blob: f812796c959133d7f20237e1b95a89b4dc2e60a1 [file] [log] [blame]
// go-gcc.cc -- Go frontend to gcc IR.
// Copyright (C) 2011-2021 Free Software Foundation, Inc.
// Contributed by Ian Lance Taylor, Google.
// This file is part of GCC.
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
#include "go-system.h"
// This has to be included outside of extern "C", so we have to
// include it here before tree.h includes it later.
#include <gmp.h>
#include "tree.h"
#include "opts.h"
#include "fold-const.h"
#include "stringpool.h"
#include "stor-layout.h"
#include "varasm.h"
#include "tree-iterator.h"
#include "tm.h"
#include "function.h"
#include "cgraph.h"
#include "convert.h"
#include "gimple-expr.h"
#include "gimplify.h"
#include "langhooks.h"
#include "toplev.h"
#include "output.h"
#include "realmpfr.h"
#include "builtins.h"
#include "go-c.h"
#include "go-gcc.h"
#include "gogo.h"
#include "backend.h"
// A class wrapping a tree.
class Gcc_tree
{
public:
Gcc_tree(tree t)
: t_(t)
{ }
tree
get_tree() const
{ return this->t_; }
void
set_tree(tree t)
{ this->t_ = t; }
private:
tree t_;
};
// In gcc, types, expressions, and statements are all trees.
class Btype : public Gcc_tree
{
public:
Btype(tree t)
: Gcc_tree(t)
{ }
};
class Bexpression : public Gcc_tree
{
public:
Bexpression(tree t)
: Gcc_tree(t)
{ }
};
class Bstatement : public Gcc_tree
{
public:
Bstatement(tree t)
: Gcc_tree(t)
{ }
};
class Bfunction : public Gcc_tree
{
public:
Bfunction(tree t)
: Gcc_tree(t)
{ }
};
class Bblock : public Gcc_tree
{
public:
Bblock(tree t)
: Gcc_tree(t)
{ }
};
class Blabel : public Gcc_tree
{
public:
Blabel(tree t)
: Gcc_tree(t)
{ }
};
// Bvariable is a bit more complicated, because of zero-sized types.
// The GNU linker does not permit dynamic variables with zero size.
// When we see such a variable, we generate a version of the type with
// non-zero size. However, when referring to the global variable, we
// want an expression of zero size; otherwise, if, say, the global
// variable is passed to a function, we will be passing a
// non-zero-sized value to a zero-sized value, which can lead to a
// miscompilation.
class Bvariable
{
public:
Bvariable(tree t)
: t_(t), orig_type_(NULL)
{ }
Bvariable(tree t, tree orig_type)
: t_(t), orig_type_(orig_type)
{ }
// Get the tree for use as an expression.
tree
get_tree(Location) const;
// Get the actual decl;
tree
get_decl() const
{ return this->t_; }
private:
tree t_;
tree orig_type_;
};
// Get the tree of a variable for use as an expression. If this is a
// zero-sized global, create an expression that refers to the decl but
// has zero size.
tree
Bvariable::get_tree(Location location) const
{
if (this->orig_type_ == NULL
|| this->t_ == error_mark_node
|| TREE_TYPE(this->t_) == this->orig_type_)
return this->t_;
// Return *(orig_type*)&decl. */
tree t = build_fold_addr_expr_loc(location.gcc_location(), this->t_);
t = fold_build1_loc(location.gcc_location(), NOP_EXPR,
build_pointer_type(this->orig_type_), t);
return build_fold_indirect_ref_loc(location.gcc_location(), t);
}
// This file implements the interface between the Go frontend proper
// and the gcc IR. This implements specific instantiations of
// abstract classes defined by the Go frontend proper. The Go
// frontend proper class methods of these classes to generate the
// backend representation.
class Gcc_backend : public Backend
{
public:
Gcc_backend();
// Types.
Btype*
error_type()
{ return this->make_type(error_mark_node); }
Btype*
void_type()
{ return this->make_type(void_type_node); }
Btype*
bool_type()
{ return this->make_type(boolean_type_node); }
Btype*
integer_type(bool, int);
Btype*
float_type(int);
Btype*
complex_type(int);
Btype*
pointer_type(Btype*);
Btype*
function_type(const Btyped_identifier&,
const std::vector<Btyped_identifier>&,
const std::vector<Btyped_identifier>&,
Btype*,
const Location);
Btype*
struct_type(const std::vector<Btyped_identifier>&);
Btype*
array_type(Btype*, Bexpression*);
Btype*
placeholder_pointer_type(const std::string&, Location, bool);
bool
set_placeholder_pointer_type(Btype*, Btype*);
bool
set_placeholder_function_type(Btype*, