| /* Definitions of floating-point access for GNU compiler. |
| Copyright (C) 1989-2020 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #ifndef GCC_REAL_H |
| #define GCC_REAL_H |
| |
| /* An expanded form of the represented number. */ |
| |
| /* Enumerate the special cases of numbers that we encounter. */ |
| enum real_value_class { |
| rvc_zero, |
| rvc_normal, |
| rvc_inf, |
| rvc_nan |
| }; |
| |
| #define SIGNIFICAND_BITS (128 + HOST_BITS_PER_LONG) |
| #define EXP_BITS (32 - 6) |
| #define MAX_EXP ((1 << (EXP_BITS - 1)) - 1) |
| #define SIGSZ (SIGNIFICAND_BITS / HOST_BITS_PER_LONG) |
| #define SIG_MSB ((unsigned long)1 << (HOST_BITS_PER_LONG - 1)) |
| |
| struct GTY(()) real_value { |
| /* Use the same underlying type for all bit-fields, so as to make |
| sure they're packed together, otherwise REAL_VALUE_TYPE_SIZE will |
| be miscomputed. */ |
| unsigned int /* ENUM_BITFIELD (real_value_class) */ cl : 2; |
| /* 1 if number is decimal floating point. */ |
| unsigned int decimal : 1; |
| /* 1 if number is negative. */ |
| unsigned int sign : 1; |
| /* 1 if number is signalling. */ |
| unsigned int signalling : 1; |
| /* 1 if number is canonical |
| All are generally used for handling cases in real.c. */ |
| unsigned int canonical : 1; |
| /* unbiased exponent of the number. */ |
| unsigned int uexp : EXP_BITS; |
| /* significand of the number. */ |
| unsigned long sig[SIGSZ]; |
| }; |
| |
| #define REAL_EXP(REAL) \ |
| ((int)((REAL)->uexp ^ (unsigned int)(1 << (EXP_BITS - 1))) \ |
| - (1 << (EXP_BITS - 1))) |
| #define SET_REAL_EXP(REAL, EXP) \ |
| ((REAL)->uexp = ((unsigned int)(EXP) & (unsigned int)((1 << EXP_BITS) - 1))) |
| |
| /* Various headers condition prototypes on #ifdef REAL_VALUE_TYPE, so it |
| needs to be a macro. We do need to continue to have a structure tag |
| so that other headers can forward declare it. */ |
| #define REAL_VALUE_TYPE struct real_value |
| |
| /* We store a REAL_VALUE_TYPE into an rtx, and we do this by putting it in |
| consecutive "w" slots. Moreover, we've got to compute the number of "w" |
| slots at preprocessor time, which means we can't use sizeof. Guess. */ |
| |
| #define REAL_VALUE_TYPE_SIZE (SIGNIFICAND_BITS + 32) |
| #define REAL_WIDTH \ |
| (REAL_VALUE_TYPE_SIZE/HOST_BITS_PER_WIDE_INT \ |
| + (REAL_VALUE_TYPE_SIZE%HOST_BITS_PER_WIDE_INT ? 1 : 0)) /* round up */ |
| |
| /* Verify the guess. */ |
| extern char test_real_width |
| [sizeof (REAL_VALUE_TYPE) <= REAL_WIDTH * sizeof (HOST_WIDE_INT) ? 1 : -1]; |
| |
| /* Calculate the format for CONST_DOUBLE. We need as many slots as |
| are necessary to overlay a REAL_VALUE_TYPE on them. This could be |
| as many as four (32-bit HOST_WIDE_INT, 128-bit REAL_VALUE_TYPE). |
| |
| A number of places assume that there are always at least two 'w' |
| slots in a CONST_DOUBLE, so we provide them even if one would suffice. */ |
| |
| #if REAL_WIDTH == 1 |
| # define CONST_DOUBLE_FORMAT "ww" |
| #else |
| # if REAL_WIDTH == 2 |
| # define CONST_DOUBLE_FORMAT "ww" |
| # else |
| # if REAL_WIDTH == 3 |
| # define CONST_DOUBLE_FORMAT "www" |
| # else |
| # if REAL_WIDTH == 4 |
| # define CONST_DOUBLE_FORMAT "wwww" |
| # else |
| # if REAL_WIDTH == 5 |
| # define CONST_DOUBLE_FORMAT "wwwww" |
| # else |
| # if REAL_WIDTH == 6 |
| # define CONST_DOUBLE_FORMAT "wwwwww" |
| # else |
| #error "REAL_WIDTH > 6 not supported" |
| # endif |
| # endif |
| # endif |
| # endif |
| # endif |
| #endif |
| |
| |
| /* Describes the properties of the specific target format in use. */ |
| struct real_format |
| { |
| /* Move to and from the target bytes. */ |
| void (*encode) (const struct real_format *, long *, |
| const REAL_VALUE_TYPE *); |
| void (*decode) (const struct real_format *, REAL_VALUE_TYPE *, |
| const long *); |
| |
| /* The radix of the exponent and digits of the significand. */ |
| int b; |
| |
| /* Size of the significand in digits of radix B. */ |
| int p; |
| |
| /* Size of the significant of a NaN, in digits of radix B. */ |
| int pnan; |
| |
| /* The minimum negative integer, x, such that b**(x-1) is normalized. */ |
| int emin; |
| |
| /* The maximum integer, x, such that b**(x-1) is representable. */ |
| int emax; |
| |
| /* The bit position of the sign bit, for determining whether a value |
| is positive/negative, or -1 for a complex encoding. */ |
| int signbit_ro; |
| |
| /* The bit position of the sign bit, for changing the sign of a number, |
| or -1 for a complex encoding. */ |
| int signbit_rw; |
| |
| /* If this is an IEEE interchange format, the number of bits in the |
| format; otherwise, if it is an IEEE extended format, one more |
| than the greatest number of bits in an interchange format it |
| extends; otherwise 0. Formats need not follow the IEEE 754-2008 |
| recommended practice regarding how signaling NaNs are identified, |
| and may vary in the choice of default NaN, but must follow other |
| IEEE practice regarding having NaNs, infinities and subnormal |
| values, and the relation of minimum and maximum exponents, and, |
| for interchange formats, the details of the encoding. */ |
| int ieee_bits; |
| |
| /* Default rounding mode for operations on this format. */ |
| bool round_towards_zero; |
| bool has_sign_dependent_rounding; |
| |
| /* Properties of the format. */ |
| bool has_nans; |
| bool has_inf; |
| bool has_denorm; |
| bool has_signed_zero; |
| bool qnan_msb_set; |
| bool canonical_nan_lsbs_set; |
| const char *name; |
| }; |
| |
| |
| /* The target format used for each floating point mode. |
| Float modes are followed by decimal float modes, with entries for |
| float modes indexed by (MODE - first float mode), and entries for |
| decimal float modes indexed by (MODE - first decimal float mode) + |
| the number of float modes. */ |
| extern const struct real_format * |
| real_format_for_mode[MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1 |
| + MAX_MODE_DECIMAL_FLOAT - MIN_MODE_DECIMAL_FLOAT + 1]; |
| |
| #define REAL_MODE_FORMAT(MODE) \ |
| (real_format_for_mode[DECIMAL_FLOAT_MODE_P (MODE) \ |
| ? (((MODE) - MIN_MODE_DECIMAL_FLOAT) \ |
| + (MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1)) \ |
| : GET_MODE_CLASS (MODE) == MODE_FLOAT \ |
| ? ((MODE) - MIN_MODE_FLOAT) \ |
| : (gcc_unreachable (), 0)]) |
| |
| #define FLOAT_MODE_FORMAT(MODE) \ |
| (REAL_MODE_FORMAT (as_a <scalar_float_mode> (GET_MODE_INNER (MODE)))) |
| |
| /* The following macro determines whether the floating point format is |
| composite, i.e. may contain non-consecutive mantissa bits, in which |
| case compile-time FP overflow may not model run-time overflow. */ |
| #define MODE_COMPOSITE_P(MODE) \ |
| (FLOAT_MODE_P (MODE) \ |
| && FLOAT_MODE_FORMAT (MODE)->pnan < FLOAT_MODE_FORMAT (MODE)->p) |
| |
| /* Accessor macros for format properties. */ |
| #define MODE_HAS_NANS(MODE) \ |
| (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_nans) |
| #define MODE_HAS_INFINITIES(MODE) \ |
| (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_inf) |
| #define MODE_HAS_SIGNED_ZEROS(MODE) \ |
| (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_signed_zero) |
| #define MODE_HAS_SIGN_DEPENDENT_ROUNDING(MODE) \ |
| (FLOAT_MODE_P (MODE) \ |
| && FLOAT_MODE_FORMAT (MODE)->has_sign_dependent_rounding) |
| |
| /* This class allows functions in this file to accept a floating-point |
| format as either a mode or an explicit real_format pointer. In the |
| former case the mode must be VOIDmode (which means "no particular |
| format") or must satisfy SCALAR_FLOAT_MODE_P. */ |
| class format_helper |
| { |
| public: |
| format_helper (const real_format *format) : m_format (format) {} |
| template<typename T> format_helper (const T &); |
| const real_format *operator-> () const { return m_format; } |
| operator const real_format *() const { return m_format; } |
| |
| bool decimal_p () const { return m_format && m_format->b == 10; } |
| bool can_represent_integral_type_p (tree type) const; |
| |
| private: |
| const real_format *m_format; |
| }; |
| |
| template<typename T> |
| inline format_helper::format_helper (const T &m) |
| : m_format (m == VOIDmode ? 0 : REAL_MODE_FORMAT (m)) |
| {} |
| |
| /* Declare functions in real.c. */ |
| |
| /* True if the given mode has a NaN representation and the treatment of |
| NaN operands is important. Certain optimizations, such as folding |
| x * 0 into 0, are not correct for NaN operands, and are normally |
| disabled for modes with NaNs. The user can ask for them to be |
| done anyway using the -funsafe-math-optimizations switch. */ |
| extern bool HONOR_NANS (machine_mode); |
| extern bool HONOR_NANS (const_tree); |
| extern bool HONOR_NANS (const_rtx); |
| |
| /* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */ |
| extern bool HONOR_SNANS (machine_mode); |
| extern bool HONOR_SNANS (const_tree); |
| extern bool HONOR_SNANS (const_rtx); |
| |
| /* As for HONOR_NANS, but true if the mode can represent infinity and |
| the treatment of infinite values is important. */ |
| extern bool HONOR_INFINITIES (machine_mode); |
| extern bool HONOR_INFINITIES (const_tree); |
| extern bool HONOR_INFINITIES (const_rtx); |
| |
| /* Like HONOR_NANS, but true if the given mode distinguishes between |
| positive and negative zero, and the sign of zero is important. */ |
| extern bool HONOR_SIGNED_ZEROS (machine_mode); |
| extern bool HONOR_SIGNED_ZEROS (const_tree); |
| extern bool HONOR_SIGNED_ZEROS (const_rtx); |
| |
| /* Like HONOR_NANS, but true if given mode supports sign-dependent rounding, |
| and the rounding mode is important. */ |
| extern bool HONOR_SIGN_DEPENDENT_ROUNDING (machine_mode); |
| extern bool HONOR_SIGN_DEPENDENT_ROUNDING (const_tree); |
| extern bool HONOR_SIGN_DEPENDENT_ROUNDING (const_rtx); |
| |
| /* Binary or unary arithmetic on tree_code. */ |
| extern bool real_arithmetic (REAL_VALUE_TYPE *, int, const REAL_VALUE_TYPE *, |
| const REAL_VALUE_TYPE *); |
| |
| /* Compare reals by tree_code. */ |
| extern bool real_compare (int, const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); |
| |
| /* Determine whether a floating-point value X is infinite. */ |
| extern bool real_isinf (const REAL_VALUE_TYPE *); |
| |
| /* Determine whether a floating-point value X is a NaN. */ |
| extern bool real_isnan (const REAL_VALUE_TYPE *); |
| |
| /* Determine whether a floating-point value X is a signaling NaN. */ |
| extern bool real_issignaling_nan (const REAL_VALUE_TYPE *); |
| |
| /* Determine whether a floating-point value X is finite. */ |
| extern bool real_isfinite (const REAL_VALUE_TYPE *); |
| |
| /* Determine whether a floating-point value X is negative. */ |
| extern bool real_isneg (const REAL_VALUE_TYPE *); |
| |
| /* Determine whether a floating-point value X is minus zero. */ |
| extern bool real_isnegzero (const REAL_VALUE_TYPE *); |
| |
| /* Test relationships between reals. */ |
| extern bool real_identical (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); |
| extern bool real_equal (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); |
| extern bool real_less (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); |
| |
| /* Extend or truncate to a new format. */ |
| extern void real_convert (REAL_VALUE_TYPE *, format_helper, |
| const REAL_VALUE_TYPE *); |
| |
| /* Return true if truncating to NEW is exact. */ |
| extern bool exact_real_truncate (format_helper, const REAL_VALUE_TYPE *); |
| |
| /* Render R as a decimal floating point constant. */ |
| extern void real_to_decimal (char *, const REAL_VALUE_TYPE *, size_t, |
| size_t, int); |
| |
| /* Render R as a decimal floating point constant, rounded so as to be |
| parsed back to the same value when interpreted in mode MODE. */ |
| extern void real_to_decimal_for_mode (char *, const REAL_VALUE_TYPE *, size_t, |
| size_t, int, machine_mode); |
| |
| /* Render R as a hexadecimal floating point constant. */ |
| extern void real_to_hexadecimal (char *, const REAL_VALUE_TYPE *, |
| size_t, size_t, int); |
| |
| /* Render R as an integer. */ |
| extern HOST_WIDE_INT real_to_integer (const REAL_VALUE_TYPE *); |
| |
| /* Initialize R from a decimal or hexadecimal string. Return -1 if |
| the value underflows, +1 if overflows, and 0 otherwise. */ |
| extern int real_from_string (REAL_VALUE_TYPE *, const char *); |
| /* Wrapper to allow different internal representation for decimal floats. */ |
| extern void real_from_string3 (REAL_VALUE_TYPE *, const char *, format_helper); |
| |
| extern long real_to_target (long *, const REAL_VALUE_TYPE *, format_helper); |
| |
| extern void real_from_target (REAL_VALUE_TYPE *, const long *, |
| format_helper); |
| |
| extern void real_inf (REAL_VALUE_TYPE *); |
| |
| extern bool real_nan (REAL_VALUE_TYPE *, const char *, int, format_helper); |
| |
| extern void real_maxval (REAL_VALUE_TYPE *, int, machine_mode); |
| |
| extern void real_2expN (REAL_VALUE_TYPE *, int, format_helper); |
| |
| extern unsigned int real_hash (const REAL_VALUE_TYPE *); |
| |
| |
| /* Target formats defined in real.c. */ |
| extern const struct real_format ieee_single_format; |
| extern const struct real_format mips_single_format; |
| extern const struct real_format motorola_single_format; |
| extern const struct real_format spu_single_format; |
| extern const struct real_format ieee_double_format; |
| extern const struct real_format mips_double_format; |
| extern const struct real_format motorola_double_format; |
| extern const struct real_format ieee_extended_motorola_format; |
| extern const struct real_format ieee_extended_intel_96_format; |
| extern const struct real_format ieee_extended_intel_96_round_53_format; |
| extern const struct real_format ieee_extended_intel_128_format; |
| extern const struct real_format ibm_extended_format; |
| extern const struct real_format mips_extended_format; |
| extern const struct real_format ieee_quad_format; |
| extern const struct real_format mips_quad_format; |
| extern const struct real_format vax_f_format; |
| extern const struct real_format vax_d_format; |
| extern const struct real_format vax_g_format; |
| extern const struct real_format real_internal_format; |
| extern const struct real_format decimal_single_format; |
| extern const struct real_format decimal_double_format; |
| extern const struct real_format decimal_quad_format; |
| extern const struct real_format ieee_half_format; |
| extern const struct real_format arm_half_format; |
| extern const struct real_format arm_bfloat_half_format; |
| |
| |
| /* ====================================================================== */ |
| /* Crap. */ |
| |
| /* Determine whether a floating-point value X is infinite. */ |
| #define REAL_VALUE_ISINF(x) real_isinf (&(x)) |
| |
| /* Determine whether a floating-point value X is a NaN. */ |
| #define REAL_VALUE_ISNAN(x) real_isnan (&(x)) |
| |
| /* Determine whether a floating-point value X is a signaling NaN. */ |
| #define REAL_VALUE_ISSIGNALING_NAN(x) real_issignaling_nan (&(x)) |
| |
| /* Determine whether a floating-point value X is negative. */ |
| #define REAL_VALUE_NEGATIVE(x) real_isneg (&(x)) |
| |
| /* Determine whether a floating-point value X is minus zero. */ |
| #define REAL_VALUE_MINUS_ZERO(x) real_isnegzero (&(x)) |
| |
| /* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */ |
| #define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) \ |
| real_to_target (OUT, &(IN), \ |
| float_mode_for_size (LONG_DOUBLE_TYPE_SIZE).require ()) |
| |
| #define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \ |
| real_to_target (OUT, &(IN), float_mode_for_size (64).require ()) |
| |
| /* IN is a REAL_VALUE_TYPE. OUT is a long. */ |
| #define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \ |
| ((OUT) = real_to_target (NULL, &(IN), float_mode_for_size (32).require ())) |
| |
| /* Real values to IEEE 754 decimal floats. */ |
| |
| /* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */ |
| #define REAL_VALUE_TO_TARGET_DECIMAL128(IN, OUT) \ |
| real_to_target (OUT, &(IN), decimal_float_mode_for_size (128).require ()) |
| |
| #define REAL_VALUE_TO_TARGET_DECIMAL64(IN, OUT) \ |
| real_to_target (OUT, &(IN), decimal_float_mode_for_size (64).require ()) |
| |
| /* IN is a REAL_VALUE_TYPE. OUT is a long. */ |
| #define REAL_VALUE_TO_TARGET_DECIMAL32(IN, OUT) \ |
| ((OUT) = real_to_target (NULL, &(IN), \ |
| decimal_float_mode_for_size (32).require ())) |
| |
| extern REAL_VALUE_TYPE real_value_truncate (format_helper, REAL_VALUE_TYPE); |
| |
| extern REAL_VALUE_TYPE real_value_negate (const REAL_VALUE_TYPE *); |
| extern REAL_VALUE_TYPE real_value_abs (const REAL_VALUE_TYPE *); |
| |
| extern int significand_size (format_helper); |
| |
| extern REAL_VALUE_TYPE real_from_string2 (const char *, format_helper); |
| |
| #define REAL_VALUE_ATOF(s, m) \ |
| real_from_string2 (s, m) |
| |
| #define CONST_DOUBLE_ATOF(s, m) \ |
| const_double_from_real_value (real_from_string2 (s, m), m) |
| |
| #define REAL_VALUE_FIX(r) \ |
| real_to_integer (&(r)) |
| |
| /* ??? Not quite right. */ |
| #define REAL_VALUE_UNSIGNED_FIX(r) \ |
| real_to_integer (&(r)) |
| |
| /* ??? These were added for Paranoia support. */ |
| |
| /* Return floor log2(R). */ |
| extern int real_exponent (const REAL_VALUE_TYPE *); |
| |
| /* R = A * 2**EXP. */ |
| extern void real_ldexp (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int); |
| |
| /* **** End of software floating point emulator interface macros **** */ |
| |
| /* Constant real values 0, 1, 2, -1 and 0.5. */ |
| |
| extern REAL_VALUE_TYPE dconst0; |
| extern REAL_VALUE_TYPE dconst1; |
| extern REAL_VALUE_TYPE dconst2; |
| extern REAL_VALUE_TYPE dconstm1; |
| extern REAL_VALUE_TYPE dconsthalf; |
| |
| #define dconst_e() (*dconst_e_ptr ()) |
| #define dconst_third() (*dconst_third_ptr ()) |
| #define dconst_quarter() (*dconst_quarter_ptr ()) |
| #define dconst_sixth() (*dconst_sixth_ptr ()) |
| #define dconst_ninth() (*dconst_ninth_ptr ()) |
