"); |
| boolean is_blank = STREQ (str, "blank"); |
| boolean is_cntrl = STREQ (str, "cntrl"); |
| boolean is_digit = STREQ (str, "digit"); |
| boolean is_graph = STREQ (str, "graph"); |
| boolean is_lower = STREQ (str, "lower"); |
| boolean is_print = STREQ (str, "print"); |
| boolean is_punct = STREQ (str, "punct"); |
| boolean is_space = STREQ (str, "space"); |
| boolean is_upper = STREQ (str, "upper"); |
| boolean is_xdigit = STREQ (str, "xdigit"); |
| |
| if (!IS_CHAR_CLASS (str)) |
| FREE_STACK_RETURN (REG_ECTYPE); |
| |
| /* Throw away the ] at the end of the character |
| class. */ |
| PATFETCH (c); |
| |
| if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
| |
| for (ch = 0; ch < 1 << BYTEWIDTH; ch++) |
| { |
| /* This was split into 3 if's to |
| avoid an arbitrary limit in some compiler. */ |
| if ( (is_alnum && ISALNUM (ch)) |
| || (is_alpha && ISALPHA (ch)) |
| || (is_blank && ISBLANK (ch)) |
| || (is_cntrl && ISCNTRL (ch))) |
| SET_LIST_BIT (ch); |
| if ( (is_digit && ISDIGIT (ch)) |
| || (is_graph && ISGRAPH (ch)) |
| || (is_lower && ISLOWER (ch)) |
| || (is_print && ISPRINT (ch))) |
| SET_LIST_BIT (ch); |
| if ( (is_punct && ISPUNCT (ch)) |
| || (is_space && ISSPACE (ch)) |
| || (is_upper && ISUPPER (ch)) |
| || (is_xdigit && ISXDIGIT (ch))) |
| SET_LIST_BIT (ch); |
| if ( translate && (is_upper || is_lower) |
| && (ISUPPER (ch) || ISLOWER (ch))) |
| SET_LIST_BIT (ch); |
| } |
| had_char_class = true; |
| # endif /* libc || wctype.h */ |
| } |
| else |
| { |
| c1++; |
| while (c1--) |
| PATUNFETCH; |
| SET_LIST_BIT ('['); |
| SET_LIST_BIT (':'); |
| range_start = ':'; |
| had_char_class = false; |
| } |
| } |
| else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=') |
| { |
| unsigned char str[MB_LEN_MAX + 1]; |
| # ifdef _LIBC |
| uint32_t nrules = |
| _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
| # endif |
| |
| PATFETCH (c); |
| c1 = 0; |
| |
| /* If pattern is `[[='. */ |
| if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
| |
| for (;;) |
| { |
| PATFETCH (c); |
| if ((c == '=' && *p == ']') || p == pend) |
| break; |
| if (c1 < MB_LEN_MAX) |
| str[c1++] = c; |
| else |
| /* This is in any case an invalid class name. */ |
| str[0] = '\0'; |
| } |
| str[c1] = '\0'; |
| |
| if (c == '=' && *p == ']' && str[0] != '\0') |
| { |
| /* If we have no collation data we use the default |
| collation in which each character is in a class |
| by itself. It also means that ASCII is the |
| character set and therefore we cannot have character |
| with more than one byte in the multibyte |
| representation. */ |
| # ifdef _LIBC |
| if (nrules == 0) |
| # endif |
| { |
| if (c1 != 1) |
| FREE_STACK_RETURN (REG_ECOLLATE); |
| |
| /* Throw away the ] at the end of the equivalence |
| class. */ |
| PATFETCH (c); |
| |
| /* Set the bit for the character. */ |
| SET_LIST_BIT (str[0]); |
| } |
| # ifdef _LIBC |
| else |
| { |
| /* Try to match the byte sequence in `str' against |
| those known to the collate implementation. |
| First find out whether the bytes in `str' are |
| actually from exactly one character. */ |
| const int32_t *table; |
| const unsigned char *weights; |
| const unsigned char *extra; |
| const int32_t *indirect; |
| int32_t idx; |
| const unsigned char *cp = str; |
| int ch; |
| |
| /* This #include defines a local function! */ |
| # include <locale/weight.h> |
| |
| table = (const int32_t *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); |
| weights = (const unsigned char *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB); |
| extra = (const unsigned char *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); |
| indirect = (const int32_t *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB); |
| |
| idx = findidx (&cp); |
| if (idx == 0 || cp < str + c1) |
| /* This is no valid character. */ |
| FREE_STACK_RETURN (REG_ECOLLATE); |
| |
| /* Throw away the ] at the end of the equivalence |
| class. */ |
| PATFETCH (c); |
| |
| /* Now we have to go through the whole table |
| and find all characters which have the same |
| first level weight. |
| |
| XXX Note that this is not entirely correct. |
| we would have to match multibyte sequences |
| but this is not possible with the current |
| implementation. */ |
| for (ch = 1; ch < 256; ++ch) |
| /* XXX This test would have to be changed if we |
| would allow matching multibyte sequences. */ |
| if (table[ch] > 0) |
| { |
| int32_t idx2 = table[ch]; |
| size_t len = weights[idx2]; |
| |
| /* Test whether the lenghts match. */ |
| if (weights[idx] == len) |
| { |
| /* They do. New compare the bytes of |
| the weight. */ |
| size_t cnt = 0; |
| |
| while (cnt < len |
| && (weights[idx + 1 + cnt] |
| == weights[idx2 + 1 + cnt])) |
| ++cnt; |
| |
| if (cnt == len) |
| /* They match. Mark the character as |
| acceptable. */ |
| SET_LIST_BIT (ch); |
| } |
| } |
| } |
| # endif |
| had_char_class = true; |
| } |
| else |
| { |
| c1++; |
| while (c1--) |
| PATUNFETCH; |
| SET_LIST_BIT ('['); |
| SET_LIST_BIT ('='); |
| range_start = '='; |
| had_char_class = false; |
| } |
| } |
| else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.') |
| { |
| unsigned char str[128]; /* Should be large enough. */ |
| # ifdef _LIBC |
| uint32_t nrules = |
| _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
| # endif |
| |
| PATFETCH (c); |
| c1 = 0; |
| |
| /* If pattern is `[[.'. */ |
| if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
| |
| for (;;) |
| { |
| PATFETCH (c); |
| if ((c == '.' && *p == ']') || p == pend) |
| break; |
| if (c1 < sizeof (str)) |
| str[c1++] = c; |
| else |
| /* This is in any case an invalid class name. */ |
| str[0] = '\0'; |
| } |
| str[c1] = '\0'; |
| |
| if (c == '.' && *p == ']' && str[0] != '\0') |
| { |
| /* If we have no collation data we use the default |
| collation in which each character is the name |
| for its own class which contains only the one |
| character. It also means that ASCII is the |
| character set and therefore we cannot have character |
| with more than one byte in the multibyte |
| representation. */ |
| # ifdef _LIBC |
| if (nrules == 0) |
| # endif |
| { |
| if (c1 != 1) |
| FREE_STACK_RETURN (REG_ECOLLATE); |
| |
| /* Throw away the ] at the end of the equivalence |
| class. */ |
| PATFETCH (c); |
| |
| /* Set the bit for the character. */ |
| SET_LIST_BIT (str[0]); |
| range_start = ((const unsigned char *) str)[0]; |
| } |
| # ifdef _LIBC |
| else |
| { |
| /* Try to match the byte sequence in `str' against |
| those known to the collate implementation. |
| First find out whether the bytes in `str' are |
| actually from exactly one character. */ |
| int32_t table_size; |
| const int32_t *symb_table; |
| const unsigned char *extra; |
| int32_t idx; |
| int32_t elem; |
| int32_t second; |
| int32_t hash; |
| |
| table_size = |
| _NL_CURRENT_WORD (LC_COLLATE, |
| _NL_COLLATE_SYMB_HASH_SIZEMB); |
| symb_table = (const int32_t *) |
| _NL_CURRENT (LC_COLLATE, |
| _NL_COLLATE_SYMB_TABLEMB); |
| extra = (const unsigned char *) |
| _NL_CURRENT (LC_COLLATE, |
| _NL_COLLATE_SYMB_EXTRAMB); |
| |
| /* Locate the character in the hashing table. */ |
| hash = elem_hash (str, c1); |
| |
| idx = 0; |
| elem = hash % table_size; |
| second = hash % (table_size - 2); |
| while (symb_table[2 * elem] != 0) |
| { |
| /* First compare the hashing value. */ |
| if (symb_table[2 * elem] == hash |
| && c1 == extra[symb_table[2 * elem + 1]] |
| && memcmp (str, |
| &extra[symb_table[2 * elem + 1] |
| + 1], |
| c1) == 0) |
| { |
| /* Yep, this is the entry. */ |
| idx = symb_table[2 * elem + 1]; |
| idx += 1 + extra[idx]; |
| break; |
| } |
| |
| /* Next entry. */ |
| elem += second; |
| } |
| |
| if (symb_table[2 * elem] == 0) |
| /* This is no valid character. */ |
| FREE_STACK_RETURN (REG_ECOLLATE); |
| |
| /* Throw away the ] at the end of the equivalence |
| class. */ |
| PATFETCH (c); |
| |
| /* Now add the multibyte character(s) we found |
| to the accept list. |
| |
| XXX Note that this is not entirely correct. |
| we would have to match multibyte sequences |
| but this is not possible with the current |
| implementation. Also, we have to match |
| collating symbols, which expand to more than |
| one file, as a whole and not allow the |
| individual bytes. */ |
| c1 = extra[idx++]; |
| if (c1 == 1) |
| range_start = extra[idx]; |
| while (c1-- > 0) |
| { |
| SET_LIST_BIT (extra[idx]); |
| ++idx; |
| } |
| } |
| # endif |
| had_char_class = false; |
| } |
| else |
| { |
| c1++; |
| while (c1--) |
| PATUNFETCH; |
| SET_LIST_BIT ('['); |
| SET_LIST_BIT ('.'); |
| range_start = '.'; |
| had_char_class = false; |
| } |
| } |
| else |
| { |
| had_char_class = false; |
| SET_LIST_BIT (c); |
| range_start = c; |
| } |
| } |
| |
| /* Discard any (non)matching list bytes that are all 0 at the |
| end of the map. Decrease the map-length byte too. */ |
| while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) |
| b[-1]--; |
| b += b[-1]; |
| #endif /* WCHAR */ |
| } |
| break; |
| |
| |
| case '(': |
| if (syntax & RE_NO_BK_PARENS) |
| goto handle_open; |
| else |
| goto normal_char; |
| |
| |
| case ')': |
| if (syntax & RE_NO_BK_PARENS) |
| goto handle_close; |
| else |
| goto normal_char; |
| |
| |
| case '\n': |
| if (syntax & RE_NEWLINE_ALT) |
| goto handle_alt; |
| else |
| goto normal_char; |
| |
| |
| case '|': |
| if (syntax & RE_NO_BK_VBAR) |
| goto handle_alt; |
| else |
| goto normal_char; |
| |
| |
| case '{': |
| if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) |
| goto handle_interval; |
| else |
| goto normal_char; |
| |
| |
| case '\\': |
| if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); |
| |
| /* Do not translate the character after the \, so that we can |
| distinguish, e.g., \B from \b, even if we normally would |
| translate, e.g., B to b. */ |
| PATFETCH_RAW (c); |
| |
| switch (c) |
| { |
| case '(': |
| if (syntax & RE_NO_BK_PARENS) |
| goto normal_backslash; |
| |
| handle_open: |
| bufp->re_nsub++; |
| regnum++; |
| |
| if (COMPILE_STACK_FULL) |
| { |
| RETALLOC (compile_stack.stack, compile_stack.size << 1, |
| compile_stack_elt_t); |
| if (compile_stack.stack == NULL) return REG_ESPACE; |
| |
| compile_stack.size <<= 1; |
| } |
| |
| /* These are the values to restore when we hit end of this |
| group. They are all relative offsets, so that if the |
| whole pattern moves because of realloc, they will still |
| be valid. */ |
| COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR; |
| COMPILE_STACK_TOP.fixup_alt_jump |
| = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0; |
| COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR; |
| COMPILE_STACK_TOP.regnum = regnum; |
| |
| /* We will eventually replace the 0 with the number of |
| groups inner to this one. But do not push a |
| start_memory for groups beyond the last one we can |
| represent in the compiled pattern. */ |
| if (regnum <= MAX_REGNUM) |
| { |
| COMPILE_STACK_TOP.inner_group_offset = b |
| - COMPILED_BUFFER_VAR + 2; |
| BUF_PUSH_3 (start_memory, regnum, 0); |
| } |
| |
| compile_stack.avail++; |
| |
| fixup_alt_jump = 0; |
| laststart = 0; |
| begalt = b; |
| /* If we've reached MAX_REGNUM groups, then this open |
| won't actually generate any code, so we'll have to |
| clear pending_exact explicitly. */ |
| pending_exact = 0; |
| break; |
| |
| |
| case ')': |
| if (syntax & RE_NO_BK_PARENS) goto normal_backslash; |
| |
| if (COMPILE_STACK_EMPTY) |
| { |
| if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) |
| goto normal_backslash; |
| else |
| FREE_STACK_RETURN (REG_ERPAREN); |
| } |
| |
| handle_close: |
| if (fixup_alt_jump) |
| { /* Push a dummy failure point at the end of the |
| alternative for a possible future |
| `pop_failure_jump' to pop. See comments at |
| `push_dummy_failure' in `re_match_2'. */ |
| BUF_PUSH (push_dummy_failure); |
| |
| /* We allocated space for this jump when we assigned |
| to `fixup_alt_jump', in the `handle_alt' case below. */ |
| STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1); |
| } |
| |
| /* See similar code for backslashed left paren above. */ |
| if (COMPILE_STACK_EMPTY) |
| { |
| if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) |
| goto normal_char; |
| else |
| FREE_STACK_RETURN (REG_ERPAREN); |
| } |
| |
| /* Since we just checked for an empty stack above, this |
| ``can't happen''. */ |
| assert (compile_stack.avail != 0); |
| { |
| /* We don't just want to restore into `regnum', because |
| later groups should continue to be numbered higher, |
| as in `(ab)c(de)' -- the second group is #2. */ |
| regnum_t this_group_regnum; |
| |
| compile_stack.avail--; |
| begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset; |
| fixup_alt_jump |
| = COMPILE_STACK_TOP.fixup_alt_jump |
| ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1 |
| : 0; |
| laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset; |
| this_group_regnum = COMPILE_STACK_TOP.regnum; |
| /* If we've reached MAX_REGNUM groups, then this open |
| won't actually generate any code, so we'll have to |
| clear pending_exact explicitly. */ |
| pending_exact = 0; |
| |
| /* We're at the end of the group, so now we know how many |
| groups were inside this one. */ |
| if (this_group_regnum <= MAX_REGNUM) |
| { |
| UCHAR_T *inner_group_loc |
| = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset; |
| |
| *inner_group_loc = regnum - this_group_regnum; |
| BUF_PUSH_3 (stop_memory, this_group_regnum, |
| regnum - this_group_regnum); |
| } |
| } |
| break; |
| |
| |
| case '|': /* `\|'. */ |
| if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) |
| goto normal_backslash; |
| handle_alt: |
| if (syntax & RE_LIMITED_OPS) |
| goto normal_char; |
| |
| /* Insert before the previous alternative a jump which |
| jumps to this alternative if the former fails. */ |
| GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE); |
| INSERT_JUMP (on_failure_jump, begalt, |
| b + 2 + 2 * OFFSET_ADDRESS_SIZE); |
| pending_exact = 0; |
| b += 1 + OFFSET_ADDRESS_SIZE; |
| |
| /* The alternative before this one has a jump after it |
| which gets executed if it gets matched. Adjust that |
| jump so it will jump to this alternative's analogous |
| jump (put in below, which in turn will jump to the next |
| (if any) alternative's such jump, etc.). The last such |
| jump jumps to the correct final destination. A picture: |
| _____ _____ |
| | | | | |
| | v | v |
| a | b | c |
| |
| If we are at `b', then fixup_alt_jump right now points to a |
| three-byte space after `a'. We'll put in the jump, set |
| fixup_alt_jump to right after `b', and leave behind three |
| bytes which we'll fill in when we get to after `c'. */ |
| |
| if (fixup_alt_jump) |
| STORE_JUMP (jump_past_alt, fixup_alt_jump, b); |
| |
| /* Mark and leave space for a jump after this alternative, |
| to be filled in later either by next alternative or |
| when know we're at the end of a series of alternatives. */ |
| fixup_alt_jump = b; |
| GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE); |
| b += 1 + OFFSET_ADDRESS_SIZE; |
| |
| laststart = 0; |
| begalt = b; |
| break; |
| |
| |
| case '{': |
| /* If \{ is a literal. */ |
| if (!(syntax & RE_INTERVALS) |
| /* If we're at `\{' and it's not the open-interval |
| operator. */ |
| || (syntax & RE_NO_BK_BRACES)) |
| goto normal_backslash; |
| |
| handle_interval: |
| { |
| /* If got here, then the syntax allows intervals. */ |
| |
| /* At least (most) this many matches must be made. */ |
| int lower_bound = -1, upper_bound = -1; |
| |
| /* Place in the uncompiled pattern (i.e., just after |
| the '{') to go back to if the interval is invalid. */ |
| const CHAR_T *beg_interval = p; |
| |
| if (p == pend) |
| goto invalid_interval; |
| |
| GET_UNSIGNED_NUMBER (lower_bound); |
| |
| if (c == ',') |
| { |
| GET_UNSIGNED_NUMBER (upper_bound); |
| if (upper_bound < 0) |
| upper_bound = RE_DUP_MAX; |
| } |
| else |
| /* Interval such as `{1}' => match exactly once. */ |
| upper_bound = lower_bound; |
| |
| if (! (0 <= lower_bound && lower_bound <= upper_bound)) |
| goto invalid_interval; |
| |
| if (!(syntax & RE_NO_BK_BRACES)) |
| { |
| if (c != '\\' || p == pend) |
| goto invalid_interval; |
| PATFETCH (c); |
| } |
| |
| if (c != '}') |
| goto invalid_interval; |
| |
| /* If it's invalid to have no preceding re. */ |
| if (!laststart) |
| { |
| if (syntax & RE_CONTEXT_INVALID_OPS |
| && !(syntax & RE_INVALID_INTERVAL_ORD)) |
| FREE_STACK_RETURN (REG_BADRPT); |
| else if (syntax & RE_CONTEXT_INDEP_OPS) |
| laststart = b; |
| else |
| goto unfetch_interval; |
| } |
| |
| /* We just parsed a valid interval. */ |
| |
| if (RE_DUP_MAX < upper_bound) |
| FREE_STACK_RETURN (REG_BADBR); |
| |
| /* If the upper bound is zero, don't want to succeed at |
| all; jump from `laststart' to `b + 3', which will be |
| the end of the buffer after we insert the jump. */ |
| /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' |
| instead of 'b + 3'. */ |
| if (upper_bound == 0) |
| { |
| GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE); |
| INSERT_JUMP (jump, laststart, b + 1 |
| + OFFSET_ADDRESS_SIZE); |
| b += 1 + OFFSET_ADDRESS_SIZE; |
| } |
| |
| /* Otherwise, we have a nontrivial interval. When |
| we're all done, the pattern will look like: |
| set_number_at <jump count> <upper bound> |
| set_number_at <succeed_n count> <lower bound> |
| succeed_n <after jump addr> <succeed_n count> |
| <body of loop> |
| jump_n <succeed_n addr> <jump count> |
| (The upper bound and `jump_n' are omitted if |
| `upper_bound' is 1, though.) */ |
| else |
| { /* If the upper bound is > 1, we need to insert |
| more at the end of the loop. */ |
| unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE + |
| (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE); |
| |
| GET_BUFFER_SPACE (nbytes); |
| |
| /* Initialize lower bound of the `succeed_n', even |
| though it will be set during matching by its |
| attendant `set_number_at' (inserted next), |
| because `re_compile_fastmap' needs to know. |
| Jump to the `jump_n' we might insert below. */ |
| INSERT_JUMP2 (succeed_n, laststart, |
| b + 1 + 2 * OFFSET_ADDRESS_SIZE |
| + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE) |
| , lower_bound); |
| b += 1 + 2 * OFFSET_ADDRESS_SIZE; |
| |
| /* Code to initialize the lower bound. Insert |
| before the `succeed_n'. The `5' is the last two |
| bytes of this `set_number_at', plus 3 bytes of |
| the following `succeed_n'. */ |
| /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE' |
| is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE' |
| of the following `succeed_n'. */ |
| PREFIX(insert_op2) (set_number_at, laststart, 1 |
| + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b); |
| b += 1 + 2 * OFFSET_ADDRESS_SIZE; |
| |
| if (upper_bound > 1) |
| { /* More than one repetition is allowed, so |
| append a backward jump to the `succeed_n' |
| that starts this interval. |
| |
| When we've reached this during matching, |
| we'll have matched the interval once, so |
| jump back only `upper_bound - 1' times. */ |
| STORE_JUMP2 (jump_n, b, laststart |
| + 2 * OFFSET_ADDRESS_SIZE + 1, |
| upper_bound - 1); |
| b += 1 + 2 * OFFSET_ADDRESS_SIZE; |
| |
| /* The location we want to set is the second |
| parameter of the `jump_n'; that is `b-2' as |
| an absolute address. `laststart' will be |
| the `set_number_at' we're about to insert; |
| `laststart+3' the number to set, the source |
| for the relative address. But we are |
| inserting into the middle of the pattern -- |
| so everything is getting moved up by 5. |
| Conclusion: (b - 2) - (laststart + 3) + 5, |
| i.e., b - laststart. |
| |
| We insert this at the beginning of the loop |
| so that if we fail during matching, we'll |
| reinitialize the bounds. */ |
| PREFIX(insert_op2) (set_number_at, laststart, |
| b - laststart, |
| upper_bound - 1, b); |
| b += 1 + 2 * OFFSET_ADDRESS_SIZE; |
| } |
| } |
| pending_exact = 0; |
| break; |
| |
| invalid_interval: |
| if (!(syntax & RE_INVALID_INTERVAL_ORD)) |
| FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR); |
| unfetch_interval: |
| /* Match the characters as literals. */ |
| p = beg_interval; |
| c = '{'; |
| if (syntax & RE_NO_BK_BRACES) |
| goto normal_char; |
| else |
| goto normal_backslash; |
| } |
| |
| #ifdef emacs |
| /* There is no way to specify the before_dot and after_dot |
| operators. rms says this is ok. --karl */ |
| case '=': |
| BUF_PUSH (at_dot); |
| break; |
| |
| case 's': |
| laststart = b; |
| PATFETCH (c); |
| BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); |
| break; |
| |
| case 'S': |
| laststart = b; |
| PATFETCH (c); |
| BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); |
| break; |
| #endif /* emacs */ |
| |
| |
| case 'w': |
| if (syntax & RE_NO_GNU_OPS) |
| goto normal_char; |
| laststart = b; |
| BUF_PUSH (wordchar); |
| break; |
| |
| |
| case 'W': |
| if (syntax & RE_NO_GNU_OPS) |
| goto normal_char; |
| laststart = b; |
| BUF_PUSH (notwordchar); |
| break; |
| |
| |
| case '<': |
| if (syntax & RE_NO_GNU_OPS) |
| goto normal_char; |
| BUF_PUSH (wordbeg); |
| break; |
| |
| case '>': |
| if (syntax & RE_NO_GNU_OPS) |
| goto normal_char; |
| BUF_PUSH (wordend); |
| break; |
| |
| case 'b': |
| if (syntax & RE_NO_GNU_OPS) |
| goto normal_char; |
| BUF_PUSH (wordbound); |
| break; |
| |
| case 'B': |
| if (syntax & RE_NO_GNU_OPS) |
| goto normal_char; |
| BUF_PUSH (notwordbound); |
| break; |
| |
| case '`': |
| if (syntax & RE_NO_GNU_OPS) |
| goto normal_char; |
| BUF_PUSH (begbuf); |
| break; |
| |
| case '\'': |
| if (syntax & RE_NO_GNU_OPS) |
| goto normal_char; |
| BUF_PUSH (endbuf); |
| break; |
| |
| case '1': case '2': case '3': case '4': case '5': |
| case '6': case '7': case '8': case '9': |
| if (syntax & RE_NO_BK_REFS) |
| goto normal_char; |
| |
| c1 = c - '0'; |
| |
| if (c1 > regnum) |
| FREE_STACK_RETURN (REG_ESUBREG); |
| |
| /* Can't back reference to a subexpression if inside of it. */ |
| if (group_in_compile_stack (compile_stack, (regnum_t) c1)) |
| goto normal_char; |
| |
| laststart = b; |
| BUF_PUSH_2 (duplicate, c1); |
| break; |
| |
| |
| case '+': |
| case '?': |
| if (syntax & RE_BK_PLUS_QM) |
| goto handle_plus; |
| else |
| goto normal_backslash; |
| |
| default: |
| normal_backslash: |
| /* You might think it would be useful for \ to mean |
| not to translate; but if we don't translate it |
| it will never match anything. */ |
| c = TRANSLATE (c); |
| goto normal_char; |
| } |
| break; |
| |
| |
| default: |
| /* Expects the character in `c'. */ |
| normal_char: |
| /* If no exactn currently being built. */ |
| if (!pending_exact |
| #ifdef WCHAR |
| /* If last exactn handle binary(or character) and |
| new exactn handle character(or binary). */ |
| || is_exactn_bin != is_binary[p - 1 - pattern] |
| #endif /* WCHAR */ |
| |
| /* If last exactn not at current position. */ |
| || pending_exact + *pending_exact + 1 != b |
| |
| /* We have only one byte following the exactn for the count. */ |
| || *pending_exact == (1 << BYTEWIDTH) - 1 |
| |
| /* If followed by a repetition operator. */ |
| || *p == '*' || *p == '^' |
| || ((syntax & RE_BK_PLUS_QM) |
| ? *p == '\\' && (p[1] == '+' || p[1] == '?') |
| : (*p == '+' || *p == '?')) |
| || ((syntax & RE_INTERVALS) |
| && ((syntax & RE_NO_BK_BRACES) |
| ? *p == '{' |
| : (p[0] == '\\' && p[1] == '{')))) |
| { |
| /* Start building a new exactn. */ |
| |
| laststart = b; |
| |
| #ifdef WCHAR |
| /* Is this exactn binary data or character? */ |
| is_exactn_bin = is_binary[p - 1 - pattern]; |
| if (is_exactn_bin) |
| BUF_PUSH_2 (exactn_bin, 0); |
| else |
| BUF_PUSH_2 (exactn, 0); |
| #else |
| BUF_PUSH_2 (exactn, 0); |
| #endif /* WCHAR */ |
| pending_exact = b - 1; |
| } |
| |
| BUF_PUSH (c); |
| (*pending_exact)++; |
| break; |
| } /* switch (c) */ |
| } /* while p != pend */ |
| |
| |
| /* Through the pattern now. */ |
| |
| if (fixup_alt_jump) |
| STORE_JUMP (jump_past_alt, fixup_alt_jump, b); |
| |
| if (!COMPILE_STACK_EMPTY) |
| FREE_STACK_RETURN (REG_EPAREN); |
| |
| /* If we don't want backtracking, force success |
| the first time we reach the end of the compiled pattern. */ |
| if (syntax & RE_NO_POSIX_BACKTRACKING) |
| BUF_PUSH (succeed); |
| |
| #ifdef WCHAR |
| free (pattern); |
| free (mbs_offset); |
| free (is_binary); |
| #endif |
| free (compile_stack.stack); |
| |
| /* We have succeeded; set the length of the buffer. */ |
| #ifdef WCHAR |
| bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR; |
| #else |
| bufp->used = b - bufp->buffer; |
| #endif |
| |
| #ifdef DEBUG |
| if (debug) |
| { |
| DEBUG_PRINT1 ("\nCompiled pattern: \n"); |
| PREFIX(print_compiled_pattern) (bufp); |
| } |
| #endif /* DEBUG */ |
| |
| #ifndef MATCH_MAY_ALLOCATE |
| /* Initialize the failure stack to the largest possible stack. This |
| isn't necessary unless we're trying to avoid calling alloca in |
| the search and match routines. */ |
| { |
| int num_regs = bufp->re_nsub + 1; |
| |
| /* Since DOUBLE_FAIL_STACK refuses to double only if the current size |
| is strictly greater than re_max_failures, the largest possible stack |
| is 2 * re_max_failures failure points. */ |
| if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS)) |
| { |
| fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS); |
| |
| # ifdef emacs |
| if (! fail_stack.stack) |
| fail_stack.stack |
| = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size |
| * sizeof (PREFIX(fail_stack_elt_t))); |
| else |
| fail_stack.stack |
| = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack, |
| (fail_stack.size |
| * sizeof (PREFIX(fail_stack_elt_t)))); |
| # else /* not emacs */ |
| if (! fail_stack.stack) |
| fail_stack.stack |
| = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size |
| * sizeof (PREFIX(fail_stack_elt_t))); |
| else |
| fail_stack.stack |
| = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack, |
| (fail_stack.size |
| * sizeof (PREFIX(fail_stack_elt_t)))); |
| # endif /* not emacs */ |
| } |
| |
| PREFIX(regex_grow_registers) (num_regs); |
| } |
| #endif /* not MATCH_MAY_ALLOCATE */ |
| |
| return REG_NOERROR; |
| } /* regex_compile */ |
| |
| /* Subroutines for `regex_compile'. */ |
| |
| /* Store OP at LOC followed by two-byte integer parameter ARG. */ |
| /* ifdef WCHAR, integer parameter is 1 wchar_t. */ |
| |
| static void |
| PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg) |
| { |
| *loc = (UCHAR_T) op; |
| STORE_NUMBER (loc + 1, arg); |
| } |
| |
| |
| /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ |
| /* ifdef WCHAR, integer parameter is 1 wchar_t. */ |
| |
| static void |
| PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2) |
| { |
| *loc = (UCHAR_T) op; |
| STORE_NUMBER (loc + 1, arg1); |
| STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2); |
| } |
| |
| |
| /* Copy the bytes from LOC to END to open up three bytes of space at LOC |
| for OP followed by two-byte integer parameter ARG. */ |
| /* ifdef WCHAR, integer parameter is 1 wchar_t. */ |
| |
| static void |
| PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end) |
| { |
| register UCHAR_T *pfrom = end; |
| register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE; |
| |
| while (pfrom != loc) |
| *--pto = *--pfrom; |
| |
| PREFIX(store_op1) (op, loc, arg); |
| } |
| |
| |
| /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ |
| /* ifdef WCHAR, integer parameter is 1 wchar_t. */ |
| |
| static void |
| PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, |
| int arg2, UCHAR_T *end) |
| { |
| register UCHAR_T *pfrom = end; |
| register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE; |
| |
| while (pfrom != loc) |
| *--pto = *--pfrom; |
| |
| PREFIX(store_op2) (op, loc, arg1, arg2); |
| } |
| |
| |
| /* P points to just after a ^ in PATTERN. Return true if that ^ comes |
| after an alternative or a begin-subexpression. We assume there is at |
| least one character before the ^. */ |
| |
| static boolean |
| PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p, |
| reg_syntax_t syntax) |
| { |
| const CHAR_T *prev = p - 2; |
| boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; |
| |
| return |
| /* After a subexpression? */ |
| (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) |
| /* After an alternative? */ |
| || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); |
| } |
| |
| |
| /* The dual of at_begline_loc_p. This one is for $. We assume there is |
| at least one character after the $, i.e., `P < PEND'. */ |
| |
| static boolean |
| PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend, |
| reg_syntax_t syntax) |
| { |
| const CHAR_T *next = p; |
| boolean next_backslash = *next == '\\'; |
| const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0; |
| |
| return |
| /* Before a subexpression? */ |
| (syntax & RE_NO_BK_PARENS ? *next == ')' |
| : next_backslash && next_next && *next_next == ')') |
| /* Before an alternative? */ |
| || (syntax & RE_NO_BK_VBAR ? *next == '|' |
| : next_backslash && next_next && *next_next == '|'); |
| } |
| |
| #else /* not INSIDE_RECURSION */ |
| |
| /* Returns true if REGNUM is in one of COMPILE_STACK's elements and |
| false if it's not. */ |
| |
| static boolean |
| group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum) |
| { |
| int this_element; |
| |
| for (this_element = compile_stack.avail - 1; |
| this_element >= 0; |
| this_element--) |
| if (compile_stack.stack[this_element].regnum == regnum) |
| return true; |
| |
| return false; |
| } |
| #endif /* not INSIDE_RECURSION */ |
| |
| #ifdef INSIDE_RECURSION |
| |
| #ifdef WCHAR |
| /* This insert space, which size is "num", into the pattern at "loc". |
| "end" must point the end of the allocated buffer. */ |
| static void |
| insert_space (int num, CHAR_T *loc, CHAR_T *end) |
| { |
| register CHAR_T *pto = end; |
| register CHAR_T *pfrom = end - num; |
| |
| while (pfrom >= loc) |
| *pto-- = *pfrom--; |
| } |
| #endif /* WCHAR */ |
| |
| #ifdef WCHAR |
| static reg_errcode_t |
| wcs_compile_range (CHAR_T range_start_char, const CHAR_T **p_ptr, |
| const CHAR_T *pend, RE_TRANSLATE_TYPE translate, |
| reg_syntax_t syntax, CHAR_T *b, CHAR_T *char_set) |
| { |
| const CHAR_T *p = *p_ptr; |
| CHAR_T range_start, range_end; |
| reg_errcode_t ret; |
| # ifdef _LIBC |
| uint32_t nrules; |
| uint32_t start_val, end_val; |
| # endif |
| if (p == pend) |
| return REG_ERANGE; |
| |
| # ifdef _LIBC |
| nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
| if (nrules != 0) |
| { |
| const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE, |
| _NL_COLLATE_COLLSEQWC); |
| const unsigned char *extra = (const unsigned char *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); |
| |
| if (range_start_char < -1) |
| { |
| /* range_start is a collating symbol. */ |
| int32_t *wextra; |
| /* Retreive the index and get collation sequence value. */ |
| wextra = (int32_t*)(extra + char_set[-range_start_char]); |
| start_val = wextra[1 + *wextra]; |
| } |
| else |
| start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char)); |
| |
| end_val = collseq_table_lookup (collseq, TRANSLATE (p[0])); |
| |
| /* Report an error if the range is empty and the syntax prohibits |
| this. */ |
| ret = ((syntax & RE_NO_EMPTY_RANGES) |
| && (start_val > end_val))? REG_ERANGE : REG_NOERROR; |
| |
| /* Insert space to the end of the char_ranges. */ |
| insert_space(2, b - char_set[5] - 2, b - 1); |
| *(b - char_set[5] - 2) = (wchar_t)start_val; |
| *(b - char_set[5] - 1) = (wchar_t)end_val; |
| char_set[4]++; /* ranges_index */ |
| } |
| else |
| # endif |
| { |
| range_start = (range_start_char >= 0)? TRANSLATE (range_start_char): |
| range_start_char; |
| range_end = TRANSLATE (p[0]); |
| /* Report an error if the range is empty and the syntax prohibits |
| this. */ |
| ret = ((syntax & RE_NO_EMPTY_RANGES) |
| && (range_start > range_end))? REG_ERANGE : REG_NOERROR; |
| |
| /* Insert space to the end of the char_ranges. */ |
| insert_space(2, b - char_set[5] - 2, b - 1); |
| *(b - char_set[5] - 2) = range_start; |
| *(b - char_set[5] - 1) = range_end; |
| char_set[4]++; /* ranges_index */ |
| } |
| /* Have to increment the pointer into the pattern string, so the |
| caller isn't still at the ending character. */ |
| (*p_ptr)++; |
| |
| return ret; |
| } |
| #else /* BYTE */ |
| /* Read the ending character of a range (in a bracket expression) from the |
| uncompiled pattern *P_PTR (which ends at PEND). We assume the |
| starting character is in `P[-2]'. (`P[-1]' is the character `-'.) |
| Then we set the translation of all bits between the starting and |
| ending characters (inclusive) in the compiled pattern B. |
| |
| Return an error code. |
| |
| We use these short variable names so we can use the same macros as |
| `regex_compile' itself. */ |
| |
| static reg_errcode_t |
| byte_compile_range (unsigned int range_start_char, const char **p_ptr, |
| const char *pend, RE_TRANSLATE_TYPE translate, |
| reg_syntax_t syntax, unsigned char *b) |
| { |
| unsigned this_char; |
| const char *p = *p_ptr; |
| reg_errcode_t ret; |
| # if _LIBC |
| const unsigned char *collseq; |
| unsigned int start_colseq; |
| unsigned int end_colseq; |
| # else |
| unsigned end_char; |
| # endif |
| |
| if (p == pend) |
| return REG_ERANGE; |
| |
| /* Have to increment the pointer into the pattern string, so the |
| caller isn't still at the ending character. */ |
| (*p_ptr)++; |
| |
| /* Report an error if the range is empty and the syntax prohibits this. */ |
| ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; |
| |
| # if _LIBC |
| collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE, |
| _NL_COLLATE_COLLSEQMB); |
| |
| start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)]; |
| end_colseq = collseq[(unsigned char) TRANSLATE (p[0])]; |
| for (this_char = 0; this_char <= (unsigned char) -1; ++this_char) |
| { |
| unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)]; |
| |
| if (start_colseq <= this_colseq && this_colseq <= end_colseq) |
| { |
| SET_LIST_BIT (TRANSLATE (this_char)); |
| ret = REG_NOERROR; |
| } |
| } |
| # else |
| /* Here we see why `this_char' has to be larger than an `unsigned |
| char' -- we would otherwise go into an infinite loop, since all |
| characters <= 0xff. */ |
| range_start_char = TRANSLATE (range_start_char); |
| /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE, |
| and some compilers cast it to int implicitly, so following for_loop |
| may fall to (almost) infinite loop. |
| e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff. |
| To avoid this, we cast p[0] to unsigned int and truncate it. */ |
| end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1)); |
| |
| for (this_char = range_start_char; this_char <= end_char; ++this_char) |
| { |
| SET_LIST_BIT (TRANSLATE (this_char)); |
| ret = REG_NOERROR; |
| } |
| # endif |
| |
| return ret; |
| } |
| #endif /* WCHAR */ |
| |
| /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in |
| BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible |
| characters can start a string that matches the pattern. This fastmap |
| is used by re_search to skip quickly over impossible starting points. |
| |
| The caller must supply the address of a (1 << BYTEWIDTH)-byte data |
| area as BUFP->fastmap. |
| |
| We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in |
| the pattern buffer. |
| |
| Returns 0 if we succeed, -2 if an internal error. */ |
| |
| #ifdef WCHAR |
| /* local function for re_compile_fastmap. |
| truncate wchar_t character to char. */ |
| static unsigned char truncate_wchar (CHAR_T c); |
| |
| static unsigned char |
| truncate_wchar (CHAR_T c) |
| { |
| unsigned char buf[MB_CUR_MAX]; |
| mbstate_t state; |
| int retval; |
| memset (&state, '\0', sizeof (state)); |
| # ifdef _LIBC |
| retval = __wcrtomb (buf, c, &state); |
| # else |
| retval = wcrtomb (buf, c, &state); |
| # endif |
| return retval > 0 ? buf[0] : (unsigned char) c; |
| } |
| #endif /* WCHAR */ |
| |
| static int |
| PREFIX(re_compile_fastmap) (struct re_pattern_buffer *bufp) |
| { |
| int j, k; |
| #ifdef MATCH_MAY_ALLOCATE |
| PREFIX(fail_stack_type) fail_stack; |
| #endif |
| #ifndef REGEX_MALLOC |
| char *destination; |
| #endif |
| |
| register char *fastmap = bufp->fastmap; |
| |
| #ifdef WCHAR |
| /* We need to cast pattern to (wchar_t*), because we casted this compiled |
| pattern to (char*) in regex_compile. */ |
| UCHAR_T *pattern = (UCHAR_T*)bufp->buffer; |
| register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used); |
| #else /* BYTE */ |
| UCHAR_T *pattern = bufp->buffer; |
| register UCHAR_T *pend = pattern + bufp->used; |
| #endif /* WCHAR */ |
| UCHAR_T *p = pattern; |
| |
| #ifdef REL_ALLOC |
| /* This holds the pointer to the failure stack, when |
| it is allocated relocatably. */ |
| fail_stack_elt_t *failure_stack_ptr; |
| #endif |
| |
| /* Assume that each path through the pattern can be null until |
| proven otherwise. We set this false at the bottom of switch |
| statement, to which we get only if a particular path doesn't |
| match the empty string. */ |
| boolean path_can_be_null = true; |
| |
| /* We aren't doing a `succeed_n' to begin with. */ |
| boolean succeed_n_p = false; |
| |
| assert (fastmap != NULL && p != NULL); |
| |
| INIT_FAIL_STACK (); |
| bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */ |
| bufp->fastmap_accurate = 1; /* It will be when we're done. */ |
| bufp->can_be_null = 0; |
| |
| while (1) |
| { |
| if (p == pend || *p == (UCHAR_T) succeed) |
| { |
| /* We have reached the (effective) end of pattern. */ |
| if (!FAIL_STACK_EMPTY ()) |
| { |
| bufp->can_be_null |= path_can_be_null; |
| |
| /* Reset for next path. */ |
| path_can_be_null = true; |
| |
| p = fail_stack.stack[--fail_stack.avail].pointer; |
| |
| continue; |
| } |
| else |
| break; |
| } |
| |
| /* We should never be about to go beyond the end of the pattern. */ |
| assert (p < pend); |
| |
| switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) |
| { |
| |
| /* I guess the idea here is to simply not bother with a fastmap |
| if a backreference is used, since it's too hard to figure out |
| the fastmap for the corresponding group. Setting |
| `can_be_null' stops `re_search_2' from using the fastmap, so |
| that is all we do. */ |
| case duplicate: |
| bufp->can_be_null = 1; |
| goto done; |
| |
| |
| /* Following are the cases which match a character. These end |
| with `break'. */ |
| |
| #ifdef WCHAR |
| case exactn: |
| fastmap[truncate_wchar(p[1])] = 1; |
| break; |
| #else /* BYTE */ |
| case exactn: |
| fastmap[p[1]] = 1; |
| break; |
| #endif /* WCHAR */ |
| #ifdef MBS_SUPPORT |
| case exactn_bin: |
| fastmap[p[1]] = 1; |
| break; |
| #endif |
| |
| #ifdef WCHAR |
| /* It is hard to distinguish fastmap from (multi byte) characters |
| which depends on current locale. */ |
| case charset: |
| case charset_not: |
| case wordchar: |
| case notwordchar: |
| bufp->can_be_null = 1; |
| goto done; |
| #else /* BYTE */ |
| case charset: |
| for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) |
| if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) |
| fastmap[j] = 1; |
| break; |
| |
| |
| case charset_not: |
| /* Chars beyond end of map must be allowed. */ |
| for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) |
| fastmap[j] = 1; |
| |
| for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) |
| if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) |
| fastmap[j] = 1; |
| break; |
| |
| |
| case wordchar: |
| for (j = 0; j < (1 << BYTEWIDTH); j++) |
| if (SYNTAX (j) == Sword) |
| fastmap[j] = 1; |
| break; |
| |
| |
| case notwordchar: |
| for (j = 0; j < (1 << BYTEWIDTH); j++) |
| if (SYNTAX (j) != Sword) |
| fastmap[j] = 1; |
| break; |
| #endif /* WCHAR */ |
| |
| case anychar: |
| { |
| int fastmap_newline = fastmap['\n']; |
| |
| /* `.' matches anything ... */ |
| for (j = 0; j < (1 << BYTEWIDTH); j++) |
| fastmap[j] = 1; |
| |
| /* ... except perhaps newline. */ |
| if (!(bufp->syntax & RE_DOT_NEWLINE)) |
| fastmap['\n'] = fastmap_newline; |
| |
| /* Return if we have already set `can_be_null'; if we have, |
| then the fastmap is irrelevant. Something's wrong here. */ |
| else if (bufp->can_be_null) |
| goto done; |
| |
| /* Otherwise, have to check alternative paths. */ |
| break; |
| } |
| |
| #ifdef emacs |
| case syntaxspec: |
| k = *p++; |
| for (j = 0; j < (1 << BYTEWIDTH); j++) |
| if (SYNTAX (j) == (enum syntaxcode) k) |
| fastmap[j] = 1; |
| break; |
| |
| |
| case notsyntaxspec: |
| k = *p++; |
| for (j = 0; j < (1 << BYTEWIDTH); j++) |
| if (SYNTAX (j) != (enum syntaxcode) k) |
| fastmap[j] = 1; |
| break; |
| |
| |
| /* All cases after this match the empty string. These end with |
| `continue'. */ |
| |
| |
| case before_dot: |
| case at_dot: |
| case after_dot: |
| continue; |
| #endif /* emacs */ |
| |
| |
| case no_op: |
| case begline: |
| case endline: |
| case begbuf: |
| case endbuf: |
| case wordbound: |
| case notwordbound: |
| case wordbeg: |
| case wordend: |
| case push_dummy_failure: |
| continue; |
| |
| |
| case jump_n: |
| case pop_failure_jump: |
| case maybe_pop_jump: |
| case jump: |
| case jump_past_alt: |
| case dummy_failure_jump: |
| EXTRACT_NUMBER_AND_INCR (j, p); |
| p += j; |
| if (j > 0) |
| continue; |
| |
| /* Jump backward implies we just went through the body of a |
| loop and matched nothing. Opcode jumped to should be |
| `on_failure_jump' or `succeed_n'. Just treat it like an |
| ordinary jump. For a * loop, it has pushed its failure |
| point already; if so, discard that as redundant. */ |
| if ((re_opcode_t) *p != on_failure_jump |
| && (re_opcode_t) *p != succeed_n) |
| continue; |
| |
| p++; |
| EXTRACT_NUMBER_AND_INCR (j, p); |
| p += j; |
| |
| /* If what's on the stack is where we are now, pop it. */ |
| if (!FAIL_STACK_EMPTY () |
| && fail_stack.stack[fail_stack.avail - 1].pointer == p) |
| fail_stack.avail--; |
| |
| continue; |
| |
| |
| case on_failure_jump: |
| case on_failure_keep_string_jump: |
| handle_on_failure_jump: |
| EXTRACT_NUMBER_AND_INCR (j, p); |
| |
| /* For some patterns, e.g., `(a?)?', `p+j' here points to the |
| end of the pattern. We don't want to push such a point, |
| since when we restore it above, entering the switch will |
| increment `p' past the end of the pattern. We don't need |
| to push such a point since we obviously won't find any more |
| fastmap entries beyond `pend'. Such a pattern can match |
| the null string, though. */ |
| if (p + j < pend) |
| { |
| if (!PUSH_PATTERN_OP (p + j, fail_stack)) |
| { |
| RESET_FAIL_STACK (); |
| return -2; |
| } |
| } |
| else |
| bufp->can_be_null = 1; |
| |
| if (succeed_n_p) |
| { |
| EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ |
| succeed_n_p = false; |
| } |
| |
| continue; |
| |
| |
| case succeed_n: |
| /* Get to the number of times to succeed. */ |
| p += OFFSET_ADDRESS_SIZE; |
| |
| /* Increment p past the n for when k != 0. */ |
| EXTRACT_NUMBER_AND_INCR (k, p); |
| if (k == 0) |
| { |
| p -= 2 * OFFSET_ADDRESS_SIZE; |
| succeed_n_p = true; /* Spaghetti code alert. */ |
| goto handle_on_failure_jump; |
| } |
| continue; |
| |
| |
| case set_number_at: |
| p += 2 * OFFSET_ADDRESS_SIZE; |
| continue; |
| |
| |
| case start_memory: |
| case stop_memory: |
| p += 2; |
| continue; |
| |
| |
| default: |
| abort (); /* We have listed all the cases. */ |
| } /* switch *p++ */ |
| |
| /* Getting here means we have found the possible starting |
| characters for one path of the pattern -- and that the empty |
| string does not match. We need not follow this path further. |
| Instead, look at the next alternative (remembered on the |
| stack), or quit if no more. The test at the top of the loop |
| does these things. */ |
| path_can_be_null = false; |
| p = pend; |
| } /* while p */ |
| |
| /* Set `can_be_null' for the last path (also the first path, if the |
| pattern is empty). */ |
| bufp->can_be_null |= path_can_be_null; |
| |
| done: |
| RESET_FAIL_STACK (); |
| return 0; |
| } |
| |
| #else /* not INSIDE_RECURSION */ |
| |
| int |
| re_compile_fastmap (struct re_pattern_buffer *bufp) |
| { |
| # ifdef MBS_SUPPORT |
| if (MB_CUR_MAX != 1) |
| return wcs_re_compile_fastmap(bufp); |
| else |
| # endif |
| return byte_re_compile_fastmap(bufp); |
| } /* re_compile_fastmap */ |
| #ifdef _LIBC |
| weak_alias (__re_compile_fastmap, re_compile_fastmap) |
| #endif |
| |
| |
| /* Set REGS to hold NUM_REGS registers, storing them in STARTS and |
| ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use |
| this memory for recording register information. STARTS and ENDS |
| must be allocated using the malloc library routine, and must each |
| be at least NUM_REGS * sizeof (regoff_t) bytes long. |
| |
| If NUM_REGS == 0, then subsequent matches should allocate their own |
| register data. |
| |
| Unless this function is called, the first search or match using |
| PATTERN_BUFFER will allocate its own register data, without |
| freeing the old data. */ |
| |
| void |
| re_set_registers (struct re_pattern_buffer *bufp, |
| struct re_registers *regs, unsigned num_regs, |
| regoff_t *starts, regoff_t *ends) |
| { |
| if (num_regs) |
| { |
| bufp->regs_allocated = REGS_REALLOCATE; |
| regs->num_regs = num_regs; |
| regs->start = starts; |
| regs->end = ends; |
| } |
| else |
| { |
| bufp->regs_allocated = REGS_UNALLOCATED; |
| regs->num_regs = 0; |
| regs->start = regs->end = (regoff_t *) 0; |
| } |
| } |
| #ifdef _LIBC |
| weak_alias (__re_set_registers, re_set_registers) |
| #endif |
| |
| /* Searching routines. */ |
| |
| /* Like re_search_2, below, but only one string is specified, and |
| doesn't let you say where to stop matching. */ |
| |
| int |
| re_search (struct re_pattern_buffer *bufp, const char *string, int size, |
| int startpos, int range, struct re_registers *regs) |
| { |
| return re_search_2 (bufp, NULL, 0, string, size, startpos, range, |
| regs, size); |
| } |
| #ifdef _LIBC |
| weak_alias (__re_search, re_search) |
| #endif |
| |
| |
| /* Using the compiled pattern in BUFP->buffer, first tries to match the |
| virtual concatenation of STRING1 and STRING2, starting first at index |
| STARTPOS, then at STARTPOS + 1, and so on. |
| |
| STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. |
| |
| RANGE is how far to scan while trying to match. RANGE = 0 means try |
| only at STARTPOS; in general, the last start tried is STARTPOS + |
| RANGE. |
| |
| In REGS, return the indices of the virtual concatenation of STRING1 |
| and STRING2 that matched the entire BUFP->buffer and its contained |
| subexpressions. |
| |
| Do not consider matching one past the index STOP in the virtual |
| concatenation of STRING1 and STRING2. |
| |
| We return either the position in the strings at which the match was |
| found, -1 if no match, or -2 if error (such as failure |
| stack overflow). */ |
| |
| int |
| re_search_2 (struct re_pattern_buffer *bufp, const char *string1, int size1, |
| const char *string2, int size2, int startpos, int range, |
| struct re_registers *regs, int stop) |
| { |
| # ifdef MBS_SUPPORT |
| if (MB_CUR_MAX != 1) |
| return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos, |
| range, regs, stop); |
| else |
| # endif |
| return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos, |
| range, regs, stop); |
| } /* re_search_2 */ |
| #ifdef _LIBC |
| weak_alias (__re_search_2, re_search_2) |
| #endif |
| |
| #endif /* not INSIDE_RECURSION */ |
| |
| #ifdef INSIDE_RECURSION |
| |
| #ifdef MATCH_MAY_ALLOCATE |
| # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL |
| #else |
| # define FREE_VAR(var) free (var); var = NULL |
| #endif |
| |
| #ifdef WCHAR |
| # define MAX_ALLOCA_SIZE 2000 |
| |
| # define FREE_WCS_BUFFERS() \ |
| do { \ |
| if (size1 > MAX_ALLOCA_SIZE) \ |
| { \ |
| free (wcs_string1); \ |
| free (mbs_offset1); \ |
| } \ |
| else \ |
| { \ |
| FREE_VAR (wcs_string1); \ |
| FREE_VAR (mbs_offset1); \ |
| } \ |
| if (size2 > MAX_ALLOCA_SIZE) \ |
| { \ |
| free (wcs_string2); \ |
| free (mbs_offset2); \ |
| } \ |
| else \ |
| { \ |
| FREE_VAR (wcs_string2); \ |
| FREE_VAR (mbs_offset2); \ |
| } \ |
| } while (0) |
| |
| #endif |
| |
| |
| static int |
| PREFIX(re_search_2) (struct re_pattern_buffer *bufp, const char *string1, |
| int size1, const char *string2, int size2, |
| int startpos, int range, |
| struct re_registers *regs, int stop) |
| { |
| int val; |
| register char *fastmap = bufp->fastmap; |
| register RE_TRANSLATE_TYPE translate = bufp->translate; |
| int total_size = size1 + size2; |
| int endpos = startpos + range; |
| #ifdef WCHAR |
| /* We need wchar_t* buffers correspond to cstring1, cstring2. */ |
| wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL; |
| /* We need the size of wchar_t buffers correspond to csize1, csize2. */ |
| int wcs_size1 = 0, wcs_size2 = 0; |
| /* offset buffer for optimizatoin. See convert_mbs_to_wc. */ |
| int *mbs_offset1 = NULL, *mbs_offset2 = NULL; |
| /* They hold whether each wchar_t is binary data or not. */ |
| char *is_binary = NULL; |
| #endif /* WCHAR */ |
| |
| /* Check for out-of-range STARTPOS. */ |
| if (startpos < 0 || startpos > total_size) |
| return -1; |
| |
| /* Fix up RANGE if it might eventually take us outside |
| the virtual concatenation of STRING1 and STRING2. |
| Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */ |
| if (endpos < 0) |
| range = 0 - startpos; |
| else if (endpos > total_size) |
| range = total_size - startpos; |
| |
| /* If the search isn't to be a backwards one, don't waste time in a |
| search for a pattern that must be anchored. */ |
| if (bufp->used > 0 && range > 0 |
| && ((re_opcode_t) bufp->buffer[0] == begbuf |
| /* `begline' is like `begbuf' if it cannot match at newlines. */ |
| || ((re_opcode_t) bufp->buffer[0] == begline |
| && !bufp->newline_anchor))) |
| { |
| if (startpos > 0) |
| return -1; |
| else |
| range = 1; |
| } |
| |
| #ifdef emacs |
| /* In a forward search for something that starts with \=. |
| don't keep searching past point. */ |
| if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0) |
| { |
| range = PT - startpos; |
| if (range <= 0) |
| return -1; |
| } |
| #endif /* emacs */ |
| |
| /* Update the fastmap now if not correct already. */ |
| if (fastmap && !bufp->fastmap_accurate) |
| if (re_compile_fastmap (bufp) == -2) |
| return -2; |
| |
| #ifdef WCHAR |
| /* Allocate wchar_t array for wcs_string1 and wcs_string2 and |
| fill them with converted string. */ |
| if (size1 != 0) |
| { |
| if (size1 > MAX_ALLOCA_SIZE) |
| { |
| wcs_string1 = TALLOC (size1 + 1, CHAR_T); |
| mbs_offset1 = TALLOC (size1 + 1, int); |
| is_binary = TALLOC (size1 + 1, char); |
| } |
| else |
| { |
| wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T); |
| mbs_offset1 = REGEX_TALLOC (size1 + 1, int); |
| is_binary = REGEX_TALLOC (size1 + 1, char); |
| } |
| if (!wcs_string1 || !mbs_offset1 || !is_binary) |
| { |
| if (size1 > MAX_ALLOCA_SIZE) |
| { |
| free (wcs_string1); |
| free (mbs_offset1); |
| free (is_binary); |
| } |
| else |
| { |
| FREE_VAR (wcs_string1); |
| FREE_VAR (mbs_offset1); |
| FREE_VAR (is_binary); |
| } |
| return -2; |
| } |
| wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1, |
| mbs_offset1, is_binary); |
| wcs_string1[wcs_size1] = L'\0'; /* for a sentinel */ |
| if (size1 > MAX_ALLOCA_SIZE) |
| free (is_binary); |
| else |
| FREE_VAR (is_binary); |
| } |
| if (size2 != 0) |
| { |
| if (size2 > MAX_ALLOCA_SIZE) |
| { |
| wcs_string2 = TALLOC (size2 + 1, CHAR_T); |
| mbs_offset2 = TALLOC (size2 + 1, int); |
| is_binary = TALLOC (size2 + 1, char); |
| } |
| else |
| { |
| wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T); |
| mbs_offset2 = REGEX_TALLOC (size2 + 1, int); |
| is_binary = REGEX_TALLOC (size2 + 1, char); |
| } |
| if (!wcs_string2 || !mbs_offset2 || !is_binary) |
| { |
| FREE_WCS_BUFFERS (); |
| if (size2 > MAX_ALLOCA_SIZE) |
| free (is_binary); |
| else |
| FREE_VAR (is_binary); |
| return -2; |
| } |
| wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2, |
| mbs_offset2, is_binary); |
| wcs_string2[wcs_size2] = L'\0'; /* for a sentinel */ |
| if (size2 > MAX_ALLOCA_SIZE) |
| free (is_binary); |
| else |
| FREE_VAR (is_binary); |
| } |
| #endif /* WCHAR */ |
| |
| |
| /* Loop through the string, looking for a place to start matching. */ |
| for (;;) |
| { |
| /* If a fastmap is supplied, skip quickly over characters that |
| cannot be the start of a match. If the pattern can match the |
| null string, however, we don't need to skip characters; we want |
| the first null string. */ |
| if (fastmap && startpos < total_size && !bufp->can_be_null) |
| { |
| if (range > 0) /* Searching forwards. */ |
| { |
| register const char *d; |
| register int lim = 0; |
| int irange = range; |
| |
| if (startpos < size1 && startpos + range >= size1) |
| lim = range - (size1 - startpos); |
| |
| d = (startpos >= size1 ? string2 - size1 : string1) + startpos; |
| |
| /* Written out as an if-else to avoid testing `translate' |
| inside the loop. */ |
| if (translate) |
| while (range > lim |
| && !fastmap[(unsigned char) |
| translate[(unsigned char) *d++]]) |
| range--; |
| else |
| while (range > lim && !fastmap[(unsigned char) *d++]) |
| range--; |
| |
| startpos += irange - range; |
| } |
| else /* Searching backwards. */ |
| { |
| register CHAR_T c = (size1 == 0 || startpos >= size1 |
| ? string2[startpos - size1] |
| : string1[startpos]); |
| |
| if (!fastmap[(unsigned char) TRANSLATE (c)]) |
| goto advance; |
| } |
| } |
| |
| /* If can't match the null string, and that's all we have left, fail. */ |
| if (range >= 0 && startpos == total_size && fastmap |
| && !bufp->can_be_null) |
| { |
| #ifdef WCHAR |
| FREE_WCS_BUFFERS (); |
| #endif |
| return -1; |
| } |
| |
| #ifdef WCHAR |
| val = wcs_re_match_2_internal (bufp, string1, size1, string2, |
| size2, startpos, regs, stop, |
| wcs_string1, wcs_size1, |
| wcs_string2, wcs_size2, |
| mbs_offset1, mbs_offset2); |
| #else /* BYTE */ |
| val = byte_re_match_2_internal (bufp, string1, size1, string2, |
| size2, startpos, regs, stop); |
| #endif /* BYTE */ |
| |
| #ifndef REGEX_MALLOC |
| # ifdef C_ALLOCA |
| alloca (0); |
| # endif |
| #endif |
| |
| if (val >= 0) |
| { |
| #ifdef WCHAR |
| FREE_WCS_BUFFERS (); |
| #endif |
| return startpos; |
| } |
| |
| if (val == -2) |
| { |
| #ifdef WCHAR |
| FREE_WCS_BUFFERS (); |
| #endif |
| return -2; |
| } |
| |
| advance: |
| if (!range) |
| break; |
| else if (range > 0) |
| { |
| range--; |
| startpos++; |
| } |
| else |
| { |
| range++; |
| startpos--; |
| } |
| } |
| #ifdef WCHAR |
| FREE_WCS_BUFFERS (); |
| #endif |
| return -1; |
| } |
| |
| #ifdef WCHAR |
| /* This converts PTR, a pointer into one of the search wchar_t strings |
| `string1' and `string2' into an multibyte string offset from the |
| beginning of that string. We use mbs_offset to optimize. |
| See convert_mbs_to_wcs. */ |
| # define POINTER_TO_OFFSET(ptr) \ |
| (FIRST_STRING_P (ptr) \ |
| ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \ |
| : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \ |
| + csize1))) |
| #else /* BYTE */ |
| /* This converts PTR, a pointer into one of the search strings `string1' |
| and `string2' into an offset from the beginning of that string. */ |
| # define POINTER_TO_OFFSET(ptr) \ |
| (FIRST_STRING_P (ptr) \ |
| ? ((regoff_t) ((ptr) - string1)) \ |
| : ((regoff_t) ((ptr) - string2 + size1))) |
| #endif /* WCHAR */ |
| |
| /* Macros for dealing with the split strings in re_match_2. */ |
| |
| #define MATCHING_IN_FIRST_STRING (dend == end_match_1) |
| |
| /* Call before fetching a character with *d. This switches over to |
| string2 if necessary. */ |
| #define PREFETCH() \ |
| while (d == dend) \ |
| { \ |
| /* End of string2 => fail. */ \ |
| if (dend == end_match_2) \ |
| goto fail; \ |
| /* End of string1 => advance to string2. */ \ |
| d = string2; \ |
| dend = end_match_2; \ |
| } |
| |
| /* Test if at very beginning or at very end of the virtual concatenation |
| of `string1' and `string2'. If only one string, it's `string2'. */ |
| #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) |
| #define AT_STRINGS_END(d) ((d) == end2) |
| |
| |
| /* Test if D points to a character which is word-constituent. We have |
| two special cases to check for: if past the end of string1, look at |
| the first character in string2; and if before the beginning of |
| string2, look at the last character in string1. */ |
| #ifdef WCHAR |
| /* Use internationalized API instead of SYNTAX. */ |
| # define WORDCHAR_P(d) \ |
| (iswalnum ((wint_t)((d) == end1 ? *string2 \ |
| : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \ |
| || ((d) == end1 ? *string2 \ |
| : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_') |
| #else /* BYTE */ |
| # define WORDCHAR_P(d) \ |
| (SYNTAX ((d) == end1 ? *string2 \ |
| : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \ |
| == Sword) |
| #endif /* WCHAR */ |
| |
| /* Disabled due to a compiler bug -- see comment at case wordbound */ |
| #if 0 |
| /* Test if the character before D and the one at D differ with respect |
| to being word-constituent. */ |
| #define AT_WORD_BOUNDARY(d) \ |
| (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \ |
| || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) |
| #endif |
| |
| /* Free everything we malloc. */ |
| #ifdef MATCH_MAY_ALLOCATE |
| # ifdef WCHAR |
| # define FREE_VARIABLES() \ |
| do { \ |
| REGEX_FREE_STACK (fail_stack.stack); \ |
| FREE_VAR (regstart); \ |
| FREE_VAR (regend); \ |
| FREE_VAR (old_regstart); \ |
| FREE_VAR (old_regend); \ |
| FREE_VAR (best_regstart); \ |
| FREE_VAR (best_regend); \ |
| FREE_VAR (reg_info); \ |
| FREE_VAR (reg_dummy); \ |
| FREE_VAR (reg_info_dummy); \ |
| if (!cant_free_wcs_buf) \ |
| { \ |
| FREE_VAR (string1); \ |
| FREE_VAR (string2); \ |
| FREE_VAR (mbs_offset1); \ |
| FREE_VAR (mbs_offset2); \ |
| } \ |
| } while (0) |
| # else /* BYTE */ |
| # define FREE_VARIABLES() \ |
| do { \ |
| REGEX_FREE_STACK (fail_stack.stack); \ |
| FREE_VAR (regstart); \ |
| FREE_VAR (regend); \ |
| FREE_VAR (old_regstart); \ |
| FREE_VAR (old_regend); \ |
| FREE_VAR (best_regstart); \ |
| FREE_VAR (best_regend); \ |
| FREE_VAR (reg_info); \ |
| FREE_VAR (reg_dummy); \ |
| FREE_VAR (reg_info_dummy); \ |
| } while (0) |
| # endif /* WCHAR */ |
| #else |
| # ifdef WCHAR |
| # define FREE_VARIABLES() \ |
| do { \ |
| if (!cant_free_wcs_buf) \ |
| { \ |
| FREE_VAR (string1); \ |
| FREE_VAR (string2); \ |
| FREE_VAR (mbs_offset1); \ |
| FREE_VAR (mbs_offset2); \ |
| } \ |
| } while (0) |
| # else /* BYTE */ |
| # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */ |
| # endif /* WCHAR */ |
| #endif /* not MATCH_MAY_ALLOCATE */ |
| |
| /* These values must meet several constraints. They must not be valid |
| register values; since we have a limit of 255 registers (because |
| we use only one byte in the pattern for the register number), we can |
| use numbers larger than 255. They must differ by 1, because of |
| NUM_FAILURE_ITEMS above. And the value for the lowest register must |
| be larger than the value for the highest register, so we do not try |
| to actually save any registers when none are active. */ |
| #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) |
| #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) |
| |
| #else /* not INSIDE_RECURSION */ |
| /* Matching routines. */ |
| |
| #ifndef emacs /* Emacs never uses this. */ |
| /* re_match is like re_match_2 except it takes only a single string. */ |
| |
| int |
| re_match (struct re_pattern_buffer *bufp, const char *string, |
| int size, int pos, struct re_registers *regs) |
| { |
| int result; |
| # ifdef MBS_SUPPORT |
| if (MB_CUR_MAX != 1) |
| result = wcs_re_match_2_internal (bufp, NULL, 0, string, size, |
| pos, regs, size, |
| NULL, 0, NULL, 0, NULL, NULL); |
| else |
| # endif |
| result = byte_re_match_2_internal (bufp, NULL, 0, string, size, |
| pos, regs, size); |
| # ifndef REGEX_MALLOC |
| # ifdef C_ALLOCA |
| alloca (0); |
| # endif |
| # endif |
| return result; |
| } |
| # ifdef _LIBC |
| weak_alias (__re_match, re_match) |
| # endif |
| #endif /* not emacs */ |
| |
| #endif /* not INSIDE_RECURSION */ |
| |
| #ifdef INSIDE_RECURSION |
| static boolean PREFIX(group_match_null_string_p) (UCHAR_T **p, |
| UCHAR_T *end, |
| PREFIX(register_info_type) *reg_info); |
| static boolean PREFIX(alt_match_null_string_p) (UCHAR_T *p, |
| UCHAR_T *end, |
| PREFIX(register_info_type) *reg_info); |
| static boolean PREFIX(common_op_match_null_string_p) (UCHAR_T **p, |
| UCHAR_T *end, |
| PREFIX(register_info_type) *reg_info); |
| static int PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2, |
| int len, char *translate); |
| #else /* not INSIDE_RECURSION */ |
| |
| /* re_match_2 matches the compiled pattern in BUFP against the |
| the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 |
| and SIZE2, respectively). We start matching at POS, and stop |
| matching at STOP. |
| |
| If REGS is non-null and the `no_sub' field of BUFP is nonzero, we |
| store offsets for the substring each group matched in REGS. See the |
| documentation for exactly how many groups we fill. |
| |
| We return -1 if no match, -2 if an internal error (such as the |
| failure stack overflowing). Otherwise, we return the length of the |
| matched substring. */ |
| |
| int |
| re_match_2 (struct re_pattern_buffer *bufp, const char *string1, int size1, |
| const char *string2, int size2, int pos, |
| struct re_registers *regs, int stop) |
| { |
| int result; |
| # ifdef MBS_SUPPORT |
| if (MB_CUR_MAX != 1) |
| result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2, |
| pos, regs, stop, |
| NULL, 0, NULL, 0, NULL, NULL); |
| else |
| # endif |
| result = byte_re_match_2_internal (bufp, string1, size1, string2, size2, |
| pos, regs, stop); |
| |
| #ifndef REGEX_MALLOC |
| # ifdef C_ALLOCA |
| alloca (0); |
| # endif |
| #endif |
| return result; |
| } |
| #ifdef _LIBC |
| weak_alias (__re_match_2, re_match_2) |
| #endif |
| |
| #endif /* not INSIDE_RECURSION */ |
| |
| #ifdef INSIDE_RECURSION |
| |
| #ifdef WCHAR |
| static int count_mbs_length (int *, int); |
| |
| /* This check the substring (from 0, to length) of the multibyte string, |
| to which offset_buffer correspond. And count how many wchar_t_characters |
| the substring occupy. We use offset_buffer to optimization. |
| See convert_mbs_to_wcs. */ |
| |
| static int |
| count_mbs_length(int *offset_buffer, int length) |
| { |
| int upper, lower; |
| |
| /* Check whether the size is valid. */ |
| if (length < 0) |
| return -1; |
| |
| if (offset_buffer == NULL) |
| return 0; |
| |
| /* If there are no multibyte character, offset_buffer[i] == i. |
| Optmize for this case. */ |
| if (offset_buffer[length] == length) |
| return length; |
| |
| /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */ |
| upper = length; |
| lower = 0; |
| |
| while (true) |
| { |
| int middle = (lower + upper) / 2; |
| if (middle == lower || middle == upper) |
| break; |
| if (offset_buffer[middle] > length) |
| upper = middle; |
| else if (offset_buffer[middle] < length) |
| lower = middle; |
| else |
| return middle; |
| } |
| |
| return -1; |
| } |
| #endif /* WCHAR */ |
| |
| /* This is a separate function so that we can force an alloca cleanup |
| afterwards. */ |
| #ifdef WCHAR |
| static int |
| wcs_re_match_2_internal (struct re_pattern_buffer *bufp, |
| const char *cstring1, int csize1, |
| const char *cstring2, int csize2, |
| int pos, |
| struct re_registers *regs, |
| int stop, |
| /* string1 == string2 == NULL means string1/2, size1/2 and |
| mbs_offset1/2 need seting up in this function. */ |
| /* We need wchar_t* buffers correspond to cstring1, cstring2. */ |
| wchar_t *string1, int size1, |
| wchar_t *string2, int size2, |
| /* offset buffer for optimizatoin. See convert_mbs_to_wc. */ |
| int *mbs_offset1, int *mbs_offset2) |
| #else /* BYTE */ |
| static int |
| byte_re_match_2_internal (struct re_pattern_buffer *bufp, |
| const char *string1, int size1, |
| const char *string2, int size2, |
| int pos, |
| struct re_registers *regs, int stop) |
| #endif /* BYTE */ |
| { |
| /* General temporaries. */ |
| int mcnt; |
| UCHAR_T *p1; |
| #ifdef WCHAR |
| /* They hold whether each wchar_t is binary data or not. */ |
| char *is_binary = NULL; |
| /* If true, we can't free string1/2, mbs_offset1/2. */ |
| int cant_free_wcs_buf = 1; |
| #endif /* WCHAR */ |
| |
| /* Just past the end of the corresponding string. */ |
| const CHAR_T *end1, *end2; |
| |
| /* Pointers into string1 and string2, just past the last characters in |
| each to consider matching. */ |
| const CHAR_T *end_match_1, *end_match_2; |
| |
| /* Where we are in the data, and the end of the current string. */ |
| const CHAR_T *d, *dend; |
| |
| /* Where we are in the pattern, and the end of the pattern. */ |
| #ifdef WCHAR |
| UCHAR_T *pattern, *p; |
| register UCHAR_T *pend; |
| #else /* BYTE */ |
| UCHAR_T *p = bufp->buffer; |
| register UCHAR_T *pend = p + bufp->used; |
| #endif /* WCHAR */ |
| |
| /* Mark the opcode just after a start_memory, so we can test for an |
| empty subpattern when we get to the stop_memory. */ |
| UCHAR_T *just_past_start_mem = 0; |
| |
| /* We use this to map every character in the string. */ |
| RE_TRANSLATE_TYPE translate = bufp->translate; |
| |
| /* Failure point stack. Each place that can handle a failure further |
| down the line pushes a failure point on this stack. It consists of |
| restart, regend, and reg_info for all registers corresponding to |
| the subexpressions we're currently inside, plus the number of such |
| registers, and, finally, two char *'s. The first char * is where |
| to resume scanning the pattern; the second one is where to resume |
| scanning the strings. If the latter is zero, the failure point is |
| a ``dummy''; if a failure happens and the failure point is a dummy, |
| it gets discarded and the next next one is tried. */ |
| #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ |
| PREFIX(fail_stack_type) fail_stack; |
| #endif |
| #ifdef DEBUG |
| static unsigned failure_id; |
| unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; |
| #endif |
| |
| #ifdef REL_ALLOC |
| /* This holds the pointer to the failure stack, when |
| it is allocated relocatably. */ |
| fail_stack_elt_t *failure_stack_ptr; |
| #endif |
| |
| /* We fill all the registers internally, independent of what we |
| return, for use in backreferences. The number here includes |
| an element for register zero. */ |
| size_t num_regs = bufp->re_nsub + 1; |
| |
| /* The currently active registers. */ |
| active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
| active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG; |
| |
| /* Information on the contents of registers. These are pointers into |
| the input strings; they record just what was matched (on this |
| attempt) by a subexpression part of the pattern, that is, the |
| regnum-th regstart pointer points to where in the pattern we began |
| matching and the regnum-th regend points to right after where we |
| stopped matching the regnum-th subexpression. (The zeroth register |
| keeps track of what the whole pattern matches.) */ |
| #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
| const CHAR_T **regstart, **regend; |
| #endif |
| |
| /* If a group that's operated upon by a repetition operator fails to |
| match anything, then the register for its start will need to be |
| restored because it will have been set to wherever in the string we |
| are when we last see its open-group operator. Similarly for a |
| register's end. */ |
| #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
| const CHAR_T **old_regstart, **old_regend; |
| #endif |
| |
| /* The is_active field of reg_info helps us keep track of which (possibly |
| nested) subexpressions we are currently in. The matched_something |
| field of reg_info[reg_num] helps us tell whether or not we have |
| matched any of the pattern so far this time through the reg_num-th |
| subexpression. These two fields get reset each time through any |
| loop their register is in. */ |
| #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ |
| PREFIX(register_info_type) *reg_info; |
| #endif |
| |
| /* The following record the register info as found in the above |
| variables when we find a match better than any we've seen before. |
| This happens as we backtrack through the failure points, which in |
| turn happens only if we have not yet matched the entire string. */ |
| unsigned best_regs_set = false; |
| #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
| const CHAR_T **best_regstart, **best_regend; |
| #endif |
| |
| /* Logically, this is `best_regend[0]'. But we don't want to have to |
| allocate space for that if we're not allocating space for anything |
| else (see below). Also, we never need info about register 0 for |
| any of the other register vectors, and it seems rather a kludge to |
| treat `best_regend' differently than the rest. So we keep track of |
| the end of the best match so far in a separate variable. We |
| initialize this to NULL so that when we backtrack the first time |
| and need to test it, it's not garbage. */ |
| const CHAR_T *match_end = NULL; |
| |
| /* This helps SET_REGS_MATCHED avoid doing redundant work. */ |
| int set_regs_matched_done = 0; |
| |
| /* Used when we pop values we don't care about. */ |
| #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
| const CHAR_T **reg_dummy; |
| PREFIX(register_info_type) *reg_info_dummy; |
| #endif |
| |
| #ifdef DEBUG |
| /* Counts the total number of registers pushed. */ |
| unsigned num_regs_pushed = 0; |
| #endif |
| |
| DEBUG_PRINT1 ("\n\nEntering re_match_2.\n"); |
| |
| INIT_FAIL_STACK (); |
| |
| #ifdef MATCH_MAY_ALLOCATE |
| /* Do not bother to initialize all the register variables if there are |
| no groups in the pattern, as it takes a fair amount of time. If |
| there are groups, we include space for register 0 (the whole |
| pattern), even though we never use it, since it simplifies the |
| array indexing. We should fix this. */ |
| if (bufp->re_nsub) |
| { |
| regstart = REGEX_TALLOC (num_regs, const CHAR_T *); |
| regend = REGEX_TALLOC (num_regs, const CHAR_T *); |
| old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *); |
| old_regend = REGEX_TALLOC (num_regs, const CHAR_T *); |
| best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *); |
| best_regend = REGEX_TALLOC (num_regs, const CHAR_T *); |
| reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type)); |
| reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *); |
| reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type)); |
| |
| if (!(regstart && regend && old_regstart && old_regend && reg_info |
| && best_regstart && best_regend && reg_dummy && reg_info_dummy)) |
| { |
| FREE_VARIABLES (); |
| return -2; |
| } |
| } |
| else |
