| /* Return arc hyperbolic sine for a complex float type, with the |
| imaginary part of the result possibly adjusted for use in |
| computing other functions. |
| Copyright (C) 1997-2018 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU C Library; if not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "quadmath-imp.h" |
| |
| /* Return the complex inverse hyperbolic sine of finite nonzero Z, |
| with the imaginary part of the result subtracted from pi/2 if ADJ |
| is nonzero. */ |
| |
| __complex128 |
| __quadmath_kernel_casinhq (__complex128 x, int adj) |
| { |
| __complex128 res; |
| __float128 rx, ix; |
| __complex128 y; |
| |
| /* Avoid cancellation by reducing to the first quadrant. */ |
| rx = fabsq (__real__ x); |
| ix = fabsq (__imag__ x); |
| |
| if (rx >= 1 / FLT128_EPSILON || ix >= 1 / FLT128_EPSILON) |
| { |
| /* For large x in the first quadrant, x + csqrt (1 + x * x) |
| is sufficiently close to 2 * x to make no significant |
| difference to the result; avoid possible overflow from |
| the squaring and addition. */ |
| __real__ y = rx; |
| __imag__ y = ix; |
| |
| if (adj) |
| { |
| __float128 t = __real__ y; |
| __real__ y = copysignq (__imag__ y, __imag__ x); |
| __imag__ y = t; |
| } |
| |
| res = clogq (y); |
| __real__ res += (__float128) M_LN2q; |
| } |
| else if (rx >= 0.5Q && ix < FLT128_EPSILON / 8) |
| { |
| __float128 s = hypotq (1, rx); |
| |
| __real__ res = logq (rx + s); |
| if (adj) |
| __imag__ res = atan2q (s, __imag__ x); |
| else |
| __imag__ res = atan2q (ix, s); |
| } |
| else if (rx < FLT128_EPSILON / 8 && ix >= 1.5Q) |
| { |
| __float128 s = sqrtq ((ix + 1) * (ix - 1)); |
| |
| __real__ res = logq (ix + s); |
| if (adj) |
| __imag__ res = atan2q (rx, copysignq (s, __imag__ x)); |
| else |
| __imag__ res = atan2q (s, rx); |
| } |
| else if (ix > 1 && ix < 1.5Q && rx < 0.5Q) |
| { |
| if (rx < FLT128_EPSILON * FLT128_EPSILON) |
| { |
| __float128 ix2m1 = (ix + 1) * (ix - 1); |
| __float128 s = sqrtq (ix2m1); |
| |
| __real__ res = log1pq (2 * (ix2m1 + ix * s)) / 2; |
| if (adj) |
| __imag__ res = atan2q (rx, copysignq (s, __imag__ x)); |
| else |
| __imag__ res = atan2q (s, rx); |
| } |
| else |
| { |
| __float128 ix2m1 = (ix + 1) * (ix - 1); |
| __float128 rx2 = rx * rx; |
| __float128 f = rx2 * (2 + rx2 + 2 * ix * ix); |
| __float128 d = sqrtq (ix2m1 * ix2m1 + f); |
| __float128 dp = d + ix2m1; |
| __float128 dm = f / dp; |
| __float128 r1 = sqrtq ((dm + rx2) / 2); |
| __float128 r2 = rx * ix / r1; |
| |
| __real__ res = log1pq (rx2 + dp + 2 * (rx * r1 + ix * r2)) / 2; |
| if (adj) |
| __imag__ res = atan2q (rx + r1, copysignq (ix + r2, __imag__ x)); |
| else |
| __imag__ res = atan2q (ix + r2, rx + r1); |
| } |
| } |
| else if (ix == 1 && rx < 0.5Q) |
| { |
| if (rx < FLT128_EPSILON / 8) |
| { |
| __real__ res = log1pq (2 * (rx + sqrtq (rx))) / 2; |
| if (adj) |
| __imag__ res = atan2q (sqrtq (rx), copysignq (1, __imag__ x)); |
| else |
| __imag__ res = atan2q (1, sqrtq (rx)); |
| } |
| else |
| { |
| __float128 d = rx * sqrtq (4 + rx * rx); |
| __float128 s1 = sqrtq ((d + rx * rx) / 2); |
| __float128 s2 = sqrtq ((d - rx * rx) / 2); |
| |
| __real__ res = log1pq (rx * rx + d + 2 * (rx * s1 + s2)) / 2; |
| if (adj) |
| __imag__ res = atan2q (rx + s1, copysignq (1 + s2, __imag__ x)); |
| else |
| __imag__ res = atan2q (1 + s2, rx + s1); |
| } |
| } |
| else if (ix < 1 && rx < 0.5Q) |
| { |
| if (ix >= FLT128_EPSILON) |
| { |
| if (rx < FLT128_EPSILON * FLT128_EPSILON) |
| { |
| __float128 onemix2 = (1 + ix) * (1 - ix); |
| __float128 s = sqrtq (onemix2); |
| |
| __real__ res = log1pq (2 * rx / s) / 2; |
| if (adj) |
| __imag__ res = atan2q (s, __imag__ x); |
| else |
| __imag__ res = atan2q (ix, s); |
| } |
| else |
| { |
| __float128 onemix2 = (1 + ix) * (1 - ix); |
| __float128 rx2 = rx * rx; |
| __float128 f = rx2 * (2 + rx2 + 2 * ix * ix); |
| __float128 d = sqrtq (onemix2 * onemix2 + f); |
| __float128 dp = d + onemix2; |
| __float128 dm = f / dp; |
| __float128 r1 = sqrtq ((dp + rx2) / 2); |
| __float128 r2 = rx * ix / r1; |
| |
| __real__ res = log1pq (rx2 + dm + 2 * (rx * r1 + ix * r2)) / 2; |
| if (adj) |
| __imag__ res = atan2q (rx + r1, copysignq (ix + r2, |
| __imag__ x)); |
| else |
| __imag__ res = atan2q (ix + r2, rx + r1); |
| } |
| } |
| else |
| { |
| __float128 s = hypotq (1, rx); |
| |
| __real__ res = log1pq (2 * rx * (rx + s)) / 2; |
| if (adj) |
| __imag__ res = atan2q (s, __imag__ x); |
| else |
| __imag__ res = atan2q (ix, s); |
| } |
| math_check_force_underflow_nonneg (__real__ res); |
| } |
| else |
| { |
| __real__ y = (rx - ix) * (rx + ix) + 1; |
| __imag__ y = 2 * rx * ix; |
| |
| y = csqrtq (y); |
| |
| __real__ y += rx; |
| __imag__ y += ix; |
| |
| if (adj) |
| { |
| __float128 t = __real__ y; |
| __real__ y = copysignq (__imag__ y, __imag__ x); |
| __imag__ y = t; |
| } |
| |
| res = clogq (y); |
| } |
| |
| /* Give results the correct sign for the original argument. */ |
| __real__ res = copysignq (__real__ res, __real__ x); |
| __imag__ res = copysignq (__imag__ res, (adj ? 1 : __imag__ x)); |
| |
| return res; |
| } |