| #define dconst_sqrt2() (*dconst_sqrt2_ptr ()) |
| |
| /* Function to return the real value special constant 'e'. */ |
| extern const REAL_VALUE_TYPE * dconst_e_ptr (void); |
| |
| /* Returns a cached REAL_VALUE_TYPE corresponding to 1/n, for various n. */ |
| extern const REAL_VALUE_TYPE *dconst_third_ptr (void); |
| extern const REAL_VALUE_TYPE *dconst_quarter_ptr (void); |
| extern const REAL_VALUE_TYPE *dconst_sixth_ptr (void); |
| extern const REAL_VALUE_TYPE *dconst_ninth_ptr (void); |
| |
| /* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */ |
| extern const REAL_VALUE_TYPE * dconst_sqrt2_ptr (void); |
| |
| /* Function to return a real value (not a tree node) |
| from a given integer constant. */ |
| REAL_VALUE_TYPE real_value_from_int_cst (const_tree, const_tree); |
| |
| /* Return a CONST_DOUBLE with value R and mode M. */ |
| extern rtx const_double_from_real_value (REAL_VALUE_TYPE, machine_mode); |
| |
| /* Replace R by 1/R in the given format, if the result is exact. */ |
| extern bool exact_real_inverse (format_helper, REAL_VALUE_TYPE *); |
| |
| /* Return true if arithmetic on values in IMODE that were promoted |
| from values in TMODE is equivalent to direct arithmetic on values |
| in TMODE. */ |
| bool real_can_shorten_arithmetic (machine_mode, machine_mode); |
| |
| /* In tree.c: wrap up a REAL_VALUE_TYPE in a tree node. */ |
| extern tree build_real (tree, REAL_VALUE_TYPE); |
| |
| /* Likewise, but first truncate the value to the type. */ |
| extern tree build_real_truncate (tree, REAL_VALUE_TYPE); |
| |
| /* Calculate R as X raised to the integer exponent N in format FMT. */ |
| extern bool real_powi (REAL_VALUE_TYPE *, format_helper, |
| const REAL_VALUE_TYPE *, HOST_WIDE_INT); |
| |
| /* Standard round to integer value functions. */ |
| extern void real_trunc (REAL_VALUE_TYPE *, format_helper, |
| const REAL_VALUE_TYPE *); |
| extern void real_floor (REAL_VALUE_TYPE *, format_helper, |
| const REAL_VALUE_TYPE *); |
| extern void real_ceil (REAL_VALUE_TYPE *, format_helper, |
| const REAL_VALUE_TYPE *); |
| extern void real_round (REAL_VALUE_TYPE *, format_helper, |
| const REAL_VALUE_TYPE *); |
| extern void real_roundeven (REAL_VALUE_TYPE *, format_helper, |
| const REAL_VALUE_TYPE *); |
| |
| /* Set the sign of R to the sign of X. */ |
| extern void real_copysign (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); |
| |
| /* Check whether the real constant value given is an integer. */ |
| extern bool real_isinteger (const REAL_VALUE_TYPE *, format_helper); |
| extern bool real_isinteger (const REAL_VALUE_TYPE *, HOST_WIDE_INT *); |
| |
| /* Calculate nextafter (X, Y) in format FMT. */ |
| extern bool real_nextafter (REAL_VALUE_TYPE *, format_helper, |
| const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); |
| |
| /* Write into BUF the maximum representable finite floating-point |
| number, (1 - b**-p) * b**emax for a given FP format FMT as a hex |
| float string. BUF must be large enough to contain the result. */ |
| extern void get_max_float (const struct real_format *, char *, size_t, bool); |
| |
| #ifndef GENERATOR_FILE |
| /* real related routines. */ |
| extern wide_int real_to_integer (const REAL_VALUE_TYPE *, bool *, int); |
| extern void real_from_integer (REAL_VALUE_TYPE *, format_helper, |
| const wide_int_ref &, signop); |
| #endif |
| |
| /* Fills r with the largest value such that 1 + r*r won't overflow. |
| This is used in both sin (atan (x)) and cos (atan(x)) optimizations. */ |
| extern void build_sinatan_real (REAL_VALUE_TYPE *, tree); |
| |
| #endif /* ! GCC_REAL_H */ |