| { |
| /* We must initialize all our variables to NULL, so that |
| `FREE_VARIABLES' doesn't try to free them. */ |
| regstart = regend = old_regstart = old_regend = best_regstart |
| = best_regend = reg_dummy = NULL; |
| reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL; |
| } |
| #endif /* MATCH_MAY_ALLOCATE */ |
| |
| /* The starting position is bogus. */ |
| #ifdef WCHAR |
| if (pos < 0 || pos > csize1 + csize2) |
| #else /* BYTE */ |
| if (pos < 0 || pos > size1 + size2) |
| #endif |
| { |
| FREE_VARIABLES (); |
| return -1; |
| } |
| |
| #ifdef WCHAR |
| /* Allocate wchar_t array for string1 and string2 and |
| fill them with converted string. */ |
| if (string1 == NULL && string2 == NULL) |
| { |
| /* We need seting up buffers here. */ |
| |
| /* We must free wcs buffers in this function. */ |
| cant_free_wcs_buf = 0; |
| |
| if (csize1 != 0) |
| { |
| string1 = REGEX_TALLOC (csize1 + 1, CHAR_T); |
| mbs_offset1 = REGEX_TALLOC (csize1 + 1, int); |
| is_binary = REGEX_TALLOC (csize1 + 1, char); |
| if (!string1 || !mbs_offset1 || !is_binary) |
| { |
| FREE_VAR (string1); |
| FREE_VAR (mbs_offset1); |
| FREE_VAR (is_binary); |
| return -2; |
| } |
| } |
| if (csize2 != 0) |
| { |
| string2 = REGEX_TALLOC (csize2 + 1, CHAR_T); |
| mbs_offset2 = REGEX_TALLOC (csize2 + 1, int); |
| is_binary = REGEX_TALLOC (csize2 + 1, char); |
| if (!string2 || !mbs_offset2 || !is_binary) |
| { |
| FREE_VAR (string1); |
| FREE_VAR (mbs_offset1); |
| FREE_VAR (string2); |
| FREE_VAR (mbs_offset2); |
| FREE_VAR (is_binary); |
| return -2; |
| } |
| size2 = convert_mbs_to_wcs(string2, cstring2, csize2, |
| mbs_offset2, is_binary); |
| string2[size2] = L'\0'; /* for a sentinel */ |
| FREE_VAR (is_binary); |
| } |
| } |
| |
| /* We need to cast pattern to (wchar_t*), because we casted this compiled |
| pattern to (char*) in regex_compile. */ |
| p = pattern = (CHAR_T*)bufp->buffer; |
| pend = (CHAR_T*)(bufp->buffer + bufp->used); |
| |
| #endif /* WCHAR */ |
| |
| /* Initialize subexpression text positions to -1 to mark ones that no |
| start_memory/stop_memory has been seen for. Also initialize the |
| register information struct. */ |
| for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) |
| { |
| regstart[mcnt] = regend[mcnt] |
| = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; |
| |
| REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; |
| IS_ACTIVE (reg_info[mcnt]) = 0; |
| MATCHED_SOMETHING (reg_info[mcnt]) = 0; |
| EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; |
| } |
| |
| /* We move `string1' into `string2' if the latter's empty -- but not if |
| `string1' is null. */ |
| if (size2 == 0 && string1 != NULL) |
| { |
| string2 = string1; |
| size2 = size1; |
| string1 = 0; |
| size1 = 0; |
| #ifdef WCHAR |
| mbs_offset2 = mbs_offset1; |
| csize2 = csize1; |
| mbs_offset1 = NULL; |
| csize1 = 0; |
| #endif |
| } |
| end1 = string1 + size1; |
| end2 = string2 + size2; |
| |
| /* Compute where to stop matching, within the two strings. */ |
| #ifdef WCHAR |
| if (stop <= csize1) |
| { |
| mcnt = count_mbs_length(mbs_offset1, stop); |
| end_match_1 = string1 + mcnt; |
| end_match_2 = string2; |
| } |
| else |
| { |
| if (stop > csize1 + csize2) |
| stop = csize1 + csize2; |
| end_match_1 = end1; |
| mcnt = count_mbs_length(mbs_offset2, stop-csize1); |
| end_match_2 = string2 + mcnt; |
| } |
| if (mcnt < 0) |
| { /* count_mbs_length return error. */ |
| FREE_VARIABLES (); |
| return -1; |
| } |
| #else |
| if (stop <= size1) |
| { |
| end_match_1 = string1 + stop; |
| end_match_2 = string2; |
| } |
| else |
| { |
| end_match_1 = end1; |
| end_match_2 = string2 + stop - size1; |
| } |
| #endif /* WCHAR */ |
| |
| /* `p' scans through the pattern as `d' scans through the data. |
| `dend' is the end of the input string that `d' points within. `d' |
| is advanced into the following input string whenever necessary, but |
| this happens before fetching; therefore, at the beginning of the |
| loop, `d' can be pointing at the end of a string, but it cannot |
| equal `string2'. */ |
| #ifdef WCHAR |
| if (size1 > 0 && pos <= csize1) |
| { |
| mcnt = count_mbs_length(mbs_offset1, pos); |
| d = string1 + mcnt; |
| dend = end_match_1; |
| } |
| else |
| { |
| mcnt = count_mbs_length(mbs_offset2, pos-csize1); |
| d = string2 + mcnt; |
| dend = end_match_2; |
| } |
| |
| if (mcnt < 0) |
| { /* count_mbs_length return error. */ |
| FREE_VARIABLES (); |
| return -1; |
| } |
| #else |
| if (size1 > 0 && pos <= size1) |
| { |
| d = string1 + pos; |
| dend = end_match_1; |
| } |
| else |
| { |
| d = string2 + pos - size1; |
| dend = end_match_2; |
| } |
| #endif /* WCHAR */ |
| |
| DEBUG_PRINT1 ("The compiled pattern is:\n"); |
| DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); |
| DEBUG_PRINT1 ("The string to match is: `"); |
| DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); |
| DEBUG_PRINT1 ("'\n"); |
| |
| /* This loops over pattern commands. It exits by returning from the |
| function if the match is complete, or it drops through if the match |
| fails at this starting point in the input data. */ |
| for (;;) |
| { |
| #ifdef _LIBC |
| DEBUG_PRINT2 ("\n%p: ", p); |
| #else |
| DEBUG_PRINT2 ("\n0x%x: ", p); |
| #endif |
| |
| if (p == pend) |
| { /* End of pattern means we might have succeeded. */ |
| DEBUG_PRINT1 ("end of pattern ... "); |
| |
| /* If we haven't matched the entire string, and we want the |
| longest match, try backtracking. */ |
| if (d != end_match_2) |
| { |
| /* 1 if this match ends in the same string (string1 or string2) |
| as the best previous match. */ |
| boolean same_str_p; |
| |
| /* 1 if this match is the best seen so far. */ |
| boolean best_match_p; |
| |
| same_str_p = (FIRST_STRING_P (match_end) |
| == MATCHING_IN_FIRST_STRING); |
| |
| /* AIX compiler got confused when this was combined |
| with the previous declaration. */ |
| if (same_str_p) |
| best_match_p = d > match_end; |
| else |
| best_match_p = !MATCHING_IN_FIRST_STRING; |
| |
| DEBUG_PRINT1 ("backtracking.\n"); |
| |
| if (!FAIL_STACK_EMPTY ()) |
| { /* More failure points to try. */ |
| |
| /* If exceeds best match so far, save it. */ |
| if (!best_regs_set || best_match_p) |
| { |
| best_regs_set = true; |
| match_end = d; |
| |
| DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); |
| |
| for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) |
| { |
| best_regstart[mcnt] = regstart[mcnt]; |
| best_regend[mcnt] = regend[mcnt]; |
| } |
| } |
| goto fail; |
| } |
| |
| /* If no failure points, don't restore garbage. And if |
| last match is real best match, don't restore second |
| best one. */ |
| else if (best_regs_set && !best_match_p) |
| { |
| restore_best_regs: |
| /* Restore best match. It may happen that `dend == |
| end_match_1' while the restored d is in string2. |
| For example, the pattern `x.*y.*z' against the |
| strings `x-' and `y-z-', if the two strings are |
| not consecutive in memory. */ |
| DEBUG_PRINT1 ("Restoring best registers.\n"); |
| |
| d = match_end; |
| dend = ((d >= string1 && d <= end1) |
| ? end_match_1 : end_match_2); |
| |
| for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) |
| { |
| regstart[mcnt] = best_regstart[mcnt]; |
| regend[mcnt] = best_regend[mcnt]; |
| } |
| } |
| } /* d != end_match_2 */ |
| |
| succeed_label: |
| DEBUG_PRINT1 ("Accepting match.\n"); |
| /* If caller wants register contents data back, do it. */ |
| if (regs && !bufp->no_sub) |
| { |
| /* Have the register data arrays been allocated? */ |
| if (bufp->regs_allocated == REGS_UNALLOCATED) |
| { /* No. So allocate them with malloc. We need one |
| extra element beyond `num_regs' for the `-1' marker |
| GNU code uses. */ |
| regs->num_regs = MAX (RE_NREGS, num_regs + 1); |
| regs->start = TALLOC (regs->num_regs, regoff_t); |
| regs->end = TALLOC (regs->num_regs, regoff_t); |
| if (regs->start == NULL || regs->end == NULL) |
| { |
| FREE_VARIABLES (); |
| return -2; |
| } |
| bufp->regs_allocated = REGS_REALLOCATE; |
| } |
| else if (bufp->regs_allocated == REGS_REALLOCATE) |
| { /* Yes. If we need more elements than were already |
| allocated, reallocate them. If we need fewer, just |
| leave it alone. */ |
| if (regs->num_regs < num_regs + 1) |
| { |
| regs->num_regs = num_regs + 1; |
| RETALLOC (regs->start, regs->num_regs, regoff_t); |
| RETALLOC (regs->end, regs->num_regs, regoff_t); |
| if (regs->start == NULL || regs->end == NULL) |
| { |
| FREE_VARIABLES (); |
| return -2; |
| } |
| } |
| } |
| else |
| { |
| /* These braces fend off a "empty body in an else-statement" |
| warning under GCC when assert expands to nothing. */ |
| assert (bufp->regs_allocated == REGS_FIXED); |
| } |
| |
| /* Convert the pointer data in `regstart' and `regend' to |
| indices. Register zero has to be set differently, |
| since we haven't kept track of any info for it. */ |
| if (regs->num_regs > 0) |
| { |
| regs->start[0] = pos; |
| #ifdef WCHAR |
| if (MATCHING_IN_FIRST_STRING) |
| regs->end[0] = mbs_offset1 != NULL ? |
| mbs_offset1[d-string1] : 0; |
| else |
| regs->end[0] = csize1 + (mbs_offset2 != NULL ? |
| mbs_offset2[d-string2] : 0); |
| #else |
| regs->end[0] = (MATCHING_IN_FIRST_STRING |
| ? ((regoff_t) (d - string1)) |
| : ((regoff_t) (d - string2 + size1))); |
| #endif /* WCHAR */ |
| } |
| |
| /* Go through the first `min (num_regs, regs->num_regs)' |
| registers, since that is all we initialized. */ |
| for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs); |
| mcnt++) |
| { |
| if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt])) |
| regs->start[mcnt] = regs->end[mcnt] = -1; |
| else |
| { |
| regs->start[mcnt] |
| = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]); |
| regs->end[mcnt] |
| = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]); |
| } |
| } |
| |
| /* If the regs structure we return has more elements than |
| were in the pattern, set the extra elements to -1. If |
| we (re)allocated the registers, this is the case, |
| because we always allocate enough to have at least one |
| -1 at the end. */ |
| for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++) |
| regs->start[mcnt] = regs->end[mcnt] = -1; |
| } /* regs && !bufp->no_sub */ |
| |
| DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", |
| nfailure_points_pushed, nfailure_points_popped, |
| nfailure_points_pushed - nfailure_points_popped); |
| DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); |
| |
| #ifdef WCHAR |
| if (MATCHING_IN_FIRST_STRING) |
| mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0; |
| else |
| mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) + |
| csize1; |
| mcnt -= pos; |
| #else |
| mcnt = d - pos - (MATCHING_IN_FIRST_STRING |
| ? string1 |
| : string2 - size1); |
| #endif /* WCHAR */ |
| |
| DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); |
| |
| FREE_VARIABLES (); |
| return mcnt; |
| } |
| |
| /* Otherwise match next pattern command. */ |
| switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) |
| { |
| /* Ignore these. Used to ignore the n of succeed_n's which |
| currently have n == 0. */ |
| case no_op: |
| DEBUG_PRINT1 ("EXECUTING no_op.\n"); |
| break; |
| |
| case succeed: |
| DEBUG_PRINT1 ("EXECUTING succeed.\n"); |
| goto succeed_label; |
| |
| /* Match the next n pattern characters exactly. The following |
| byte in the pattern defines n, and the n bytes after that |
| are the characters to match. */ |
| case exactn: |
| #ifdef MBS_SUPPORT |
| case exactn_bin: |
| #endif |
| mcnt = *p++; |
| DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); |
| |
| /* This is written out as an if-else so we don't waste time |
| testing `translate' inside the loop. */ |
| if (translate) |
| { |
| do |
| { |
| PREFETCH (); |
| #ifdef WCHAR |
| if (*d <= 0xff) |
| { |
| if ((UCHAR_T) translate[(unsigned char) *d++] |
| != (UCHAR_T) *p++) |
| goto fail; |
| } |
| else |
| { |
| if (*d++ != (CHAR_T) *p++) |
| goto fail; |
| } |
| #else |
| if ((UCHAR_T) translate[(unsigned char) *d++] |
| != (UCHAR_T) *p++) |
| goto fail; |
| #endif /* WCHAR */ |
| } |
| while (--mcnt); |
| } |
| else |
| { |
| do |
| { |
| PREFETCH (); |
| if (*d++ != (CHAR_T) *p++) goto fail; |
| } |
| while (--mcnt); |
| } |
| SET_REGS_MATCHED (); |
| break; |
| |
| |
| /* Match any character except possibly a newline or a null. */ |
| case anychar: |
| DEBUG_PRINT1 ("EXECUTING anychar.\n"); |
| |
| PREFETCH (); |
| |
| if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n') |
| || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000')) |
| goto fail; |
| |
| SET_REGS_MATCHED (); |
| DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d); |
| d++; |
| break; |
| |
| |
| case charset: |
| case charset_not: |
| { |
| register UCHAR_T c; |
| #ifdef WCHAR |
| unsigned int i, char_class_length, coll_symbol_length, |
| equiv_class_length, ranges_length, chars_length, length; |
| CHAR_T *workp, *workp2, *charset_top; |
| #define WORK_BUFFER_SIZE 128 |
| CHAR_T str_buf[WORK_BUFFER_SIZE]; |
| # ifdef _LIBC |
| uint32_t nrules; |
| # endif /* _LIBC */ |
| #endif /* WCHAR */ |
| boolean negate = (re_opcode_t) *(p - 1) == charset_not; |
| |
| DEBUG_PRINT2 ("EXECUTING charset%s.\n", negate ? "_not" : ""); |
| PREFETCH (); |
| c = TRANSLATE (*d); /* The character to match. */ |
| #ifdef WCHAR |
| # ifdef _LIBC |
| nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
| # endif /* _LIBC */ |
| charset_top = p - 1; |
| char_class_length = *p++; |
| coll_symbol_length = *p++; |
| equiv_class_length = *p++; |
| ranges_length = *p++; |
| chars_length = *p++; |
| /* p points charset[6], so the address of the next instruction |
| (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'], |
| where l=length of char_classes, m=length of collating_symbol, |
| n=equivalence_class, o=length of char_range, |
| p'=length of character. */ |
| workp = p; |
| /* Update p to indicate the next instruction. */ |
| p += char_class_length + coll_symbol_length+ equiv_class_length + |
| 2*ranges_length + chars_length; |
| |
| /* match with char_class? */ |
| for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE) |
| { |
| wctype_t wctype; |
| uintptr_t alignedp = ((uintptr_t)workp |
| + __alignof__(wctype_t) - 1) |
| & ~(uintptr_t)(__alignof__(wctype_t) - 1); |
| wctype = *((wctype_t*)alignedp); |
| workp += CHAR_CLASS_SIZE; |
| # ifdef _LIBC |
| if (__iswctype((wint_t)c, wctype)) |
| goto char_set_matched; |
| # else |
| if (iswctype((wint_t)c, wctype)) |
| goto char_set_matched; |
| # endif |
| } |
| |
| /* match with collating_symbol? */ |
| # ifdef _LIBC |
| if (nrules != 0) |
| { |
| const unsigned char *extra = (const unsigned char *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); |
| |
| for (workp2 = workp + coll_symbol_length ; workp < workp2 ; |
| workp++) |
| { |
| int32_t *wextra; |
| wextra = (int32_t*)(extra + *workp++); |
| for (i = 0; i < *wextra; ++i) |
| if (TRANSLATE(d[i]) != wextra[1 + i]) |
| break; |
| |
| if (i == *wextra) |
| { |
| /* Update d, however d will be incremented at |
| char_set_matched:, we decrement d here. */ |
| d += i - 1; |
| goto char_set_matched; |
| } |
| } |
| } |
| else /* (nrules == 0) */ |
| # endif |
| /* If we can't look up collation data, we use wcscoll |
| instead. */ |
| { |
| for (workp2 = workp + coll_symbol_length ; workp < workp2 ;) |
| { |
| const CHAR_T *backup_d = d, *backup_dend = dend; |
| # ifdef _LIBC |
| length = __wcslen (workp); |
| # else |
| length = wcslen (workp); |
| # endif |
| |
| /* If wcscoll(the collating symbol, whole string) > 0, |
| any substring of the string never match with the |
| collating symbol. */ |
| # ifdef _LIBC |
| if (__wcscoll (workp, d) > 0) |
| # else |
| if (wcscoll (workp, d) > 0) |
| # endif |
| { |
| workp += length + 1; |
| continue; |
| } |
| |
| /* First, we compare the collating symbol with |
| the first character of the string. |
| If it don't match, we add the next character to |
| the compare buffer in turn. */ |
| for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++) |
| { |
| int match; |
| if (d == dend) |
| { |
| if (dend == end_match_2) |
| break; |
| d = string2; |
| dend = end_match_2; |
| } |
| |
| /* add next character to the compare buffer. */ |
| str_buf[i] = TRANSLATE(*d); |
| str_buf[i+1] = '\0'; |
| |
| # ifdef _LIBC |
| match = __wcscoll (workp, str_buf); |
| # else |
| match = wcscoll (workp, str_buf); |
| # endif |
| if (match == 0) |
| goto char_set_matched; |
| |
| if (match < 0) |
| /* (str_buf > workp) indicate (str_buf + X > workp), |
| because for all X (str_buf + X > str_buf). |
| So we don't need continue this loop. */ |
| break; |
| |
| /* Otherwise(str_buf < workp), |
| (str_buf+next_character) may equals (workp). |
| So we continue this loop. */ |
| } |
| /* not matched */ |
| d = backup_d; |
| dend = backup_dend; |
| workp += length + 1; |
| } |
| } |
| /* match with equivalence_class? */ |
| # ifdef _LIBC |
| if (nrules != 0) |
| { |
| const CHAR_T *backup_d = d, *backup_dend = dend; |
| /* Try to match the equivalence class against |
| those known to the collate implementation. */ |
| const int32_t *table; |
| const int32_t *weights; |
| const int32_t *extra; |
| const int32_t *indirect; |
| int32_t idx, idx2; |
| wint_t *cp; |
| size_t len; |
| |
| /* This #include defines a local function! */ |
| # include <locale/weightwc.h> |
| |
| table = (const int32_t *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC); |
| weights = (const wint_t *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC); |
| extra = (const wint_t *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC); |
| indirect = (const int32_t *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC); |
| |
| /* Write 1 collating element to str_buf, and |
| get its index. */ |
| idx2 = 0; |
| |
| for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++) |
| { |
| cp = (wint_t*)str_buf; |
| if (d == dend) |
| { |
| if (dend == end_match_2) |
| break; |
| d = string2; |
| dend = end_match_2; |
| } |
| str_buf[i] = TRANSLATE(*(d+i)); |
| str_buf[i+1] = '\0'; /* sentinel */ |
| idx2 = findidx ((const wint_t**)&cp); |
| } |
| |
| /* Update d, however d will be incremented at |
| char_set_matched:, we decrement d here. */ |
| d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1); |
| if (d >= dend) |
| { |
| if (dend == end_match_2) |
| d = dend; |
| else |
| { |
| d = string2; |
| dend = end_match_2; |
| } |
| } |
| |
| len = weights[idx2]; |
| |
| for (workp2 = workp + equiv_class_length ; workp < workp2 ; |
| workp++) |
| { |
| idx = (int32_t)*workp; |
| /* We already checked idx != 0 in regex_compile. */ |
| |
| if (idx2 != 0 && len == weights[idx]) |
| { |
| int cnt = 0; |
| while (cnt < len && (weights[idx + 1 + cnt] |
| == weights[idx2 + 1 + cnt])) |
| ++cnt; |
| |
| if (cnt == len) |
| goto char_set_matched; |
| } |
| } |
| /* not matched */ |
| d = backup_d; |
| dend = backup_dend; |
| } |
| else /* (nrules == 0) */ |
| # endif |
| /* If we can't look up collation data, we use wcscoll |
| instead. */ |
| { |
| for (workp2 = workp + equiv_class_length ; workp < workp2 ;) |
| { |
| const CHAR_T *backup_d = d, *backup_dend = dend; |
| # ifdef _LIBC |
| length = __wcslen (workp); |
| # else |
| length = wcslen (workp); |
| # endif |
| |
| /* If wcscoll(the collating symbol, whole string) > 0, |
| any substring of the string never match with the |
| collating symbol. */ |
| # ifdef _LIBC |
| if (__wcscoll (workp, d) > 0) |
| # else |
| if (wcscoll (workp, d) > 0) |
| # endif |
| { |
| workp += length + 1; |
| break; |
| } |
| |
| /* First, we compare the equivalence class with |
| the first character of the string. |
| If it don't match, we add the next character to |
| the compare buffer in turn. */ |
| for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++) |
| { |
| int match; |
| if (d == dend) |
| { |
| if (dend == end_match_2) |
| break; |
| d = string2; |
| dend = end_match_2; |
| } |
| |
| /* add next character to the compare buffer. */ |
| str_buf[i] = TRANSLATE(*d); |
| str_buf[i+1] = '\0'; |
| |
| # ifdef _LIBC |
| match = __wcscoll (workp, str_buf); |
| # else |
| match = wcscoll (workp, str_buf); |
| # endif |
| |
| if (match == 0) |
| goto char_set_matched; |
| |
| if (match < 0) |
| /* (str_buf > workp) indicate (str_buf + X > workp), |
| because for all X (str_buf + X > str_buf). |
| So we don't need continue this loop. */ |
| break; |
| |
| /* Otherwise(str_buf < workp), |
| (str_buf+next_character) may equals (workp). |
| So we continue this loop. */ |
| } |
| /* not matched */ |
| d = backup_d; |
| dend = backup_dend; |
| workp += length + 1; |
| } |
| } |
| |
| /* match with char_range? */ |
| # ifdef _LIBC |
| if (nrules != 0) |
| { |
| uint32_t collseqval; |
| const char *collseq = (const char *) |
| _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC); |
| |
| collseqval = collseq_table_lookup (collseq, c); |
| |
| for (; workp < p - chars_length ;) |
| { |
| uint32_t start_val, end_val; |
| |
| /* We already compute the collation sequence value |
| of the characters (or collating symbols). */ |
| start_val = (uint32_t) *workp++; /* range_start */ |
| end_val = (uint32_t) *workp++; /* range_end */ |
| |
| if (start_val <= collseqval && collseqval <= end_val) |
| goto char_set_matched; |
| } |
| } |
| else |
| # endif |
| { |
| /* We set range_start_char at str_buf[0], range_end_char |
| at str_buf[4], and compared char at str_buf[2]. */ |
| str_buf[1] = 0; |
| str_buf[2] = c; |
| str_buf[3] = 0; |
| str_buf[5] = 0; |
| for (; workp < p - chars_length ;) |
| { |
| wchar_t *range_start_char, *range_end_char; |
| |
| /* match if (range_start_char <= c <= range_end_char). */ |
| |
| /* If range_start(or end) < 0, we assume -range_start(end) |
| is the offset of the collating symbol which is specified |
| as the character of the range start(end). */ |
| |
| /* range_start */ |
| if (*workp < 0) |
| range_start_char = charset_top - (*workp++); |
| else |
| { |
| str_buf[0] = *workp++; |
| range_start_char = str_buf; |
| } |
| |
| /* range_end */ |
| if (*workp < 0) |
| range_end_char = charset_top - (*workp++); |
| else |
| { |
| str_buf[4] = *workp++; |
| range_end_char = str_buf + 4; |
| } |
| |
| # ifdef _LIBC |
| if (__wcscoll (range_start_char, str_buf+2) <= 0 |
| && __wcscoll (str_buf+2, range_end_char) <= 0) |
| # else |
| if (wcscoll (range_start_char, str_buf+2) <= 0 |
| && wcscoll (str_buf+2, range_end_char) <= 0) |
| # endif |
| goto char_set_matched; |
| } |
| } |
| |
| /* match with char? */ |
| for (; workp < p ; workp++) |
| if (c == *workp) |
| goto char_set_matched; |
| |
| negate = !negate; |
| |
| char_set_matched: |
| if (negate) goto fail; |
| #else |
| /* Cast to `unsigned' instead of `unsigned char' in case the |
| bit list is a full 32 bytes long. */ |
| if (c < (unsigned) (*p * BYTEWIDTH) |
| && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) |
| negate = !negate; |
| |
| p += 1 + *p; |
| |
| if (!negate) goto fail; |
| #undef WORK_BUFFER_SIZE |
| #endif /* WCHAR */ |
| SET_REGS_MATCHED (); |
| d++; |
| break; |
| } |
| |
| |
| /* The beginning of a group is represented by start_memory. |
| The arguments are the register number in the next byte, and the |
| number of groups inner to this one in the next. The text |
| matched within the group is recorded (in the internal |
| registers data structure) under the register number. */ |
| case start_memory: |
| DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n", |
| (long int) *p, (long int) p[1]); |
| |
| /* Find out if this group can match the empty string. */ |
| p1 = p; /* To send to group_match_null_string_p. */ |
| |
| if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) |
| REG_MATCH_NULL_STRING_P (reg_info[*p]) |
| = PREFIX(group_match_null_string_p) (&p1, pend, reg_info); |
| |
| /* Save the position in the string where we were the last time |
| we were at this open-group operator in case the group is |
| operated upon by a repetition operator, e.g., with `(a*)*b' |
| against `ab'; then we want to ignore where we are now in |
| the string in case this attempt to match fails. */ |
| old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) |
| ? REG_UNSET (regstart[*p]) ? d : regstart[*p] |
| : regstart[*p]; |
| DEBUG_PRINT2 (" old_regstart: %d\n", |
| POINTER_TO_OFFSET (old_regstart[*p])); |
| |
| regstart[*p] = d; |
| DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); |
| |
| IS_ACTIVE (reg_info[*p]) = 1; |
| MATCHED_SOMETHING (reg_info[*p]) = 0; |
| |
| /* Clear this whenever we change the register activity status. */ |
| set_regs_matched_done = 0; |
| |
| /* This is the new highest active register. */ |
| highest_active_reg = *p; |
| |
| /* If nothing was active before, this is the new lowest active |
| register. */ |
| if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) |
| lowest_active_reg = *p; |
| |
| /* Move past the register number and inner group count. */ |
| p += 2; |
| just_past_start_mem = p; |
| |
| break; |
| |
| |
| /* The stop_memory opcode represents the end of a group. Its |
| arguments are the same as start_memory's: the register |
| number, and the number of inner groups. */ |
| case stop_memory: |
| DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n", |
| (long int) *p, (long int) p[1]); |
| |
| /* We need to save the string position the last time we were at |
| this close-group operator in case the group is operated |
| upon by a repetition operator, e.g., with `((a*)*(b*)*)*' |
| against `aba'; then we want to ignore where we are now in |
| the string in case this attempt to match fails. */ |
| old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) |
| ? REG_UNSET (regend[*p]) ? d : regend[*p] |
| : regend[*p]; |
| DEBUG_PRINT2 (" old_regend: %d\n", |
| POINTER_TO_OFFSET (old_regend[*p])); |
| |
| regend[*p] = d; |
| DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); |
| |
| /* This register isn't active anymore. */ |
| IS_ACTIVE (reg_info[*p]) = 0; |
| |
| /* Clear this whenever we change the register activity status. */ |
| set_regs_matched_done = 0; |
| |
| /* If this was the only register active, nothing is active |
| anymore. */ |
| if (lowest_active_reg == highest_active_reg) |
| { |
| lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
| highest_active_reg = NO_HIGHEST_ACTIVE_REG; |
| } |
| else |
| { /* We must scan for the new highest active register, since |
| it isn't necessarily one less than now: consider |
| (a(b)c(d(e)f)g). When group 3 ends, after the f), the |
| new highest active register is 1. */ |
| UCHAR_T r = *p - 1; |
| while (r > 0 && !IS_ACTIVE (reg_info[r])) |
| r--; |
| |
| /* If we end up at register zero, that means that we saved |
| the registers as the result of an `on_failure_jump', not |
| a `start_memory', and we jumped to past the innermost |
| `stop_memory'. For example, in ((.)*) we save |
| registers 1 and 2 as a result of the *, but when we pop |
| back to the second ), we are at the stop_memory 1. |
| Thus, nothing is active. */ |
| if (r == 0) |
| { |
| lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
| highest_active_reg = NO_HIGHEST_ACTIVE_REG; |
| } |
| else |
| highest_active_reg = r; |
| } |
| |
| /* If just failed to match something this time around with a |
| group that's operated on by a repetition operator, try to |
| force exit from the ``loop'', and restore the register |
| information for this group that we had before trying this |
| last match. */ |
| if ((!MATCHED_SOMETHING (reg_info[*p]) |
| || just_past_start_mem == p - 1) |
| && (p + 2) < pend) |
| { |
| boolean is_a_jump_n = false; |
| |
| p1 = p + 2; |
| mcnt = 0; |
| switch ((re_opcode_t) *p1++) |
| { |
| case jump_n: |
| is_a_jump_n = true; |
| /* Fall through. */ |
| case pop_failure_jump: |
| case maybe_pop_jump: |
| case jump: |
| case dummy_failure_jump: |
| EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
| if (is_a_jump_n) |
| p1 += OFFSET_ADDRESS_SIZE; |
| break; |
| |
| default: |
| /* do nothing */ ; |
| } |
| p1 += mcnt; |
| |
| /* If the next operation is a jump backwards in the pattern |
| to an on_failure_jump right before the start_memory |
| corresponding to this stop_memory, exit from the loop |
| by forcing a failure after pushing on the stack the |
| on_failure_jump's jump in the pattern, and d. */ |
| if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump |
| && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory |
| && p1[2+OFFSET_ADDRESS_SIZE] == *p) |
| { |
| /* If this group ever matched anything, then restore |
| what its registers were before trying this last |
| failed match, e.g., with `(a*)*b' against `ab' for |
| regstart[1], and, e.g., with `((a*)*(b*)*)*' |
| against `aba' for regend[3]. |
| |
| Also restore the registers for inner groups for, |
| e.g., `((a*)(b*))*' against `aba' (register 3 would |
| otherwise get trashed). */ |
| |
| if (EVER_MATCHED_SOMETHING (reg_info[*p])) |
| { |
| unsigned r; |
| |
| EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; |
| |
| /* Restore this and inner groups' (if any) registers. */ |
| for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1); |
| r++) |
| { |
| regstart[r] = old_regstart[r]; |
| |
| /* xx why this test? */ |
| if (old_regend[r] >= regstart[r]) |
| regend[r] = old_regend[r]; |
| } |
| } |
| p1++; |
| EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
| PUSH_FAILURE_POINT (p1 + mcnt, d, -2); |
| |
| goto fail; |
| } |
| } |
| |
| /* Move past the register number and the inner group count. */ |
| p += 2; |
| break; |
| |
| |
| /* \<digit> has been turned into a `duplicate' command which is |
| followed by the numeric value of <digit> as the register number. */ |
| case duplicate: |
| { |
| register const CHAR_T *d2, *dend2; |
| int regno = *p++; /* Get which register to match against. */ |
| DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); |
| |
| /* Can't back reference a group which we've never matched. */ |
| if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) |
| goto fail; |
| |
| /* Where in input to try to start matching. */ |
| d2 = regstart[regno]; |
| |
| /* Where to stop matching; if both the place to start and |
| the place to stop matching are in the same string, then |
| set to the place to stop, otherwise, for now have to use |
| the end of the first string. */ |
| |
| dend2 = ((FIRST_STRING_P (regstart[regno]) |
| == FIRST_STRING_P (regend[regno])) |
| ? regend[regno] : end_match_1); |
| for (;;) |
| { |
| /* If necessary, advance to next segment in register |
| contents. */ |
| while (d2 == dend2) |
| { |
| if (dend2 == end_match_2) break; |
| if (dend2 == regend[regno]) break; |
| |
| /* End of string1 => advance to string2. */ |
| d2 = string2; |
| dend2 = regend[regno]; |
| } |
| /* At end of register contents => success */ |
| if (d2 == dend2) break; |
| |
| /* If necessary, advance to next segment in data. */ |
| PREFETCH (); |
| |
| /* How many characters left in this segment to match. */ |
| mcnt = dend - d; |
| |
| /* Want how many consecutive characters we can match in |
| one shot, so, if necessary, adjust the count. */ |
| if (mcnt > dend2 - d2) |
| mcnt = dend2 - d2; |
| |
| /* Compare that many; failure if mismatch, else move |
| past them. */ |
| if (translate |
| ? PREFIX(bcmp_translate) (d, d2, mcnt, translate) |
| : memcmp (d, d2, mcnt*sizeof(UCHAR_T))) |
| goto fail; |
| d += mcnt, d2 += mcnt; |
| |
| /* Do this because we've match some characters. */ |
| SET_REGS_MATCHED (); |
| } |
| } |
| break; |
| |
| |
| /* begline matches the empty string at the beginning of the string |
| (unless `not_bol' is set in `bufp'), and, if |
| `newline_anchor' is set, after newlines. */ |
| case begline: |
| DEBUG_PRINT1 ("EXECUTING begline.\n"); |
| |
| if (AT_STRINGS_BEG (d)) |
| { |
| if (!bufp->not_bol) break; |
| } |
| else if (d[-1] == '\n' && bufp->newline_anchor) |
| { |
| break; |
| } |
| /* In all other cases, we fail. */ |
| goto fail; |
| |
| |
| /* endline is the dual of begline. */ |
| case endline: |
| DEBUG_PRINT1 ("EXECUTING endline.\n"); |
| |
| if (AT_STRINGS_END (d)) |
| { |
| if (!bufp->not_eol) break; |
| } |
| |
| /* We have to ``prefetch'' the next character. */ |
| else if ((d == end1 ? *string2 : *d) == '\n' |
| && bufp->newline_anchor) |
| { |
| break; |
| } |
| goto fail; |
| |
| |
| /* Match at the very beginning of the data. */ |
| case begbuf: |
| DEBUG_PRINT1 ("EXECUTING begbuf.\n"); |
| if (AT_STRINGS_BEG (d)) |
| break; |
| goto fail; |
| |
| |
| /* Match at the very end of the data. */ |
| case endbuf: |
| DEBUG_PRINT1 ("EXECUTING endbuf.\n"); |
| if (AT_STRINGS_END (d)) |
| break; |
| goto fail; |
| |
| |
| /* on_failure_keep_string_jump is used to optimize `.*\n'. It |
| pushes NULL as the value for the string on the stack. Then |
| `pop_failure_point' will keep the current value for the |
| string, instead of restoring it. To see why, consider |
| matching `foo\nbar' against `.*\n'. The .* matches the foo; |
| then the . fails against the \n. But the next thing we want |
| to do is match the \n against the \n; if we restored the |
| string value, we would be back at the foo. |
| |
| Because this is used only in specific cases, we don't need to |
| check all the things that `on_failure_jump' does, to make |
| sure the right things get saved on the stack. Hence we don't |
| share its code. The only reason to push anything on the |
| stack at all is that otherwise we would have to change |
| `anychar's code to do something besides goto fail in this |
| case; that seems worse than this. */ |
| case on_failure_keep_string_jump: |
| DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); |
| |
| EXTRACT_NUMBER_AND_INCR (mcnt, p); |
| #ifdef _LIBC |
| DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt); |
| #else |
| DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); |
| #endif |
| |
| PUSH_FAILURE_POINT (p + mcnt, NULL, -2); |
| break; |
| |
| |
| /* Uses of on_failure_jump: |
| |
| Each alternative starts with an on_failure_jump that points |
| to the beginning of the next alternative. Each alternative |
| except the last ends with a jump that in effect jumps past |
| the rest of the alternatives. (They really jump to the |
| ending jump of the following alternative, because tensioning |
| these jumps is a hassle.) |
| |
| Repeats start with an on_failure_jump that points past both |
| the repetition text and either the following jump or |
| pop_failure_jump back to this on_failure_jump. */ |
| case on_failure_jump: |
| on_failure: |
| DEBUG_PRINT1 ("EXECUTING on_failure_jump"); |
| |
| EXTRACT_NUMBER_AND_INCR (mcnt, p); |
| #ifdef _LIBC |
| DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt); |
| #else |
| DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); |
| #endif |
| |
| /* If this on_failure_jump comes right before a group (i.e., |
| the original * applied to a group), save the information |
| for that group and all inner ones, so that if we fail back |
| to this point, the group's information will be correct. |
| For example, in \(a*\)*\1, we need the preceding group, |
| and in \(zz\(a*\)b*\)\2, we need the inner group. */ |
| |
| /* We can't use `p' to check ahead because we push |
| a failure point to `p + mcnt' after we do this. */ |
| p1 = p; |
| |
| /* We need to skip no_op's before we look for the |
| start_memory in case this on_failure_jump is happening as |
| the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 |
| against aba. */ |
| while (p1 < pend && (re_opcode_t) *p1 == no_op) |
| p1++; |
| |
| if (p1 < pend && (re_opcode_t) *p1 == start_memory) |
| { |
| /* We have a new highest active register now. This will |
| get reset at the start_memory we are about to get to, |
| but we will have saved all the registers relevant to |
| this repetition op, as described above. */ |
| highest_active_reg = *(p1 + 1) + *(p1 + 2); |
| if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) |
| lowest_active_reg = *(p1 + 1); |
| } |
| |
| DEBUG_PRINT1 (":\n"); |
| PUSH_FAILURE_POINT (p + mcnt, d, -2); |
| break; |
| |
| |
| /* A smart repeat ends with `maybe_pop_jump'. |
| We change it to either `pop_failure_jump' or `jump'. */ |
| case maybe_pop_jump: |
| EXTRACT_NUMBER_AND_INCR (mcnt, p); |
| DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); |
| { |
| register UCHAR_T *p2 = p; |
| |
| /* Compare the beginning of the repeat with what in the |
| pattern follows its end. If we can establish that there |
| is nothing that they would both match, i.e., that we |
| would have to backtrack because of (as in, e.g., `a*a') |
| then we can change to pop_failure_jump, because we'll |
| never have to backtrack. |
| |
| This is not true in the case of alternatives: in |
| `(a|ab)*' we do need to backtrack to the `ab' alternative |
| (e.g., if the string was `ab'). But instead of trying to |
| detect that here, the alternative has put on a dummy |
| failure point which is what we will end up popping. */ |
| |
| /* Skip over open/close-group commands. |
| If what follows this loop is a ...+ construct, |
| look at what begins its body, since we will have to |
| match at least one of that. */ |
| while (1) |
| { |
| if (p2 + 2 < pend |
| && ((re_opcode_t) *p2 == stop_memory |
| || (re_opcode_t) *p2 == start_memory)) |
| p2 += 3; |
| else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend |
| && (re_opcode_t) *p2 == dummy_failure_jump) |
| p2 += 2 + 2 * OFFSET_ADDRESS_SIZE; |
| else |
| break; |
| } |
| |
| p1 = p + mcnt; |
| /* p1[0] ... p1[2] are the `on_failure_jump' corresponding |
| to the `maybe_finalize_jump' of this case. Examine what |
| follows. */ |
| |
| /* If we're at the end of the pattern, we can change. */ |
| if (p2 == pend) |
| { |
| /* Consider what happens when matching ":\(.*\)" |
| against ":/". I don't really understand this code |
| yet. */ |
| p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T) |
| pop_failure_jump; |
| DEBUG_PRINT1 |
| (" End of pattern: change to `pop_failure_jump'.\n"); |
| } |
| |
| else if ((re_opcode_t) *p2 == exactn |
| #ifdef MBS_SUPPORT |
| || (re_opcode_t) *p2 == exactn_bin |
| #endif |
| || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) |
| { |
| register UCHAR_T c |
| = *p2 == (UCHAR_T) endline ? '\n' : p2[2]; |
| |
| if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn |
| #ifdef MBS_SUPPORT |
| || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin |
| #endif |
| ) && p1[3+OFFSET_ADDRESS_SIZE] != c) |
| { |
| p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T) |
| pop_failure_jump; |
| #ifdef WCHAR |
| DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n", |
| (wint_t) c, |
| (wint_t) p1[3+OFFSET_ADDRESS_SIZE]); |
| #else |
| DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", |
| (char) c, |
| (char) p1[3+OFFSET_ADDRESS_SIZE]); |
| #endif |
| } |
| |
| #ifndef WCHAR |
| else if ((re_opcode_t) p1[3] == charset |
| || (re_opcode_t) p1[3] == charset_not) |
| { |
| int negate = (re_opcode_t) p1[3] == charset_not; |
| |
| if (c < (unsigned) (p1[4] * BYTEWIDTH) |
| && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) |
| negate = !negate; |
| |
| /* `negate' is equal to 1 if c would match, which means |
| that we can't change to pop_failure_jump. */ |
| if (!negate) |
| { |
| p[-3] = (unsigned char) pop_failure_jump; |
| DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
| } |
| } |
| #endif /* not WCHAR */ |
| } |
| #ifndef WCHAR |
| else if ((re_opcode_t) *p2 == charset) |
| { |
| /* We win if the first character of the loop is not part |
| of the charset. */ |
| if ((re_opcode_t) p1[3] == exactn |
| && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5] |
| && (p2[2 + p1[5] / BYTEWIDTH] |
| & (1 << (p1[5] % BYTEWIDTH))))) |
| { |
| p[-3] = (unsigned char) pop_failure_jump; |
| DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
| } |
| |
| else if ((re_opcode_t) p1[3] == charset_not) |
| { |
| int idx; |
| /* We win if the charset_not inside the loop |
| lists every character listed in the charset after. */ |
| for (idx = 0; idx < (int) p2[1]; idx++) |
| if (! (p2[2 + idx] == 0 |
| || (idx < (int) p1[4] |
| && ((p2[2 + idx] & ~ p1[5 + idx]) == 0)))) |
| break; |
| |
| if (idx == p2[1]) |
| { |
| p[-3] = (unsigned char) pop_failure_jump; |
| DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
| } |
| } |
| else if ((re_opcode_t) p1[3] == charset) |
| { |
| int idx; |
| /* We win if the charset inside the loop |
| has no overlap with the one after the loop. */ |
| for (idx = 0; |
| idx < (int) p2[1] && idx < (int) p1[4]; |
| idx++) |
| if ((p2[2 + idx] & p1[5 + idx]) != 0) |
| break; |
| |
| if (idx == p2[1] || idx == p1[4]) |
| { |
| p[-3] = (unsigned char) pop_failure_jump; |
| DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
| } |
| } |
| } |
| #endif /* not WCHAR */ |
| } |
| p -= OFFSET_ADDRESS_SIZE; /* Point at relative address again. */ |
| if ((re_opcode_t) p[-1] != pop_failure_jump) |
| { |
| p[-1] = (UCHAR_T) jump; |
| DEBUG_PRINT1 (" Match => jump.\n"); |
| goto unconditional_jump; |
| } |
| /* Fall through. */ |
| |
| |
| /* The end of a simple repeat has a pop_failure_jump back to |
| its matching on_failure_jump, where the latter will push a |
| failure point. The pop_failure_jump takes off failure |
| points put on by this pop_failure_jump's matching |
| on_failure_jump; we got through the pattern to here from the |
| matching on_failure_jump, so didn't fail. */ |
| case pop_failure_jump: |
| { |
| /* We need to pass separate storage for the lowest and |
| highest registers, even though we don't care about the |
| actual values. Otherwise, we will restore only one |
| register from the stack, since lowest will == highest in |
| `pop_failure_point'. */ |
| active_reg_t dummy_low_reg, dummy_high_reg; |
| UCHAR_T *pdummy ATTRIBUTE_UNUSED = NULL; |
| const CHAR_T *sdummy ATTRIBUTE_UNUSED = NULL; |
| |
| DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); |
| POP_FAILURE_POINT (sdummy, pdummy, |
| dummy_low_reg, dummy_high_reg, |
| reg_dummy, reg_dummy, reg_info_dummy); |
| } |
| /* Fall through. */ |
| |
| unconditional_jump: |
| #ifdef _LIBC |
| DEBUG_PRINT2 ("\n%p: ", p); |
| #else |
| DEBUG_PRINT2 ("\n0x%x: ", p); |
| #endif |
| /* Note fall through. */ |
| |
| /* Unconditionally jump (without popping any failure points). */ |
| case jump: |
| EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ |
| DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); |
| p += mcnt; /* Do the jump. */ |
| #ifdef _LIBC |
| DEBUG_PRINT2 ("(to %p).\n", p); |
| #else |
| DEBUG_PRINT2 ("(to 0x%x).\n", p); |
| #endif |
| break; |
| |
| |
| /* We need this opcode so we can detect where alternatives end |
| in `group_match_null_string_p' et al. */ |
| case jump_past_alt: |
| DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); |
| goto unconditional_jump; |
| |
| |
| /* Normally, the on_failure_jump pushes a failure point, which |
| then gets popped at pop_failure_jump. We will end up at |
| pop_failure_jump, also, and with a pattern of, say, `a+', we |
| are skipping over the on_failure_jump, so we have to push |
| something meaningless for pop_failure_jump to pop. */ |
| case dummy_failure_jump: |
| DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); |
| /* It doesn't matter what we push for the string here. What |
| the code at `fail' tests is the value for the pattern. */ |
| PUSH_FAILURE_POINT (NULL, NULL, -2); |
| goto unconditional_jump; |
| |
| |
| /* At the end of an alternative, we need to push a dummy failure |
| point in case we are followed by a `pop_failure_jump', because |
| we don't want the failure point for the alternative to be |
| popped. For example, matching `(a|ab)*' against `aab' |
| requires that we match the `ab' alternative. */ |
| case push_dummy_failure: |
| DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); |
| /* See comments just above at `dummy_failure_jump' about the |
| two zeroes. */ |
| PUSH_FAILURE_POINT (NULL, NULL, -2); |
| break; |
| |
| /* Have to succeed matching what follows at least n times. |
| After that, handle like `on_failure_jump'. */ |
| case succeed_n: |
| EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE); |
| DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); |
| |
| assert (mcnt >= 0); |
| /* Originally, this is how many times we HAVE to succeed. */ |
| if (mcnt > 0) |
| { |
| mcnt--; |
| p += OFFSET_ADDRESS_SIZE; |
| STORE_NUMBER_AND_INCR (p, mcnt); |
| #ifdef _LIBC |
| DEBUG_PRINT3 (" Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE |
| , mcnt); |
| #else |
| DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE |
| , mcnt); |
| #endif |
| } |
| else if (mcnt == 0) |
| { |
| #ifdef _LIBC |
| DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", |
| p + OFFSET_ADDRESS_SIZE); |
| #else |
| DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", |
| p + OFFSET_ADDRESS_SIZE); |
| #endif /* _LIBC */ |
| |
| #ifdef WCHAR |
| p[1] = (UCHAR_T) no_op; |
| #else |
| p[2] = (UCHAR_T) no_op; |
| p[3] = (UCHAR_T) no_op; |
| #endif /* WCHAR */ |
| goto on_failure; |
| } |
| break; |
| |
| case jump_n: |
| EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE); |
| DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); |
| |
| /* Originally, this is how many times we CAN jump. */ |
| if (mcnt) |
| { |
| mcnt--; |
| STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt); |
| |
| #ifdef _LIBC |
| DEBUG_PRINT3 (" Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE, |
| mcnt); |
| #else |
| DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE, |
| mcnt); |
| #endif /* _LIBC */ |
| goto unconditional_jump; |
| } |
| /* If don't have to jump any more, skip over the rest of command. */ |
| else |
| p += 2 * OFFSET_ADDRESS_SIZE; |
| break; |
| |
| case set_number_at: |
| { |
| DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); |
| |
| EXTRACT_NUMBER_AND_INCR (mcnt, p); |
| p1 = p + mcnt; |
| EXTRACT_NUMBER_AND_INCR (mcnt, p); |
| #ifdef _LIBC |
| DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt); |
| #else |
| DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt); |
| #endif |
| STORE_NUMBER (p1, mcnt); |
| break; |
| } |
| |
| #if 0 |
| /* The DEC Alpha C compiler 3.x generates incorrect code for the |
| test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of |
| AT_WORD_BOUNDARY, so this code is disabled. Expanding the |
| macro and introducing temporary variables works around the bug. */ |
| |
| case wordbound: |
| DEBUG_PRINT1 ("EXECUTING wordbound.\n"); |
| if (AT_WORD_BOUNDARY (d)) |
| break; |
| goto fail; |
| |
| case notwordbound: |
| DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); |
| if (AT_WORD_BOUNDARY (d)) |
| goto fail; |
| break; |
| #else |
| case wordbound: |
| { |
| boolean prevchar, thischar; |
| |
| DEBUG_PRINT1 ("EXECUTING wordbound.\n"); |
| if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)) |
| break; |
| |
| prevchar = WORDCHAR_P (d - 1); |
| thischar = WORDCHAR_P (d); |
| if (prevchar != thischar) |
| break; |
| goto fail; |
| } |
| |
| case notwordbound: |
| { |
| boolean prevchar, thischar; |
| |
| DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); |
| if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)) |
| goto fail; |
| |
| prevchar = WORDCHAR_P (d - 1); |
| thischar = WORDCHAR_P (d); |
| if (prevchar != thischar) |
| goto fail; |
| break; |
| } |
| #endif |
| |
| case wordbeg: |
| DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); |
| if (!AT_STRINGS_END (d) && WORDCHAR_P (d) |
| && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1))) |
| break; |
| goto fail; |
| |
| case wordend: |
| DEBUG_PRINT1 ("EXECUTING wordend.\n"); |
| if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1) |
| && (AT_STRINGS_END (d) || !WORDCHAR_P (d))) |
| break; |
| goto fail; |
| |
| #ifdef emacs |
| case before_dot: |
| DEBUG_PRINT1 ("EXECUTING before_dot.\n"); |
| if (PTR_CHAR_POS ((unsigned char *) d) >= point) |
| goto fail; |
| break; |
| |
| case at_dot: |
| DEBUG_PRINT1 ("EXECUTING at_dot.\n"); |
| if (PTR_CHAR_POS ((unsigned char *) d) != point) |
| goto fail; |
| break; |
| |
| case after_dot: |
| DEBUG_PRINT1 ("EXECUTING after_dot.\n"); |
| if (PTR_CHAR_POS ((unsigned char *) d) <= point) |
| goto fail; |
| break; |
| |
| case syntaxspec: |
| DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); |
| mcnt = *p++; |
| goto matchsyntax; |
| |
| case wordchar: |
| DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); |
| mcnt = (int) Sword; |
| matchsyntax: |
| PREFETCH (); |
| /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ |
| d++; |
| if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt) |
| goto fail; |
| SET_REGS_MATCHED (); |
| break; |
| |
| case notsyntaxspec: |
| DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); |
| mcnt = *p++; |
| goto matchnotsyntax; |
| |
| case notwordchar: |
| DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); |
| mcnt = (int) Sword; |
| matchnotsyntax: |
| PREFETCH (); |
| /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ |
| d++; |
| if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt) |
| goto fail; |
| SET_REGS_MATCHED (); |
| break; |
| |
| #else /* not emacs */ |
| case wordchar: |
| DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); |
| PREFETCH (); |
| if (!WORDCHAR_P (d)) |
| goto fail; |
| SET_REGS_MATCHED (); |
| d++; |
| break; |
| |
| case notwordchar: |
| DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); |
| PREFETCH (); |
| if (WORDCHAR_P (d)) |
| goto fail; |
| SET_REGS_MATCHED (); |
| d++; |
| break; |
| #endif /* not emacs */ |
| |
| default: |
| abort (); |
| } |
| continue; /* Successfully executed one pattern command; keep going. */ |
| |
| |
| /* We goto here if a matching operation fails. */ |
| fail: |
| if (!FAIL_STACK_EMPTY ()) |
| { /* A restart point is known. Restore to that state. */ |
| DEBUG_PRINT1 ("\nFAIL:\n"); |
| POP_FAILURE_POINT (d, p, |
| lowest_active_reg, highest_active_reg, |
| regstart, regend, reg_info); |
| |
| /* If this failure point is a dummy, try the next one. */ |
| if (!p) |
| goto fail; |
| |
| /* If we failed to the end of the pattern, don't examine *p. */ |
| assert (p <= pend); |
| if (p < pend) |
| { |
| boolean is_a_jump_n = false; |
| |
| /* If failed to a backwards jump that's part of a repetition |
| loop, need to pop this failure point and use the next one. */ |
| switch ((re_opcode_t) *p) |
| { |
| case jump_n: |
| is_a_jump_n = true; |
| /* Fall through. */ |
| case maybe_pop_jump: |
| case pop_failure_jump: |
| case jump: |
| p1 = p + 1; |
| EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
| p1 += mcnt; |
| |
| if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) |
| || (!is_a_jump_n |
| && (re_opcode_t) *p1 == on_failure_jump)) |
| goto fail; |
| break; |
| default: |
| /* do nothing */ ; |
| } |
| } |
| |
| if (d >= string1 && d <= end1) |
| dend = end_match_1; |
| } |
| else |
| break; /* Matching at this starting point really fails. */ |
| } /* for (;;) */ |
| |
| if (best_regs_set) |
| goto restore_best_regs; |
| |
| FREE_VARIABLES (); |
| |
| return -1; /* Failure to match. */ |
| } /* re_match_2 */ |
| |
| /* Subroutine definitions for re_match_2. */ |
| |
| |
| /* We are passed P pointing to a register number after a start_memory. |
| |
| Return true if the pattern up to the corresponding stop_memory can |
| match the empty string, and false otherwise. |
| |
| If we find the matching stop_memory, sets P to point to one past its number. |
| Otherwise, sets P to an undefined byte less than or equal to END. |
| |
| We don't handle duplicates properly (yet). */ |
| |
| static boolean |
| PREFIX(group_match_null_string_p) (UCHAR_T **p, UCHAR_T *end, |
| PREFIX(register_info_type) *reg_info) |
| { |
| int mcnt; |
| /* Point to after the args to the start_memory. */ |
| UCHAR_T *p1 = *p + 2; |
| |
| while (p1 < end) |
| { |
| /* Skip over opcodes that can match nothing, and return true or |
| false, as appropriate, when we get to one that can't, or to the |
| matching stop_memory. */ |
| |
| switch ((re_opcode_t) *p1) |
| { |
| /* Could be either a loop or a series of alternatives. */ |
| case on_failure_jump: |
| p1++; |
| EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
| |
| /* If the next operation is not a jump backwards in the |
| pattern. */ |
| |
| if (mcnt >= 0) |
| { |
| /* Go through the on_failure_jumps of the alternatives, |
| seeing if any of the alternatives cannot match nothing. |
| The last alternative starts with only a jump, |
| whereas the rest start with on_failure_jump and end |
| with a jump, e.g., here is the pattern for `a|b|c': |
| |
| /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 |
| /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 |
| /exactn/1/c |
| |
| So, we have to first go through the first (n-1) |
| alternatives and then deal with the last one separately. */ |
| |
| |
| /* Deal with the first (n-1) alternatives, which start |
| with an on_failure_jump (see above) that jumps to right |
| past a jump_past_alt. */ |
| |
| while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] == |
| jump_past_alt) |
| { |
| /* `mcnt' holds how many bytes long the alternative |
| is, including the ending `jump_past_alt' and |
| its number. */ |
| |
| if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt - |
| (1 + OFFSET_ADDRESS_SIZE), |
| reg_info)) |
| return false; |
| |
| /* Move to right after this alternative, including the |
| jump_past_alt. */ |
| p1 += mcnt; |
| |
| /* Break if it's the beginning of an n-th alternative |
| that doesn't begin with an on_failure_jump. */ |
| if ((re_opcode_t) *p1 != on_failure_jump) |
| break; |
| |
| /* Still have to check that it's not an n-th |
| alternative that starts with an on_failure_jump. */ |
| p1++; |
| EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
| if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] != |
| jump_past_alt) |
| { |
| /* Get to the beginning of the n-th alternative. */ |
| p1 -= 1 + OFFSET_ADDRESS_SIZE; |
| break; |
| } |
| } |
| |
| /* Deal with the last alternative: go back and get number |
| of the `jump_past_alt' just before it. `mcnt' contains |
| the length of the alternative. */ |
| EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE); |
| |
| if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info)) |
| return false; |
| |
| p1 += mcnt; /* Get past the n-th alternative. */ |
| } /* if mcnt > 0 */ |
| break; |
| |
| |
| case stop_memory: |
| assert (p1[1] == **p); |
| *p = p1 + 2; |
| return true; |
| |
| |
| default: |
| if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info)) |
| return false; |
| } |
| } /* while p1 < end */ |
| |
| return false; |
| } /* group_match_null_string_p */ |
| |
| |
| /* Similar to group_match_null_string_p, but doesn't deal with alternatives: |
| It expects P to be the first byte of a single alternative and END one |
| byte past the last. The alternative can contain groups. */ |
| |
| static boolean |
| PREFIX(alt_match_null_string_p) (UCHAR_T *p, UCHAR_T *end, |
| PREFIX(register_info_type) *reg_info) |
| { |
| int mcnt; |
| UCHAR_T *p1 = p; |
| |
| while (p1 < end) |
| { |
| /* Skip over opcodes that can match nothing, and break when we get |
| to one that can't. */ |
| |
| switch ((re_opcode_t) *p1) |
| { |
| /* It's a loop. */ |
| case on_failure_jump: |
| p1++; |
| EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
| p1 += mcnt; |
| break; |
| |
| default: |
| if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info)) |
| return false; |
| } |
| } /* while p1 < end */ |
| |
| return true; |
| } /* alt_match_null_string_p */ |
| |
| |
| /* Deals with the ops common to group_match_null_string_p and |
| alt_match_null_string_p. |
| |
| Sets P to one after the op and its arguments, if any. */ |
| |
| static boolean |
| PREFIX(common_op_match_null_string_p) (UCHAR_T **p, UCHAR_T *end, |
| PREFIX(register_info_type) *reg_info) |
| { |
| int mcnt; |
| boolean ret; |
| int reg_no; |
| UCHAR_T *p1 = *p; |
| |
| switch ((re_opcode_t) *p1++) |
| { |
| case no_op: |
| case begline: |
| case endline: |
| case begbuf: |
| case endbuf: |
| case wordbeg: |
| case wordend: |
| case wordbound: |
| case notwordbound: |
| #ifdef emacs |
| case before_dot: |
| case at_dot: |
| case after_dot: |
| #endif |
| break; |
| |
| case start_memory: |
| reg_no = *p1; |
| assert (reg_no > 0 && reg_no <= MAX_REGNUM); |
| ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info); |
| |
| /* Have to set this here in case we're checking a group which |
| contains a group and a back reference to it. */ |
| |
| if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) |
| REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; |
| |
| if (!ret) |
| return false; |
| break; |
| |
| /* If this is an optimized succeed_n for zero times, make the jump. */ |
| case jump: |
| EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
| if (mcnt >= 0) |
| p1 += mcnt; |
| else |
| return false; |
| break; |
| |
| case succeed_n: |
| /* Get to the number of times to succeed. */ |
| p1 += OFFSET_ADDRESS_SIZE; |
| EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
| |
| if (mcnt == 0) |
| { |
| p1 -= 2 * OFFSET_ADDRESS_SIZE; |
| EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
| p1 += mcnt; |
| } |
| else |
| return false; |
| break; |
| |
| case duplicate: |
| if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) |
| return false; |
| break; |
| |
| case set_number_at: |
| p1 += 2 * OFFSET_ADDRESS_SIZE; |
| return false; |
| |
| default: |
| /* All other opcodes mean we cannot match the empty string. */ |
| return false; |
| } |
| |
| *p = p1; |
| return true; |
| } /* common_op_match_null_string_p */ |
| |
| |
| /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN |
| bytes; nonzero otherwise. */ |
| |
| static int |
| PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2, register int len, |
| RE_TRANSLATE_TYPE translate) |
| { |
| register const UCHAR_T *p1 = (const UCHAR_T *) s1; |
| register const UCHAR_T *p2 = (const UCHAR_T *) s2; |
| while (len) |
| { |
| #ifdef WCHAR |
| if (((*p1<=0xff)?translate[*p1++]:*p1++) |
| != ((*p2<=0xff)?translate[*p2++]:*p2++)) |
| return 1; |
| #else /* BYTE */ |
| if (translate[*p1++] != translate[*p2++]) return 1; |
| #endif /* WCHAR */ |
| len--; |
| } |
| return 0; |
| } |
| |
| |
| #else /* not INSIDE_RECURSION */ |
| |
| /* Entry points for GNU code. */ |
| |
| /* re_compile_pattern is the GNU regular expression compiler: it |
| compiles PATTERN (of length SIZE) and puts the result in BUFP. |
| Returns 0 if the pattern was valid, otherwise an error string. |
| |
| Assumes the `allocated' (and perhaps `buffer') and `translate' fields |
| are set in BUFP on entry. |
| |
| We call regex_compile to do the actual compilation. */ |
| |
| const char * |
| re_compile_pattern (const char *pattern, size_t length, |
| struct re_pattern_buffer *bufp) |
| { |
| reg_errcode_t ret; |
| |
| /* GNU code is written to assume at least RE_NREGS registers will be set |
| (and at least one extra will be -1). */ |
| bufp->regs_allocated = REGS_UNALLOCATED; |
| |
| /* And GNU code determines whether or not to get register information |
| by passing null for the REGS argument to re_match, etc., not by |
| setting no_sub. */ |
| bufp->no_sub = 0; |
| |
| /* Match anchors at newline. */ |
| bufp->newline_anchor = 1; |
| |
| # ifdef MBS_SUPPORT |
| if (MB_CUR_MAX != 1) |
| ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp); |
| else |
| # endif |
| ret = byte_regex_compile (pattern, length, re_syntax_options, bufp); |
| |
| if (!ret) |
| return NULL; |
| return gettext (re_error_msgid[(int) ret]); |
| } |
| #ifdef _LIBC |
| weak_alias (__re_compile_pattern, re_compile_pattern) |
| #endif |
| |
| /* Entry points compatible with 4.2 BSD regex library. We don't define |
| them unless specifically requested. */ |
| |
| #if defined _REGEX_RE_COMP || defined _LIBC |
| |
| /* BSD has one and only one pattern buffer. */ |
| static struct re_pattern_buffer re_comp_buf; |
| |
| char * |
| #ifdef _LIBC |
| /* Make these definitions weak in libc, so POSIX programs can redefine |
| these names if they don't use our functions, and still use |
| regcomp/regexec below without link errors. */ |
| weak_function |
| #endif |
| re_comp (const char *s) |
| { |
| reg_errcode_t ret; |
| |
| if (!s) |
| { |
| if (!re_comp_buf.buffer) |
| return (char *) gettext ("No previous regular expression"); |
| return 0; |
| } |
| |
| if (!re_comp_buf.buffer) |
| { |
| re_comp_buf.buffer = (unsigned char *) malloc (200); |
| if (re_comp_buf.buffer == NULL) |
| return (char *) gettext (re_error_msgid[(int) REG_ESPACE]); |
| re_comp_buf.allocated = 200; |
| |
| re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); |
| if (re_comp_buf.fastmap == NULL) |
| return (char *) gettext (re_error_msgid[(int) REG_ESPACE]); |
| } |
| |
| /* Since `re_exec' always passes NULL for the `regs' argument, we |
| don't need to initialize the pattern buffer fields which affect it. */ |
| |
| /* Match anchors at newlines. */ |
| re_comp_buf.newline_anchor = 1; |
| |
| # ifdef MBS_SUPPORT |
| if (MB_CUR_MAX != 1) |
| ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); |
| else |
| # endif |
| ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); |
| |
| if (!ret) |
| return NULL; |
| |
| /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ |
| return (char *) gettext (re_error_msgid[(int) ret]); |
| } |
| |
| |
| int |
| #ifdef _LIBC |
| weak_function |
| #endif |
| re_exec (const char *s) |
| { |
| const int len = strlen (s); |
| return |
| 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0); |
| } |
| |
| #endif /* _REGEX_RE_COMP */ |
| |
| /* POSIX.2 functions. Don't define these for Emacs. */ |
| |
| #ifndef emacs |
| |
| /* regcomp takes a regular expression as a string and compiles it. |
| |
| PREG is a regex_t *. We do not expect any fields to be initialized, |
| since POSIX says we shouldn't. Thus, we set |
| |
| `buffer' to the compiled pattern; |
| `used' to the length of the compiled pattern; |
| `syntax' to RE_SYNTAX_POSIX_EXTENDED if the |
| REG_EXTENDED bit in CFLAGS is set; otherwise, to |
| RE_SYNTAX_POSIX_BASIC; |
| `newline_anchor' to REG_NEWLINE being set in CFLAGS; |
| `fastmap' to an allocated space for the fastmap; |
| `fastmap_accurate' to zero; |
| `re_nsub' to the number of subexpressions in PATTERN. |
| |
| PATTERN is the address of the pattern string. |
| |
| CFLAGS is a series of bits which affect compilation. |
| |
| If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we |
| use POSIX basic syntax. |
| |
| If REG_NEWLINE is set, then . and [^...] don't match newline. |
| Also, regexec will try a match beginning after every newline. |
| |
| If REG_ICASE is set, then we considers upper- and lowercase |
| versions of letters to be equivalent when matching. |
| |
| If REG_NOSUB is set, then when PREG is passed to regexec, that |
| routine will report only success or failure, and nothing about the |
| registers. |
| |
| It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for |
| the return codes and their meanings.) */ |
| |
| int |
| regcomp (regex_t *preg, const char *pattern, int cflags) |
| { |
| reg_errcode_t ret; |
| reg_syntax_t syntax |
| = (cflags & REG_EXTENDED) ? |
| RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; |
| |
| /* regex_compile will allocate the space for the compiled pattern. */ |
| preg->buffer = 0; |
| preg->allocated = 0; |
| preg->used = 0; |
| |
| /* Try to allocate space for the fastmap. */ |
| preg->fastmap = (char *) malloc (1 << BYTEWIDTH); |
| |
| if (cflags & REG_ICASE) |
| { |
| int i; |
| |
| preg->translate |
| = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE |
| * sizeof (*(RE_TRANSLATE_TYPE)0)); |
| if (preg->translate == NULL) |
| return (int) REG_ESPACE; |
| |
| /* Map uppercase characters to corresponding lowercase ones. */ |
| for (i = 0; i < CHAR_SET_SIZE; i++) |
| preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i; |
| } |
| else |
| preg->translate = NULL; |
| |
| /* If REG_NEWLINE is set, newlines are treated differently. */ |
| if (cflags & REG_NEWLINE) |
| { /* REG_NEWLINE implies neither . nor [^...] match newline. */ |
| syntax &= ~RE_DOT_NEWLINE; |
| syntax |= RE_HAT_LISTS_NOT_NEWLINE; |
| /* It also changes the matching behavior. */ |
| preg->newline_anchor = 1; |
| } |
| else |
| preg->newline_anchor = 0; |
| |
| preg->no_sub = !!(cflags & REG_NOSUB); |
| |
| /* POSIX says a null character in the pattern terminates it, so we |
| can use strlen here in compiling the pattern. */ |
| # ifdef MBS_SUPPORT |
| if (MB_CUR_MAX != 1) |
| ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg); |
| else |
| # endif |
| ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg); |
| |
| /* POSIX doesn't distinguish between an unmatched open-group and an |
| unmatched close-group: both are REG_EPAREN. */ |
| if (ret == REG_ERPAREN) ret = REG_EPAREN; |
| |
| if (ret == REG_NOERROR && preg->fastmap) |
| { |
| /* Compute the fastmap now, since regexec cannot modify the pattern |
| buffer. */ |
| if (re_compile_fastmap (preg) == -2) |
| { |
| /* Some error occurred while computing the fastmap, just forget |
| about it. */ |
| free (preg->fastmap); |
| preg->fastmap = NULL; |
| } |
| } |
| |
| return (int) ret; |
| } |
| #ifdef _LIBC |
| weak_alias (__regcomp, regcomp) |
| #endif |
| |
| |
| /* regexec searches for a given pattern, specified by PREG, in the |
| string STRING. |
| |
| If NMATCH is zero or REG_NOSUB was set in the cflags argument to |
| `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at |
| least NMATCH elements, and we set them to the offsets of the |
| corresponding matched substrings. |
| |
| EFLAGS specifies `execution flags' which affect matching: if |
| REG_NOTBOL is set, then ^ does not match at the beginning of the |
| string; if REG_NOTEOL is set, then $ does not match at the end. |
| |
| We return 0 if we find a match and REG_NOMATCH if not. */ |
| |
| int |
| regexec (const regex_t *preg, const char *string, size_t nmatch, |
| regmatch_t pmatch[], int eflags) |
| { |
| int ret; |
| struct re_registers regs; |
| regex_t private_preg; |
| int len = strlen (string); |
| boolean want_reg_info = !preg->no_sub && nmatch > 0; |
| |
| private_preg = *preg; |
| |
| private_preg.not_bol = !!(eflags & REG_NOTBOL); |
| private_preg.not_eol = !!(eflags & REG_NOTEOL); |
| |
| /* The user has told us exactly how many registers to return |
| information about, via `nmatch'. We have to pass that on to the |
| matching routines. */ |
| private_preg.regs_allocated = REGS_FIXED; |
| |
| if (want_reg_info) |
| { |
| regs.num_regs = nmatch; |
| regs.start = TALLOC (nmatch * 2, regoff_t); |
| if (regs.start == NULL) |
| return (int) REG_NOMATCH; |
| regs.end = regs.start + nmatch; |
| } |
| |
| /* Perform the searching operation. */ |
| ret = re_search (&private_preg, string, len, |
| /* start: */ 0, /* range: */ len, |
| want_reg_info ? ®s : (struct re_registers *) 0); |
| |
| /* Copy the register information to the POSIX structure. */ |
| if (want_reg_info) |
| { |
| if (ret >= 0) |
| { |
| unsigned r; |
| |
| for (r = 0; r < nmatch; r++) |
| { |
| pmatch[r].rm_so = regs.start[r]; |
| pmatch[r].rm_eo = regs.end[r]; |
| } |
| } |
| |
| /* If we needed the temporary register info, free the space now. */ |
| free (regs.start); |
| } |
| |
| /* We want zero return to mean success, unlike `re_search'. */ |
| return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; |
| } |
| #ifdef _LIBC |
| weak_alias (__regexec, regexec) |
| #endif |
| |
| |
| /* Returns a message corresponding to an error code, ERRCODE, returned |
| from either regcomp or regexec. We don't use PREG here. */ |
| |
| size_t |
| regerror (int errcode, const regex_t *preg ATTRIBUTE_UNUSED, |
| char *errbuf, size_t errbuf_size) |
| { |
| const char *msg; |
| size_t msg_size; |
| |
| if (errcode < 0 |
| || errcode >= (int) (sizeof (re_error_msgid) |
| / sizeof (re_error_msgid[0]))) |
| /* Only error codes returned by the rest of the code should be passed |
| to this routine. If we are given anything else, or if other regex |
| code generates an invalid error code, then the program has a bug. |
| Dump core so we can fix it. */ |
| abort (); |
| |
| msg = gettext (re_error_msgid[errcode]); |
| |
| msg_size = strlen (msg) + 1; /* Includes the null. */ |
| |
| if (errbuf_size != 0) |
| { |
| if (msg_size > errbuf_size) |
| { |
| #if defined HAVE_MEMPCPY || defined _LIBC |
| *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0'; |
| #else |
| (void) memcpy (errbuf, msg, errbuf_size - 1); |
| errbuf[errbuf_size - 1] = 0; |
| #endif |
| } |
| else |
| (void) memcpy (errbuf, msg, msg_size); |
| } |
| |
| return msg_size; |
| } |
| #ifdef _LIBC |
| weak_alias (__regerror, regerror) |
| #endif |
| |
| |
| /* Free dynamically allocated space used by PREG. */ |
| |
| void |
| regfree (regex_t *preg) |
| { |
| free (preg->buffer); |
| preg->buffer = NULL; |
| |
| preg->allocated = 0; |
| preg->used = 0; |
| |
| free (preg->fastmap); |
| preg->fastmap = NULL; |
| preg->fastmap_accurate = 0; |
| |
| free (preg->translate); |
| preg->translate = NULL; |
| } |
| #ifdef _LIBC |
| weak_alias (__regfree, regfree) |
| #endif |
| |
| #endif /* not emacs */ |
| |
| #endif /* not INSIDE_RECURSION */ |
| |
| |
| #undef STORE_NUMBER |
| #undef STORE_NUMBER_AND_INCR |
| #undef EXTRACT_NUMBER |
| #undef EXTRACT_NUMBER_AND_INCR |
| |
| #undef DEBUG_PRINT_COMPILED_PATTERN |
| #undef DEBUG_PRINT_DOUBLE_STRING |
| |
| #undef INIT_FAIL_STACK |
| #undef RESET_FAIL_STACK |
| #undef DOUBLE_FAIL_STACK |
| #undef PUSH_PATTERN_OP |
| #undef PUSH_FAILURE_POINTER |
| #undef PUSH_FAILURE_INT |
| #undef PUSH_FAILURE_ELT |
| #undef POP_FAILURE_POINTER |
| #undef POP_FAILURE_INT |
| #undef POP_FAILURE_ELT |
| #undef DEBUG_PUSH |
| #undef DEBUG_POP |
| #undef PUSH_FAILURE_POINT |
| #undef POP_FAILURE_POINT |
| |
| #undef REG_UNSET_VALUE |
| #undef REG_UNSET |
| |
| #undef PATFETCH |
| #undef PATFETCH_RAW |
| #undef PATUNFETCH |
| #undef TRANSLATE |
| |
| #undef INIT_BUF_SIZE |
| #undef GET_BUFFER_SPACE |
| #undef BUF_PUSH |
| #undef BUF_PUSH_2 |
| #undef BUF_PUSH_3 |
| #undef STORE_JUMP |
| #undef STORE_JUMP2 |
| #undef INSERT_JUMP |
| #undef INSERT_JUMP2 |
| #undef EXTEND_BUFFER |
| #undef GET_UNSIGNED_NUMBER |
| #undef FREE_STACK_RETURN |
| |
| # undef POINTER_TO_OFFSET |
| # undef MATCHING_IN_FRST_STRING |
| # undef PREFETCH |
| # undef AT_STRINGS_BEG |
| # undef AT_STRINGS_END |
| # undef WORDCHAR_P |
| # undef FREE_VAR |
| # undef FREE_VARIABLES |
| # undef NO_HIGHEST_ACTIVE_REG |
| # undef NO_LOWEST_ACTIVE_REG |
| |
| # undef CHAR_T |
| # undef UCHAR_T |
| # undef COMPILED_BUFFER_VAR |
| # undef OFFSET_ADDRESS_SIZE |
| # undef CHAR_CLASS_SIZE |
| # undef PREFIX |
| # undef ARG_PREFIX |
| # undef PUT_CHAR |
| # undef BYTE |
| # undef WCHAR |
| |
| # define DEFINED_ONCE |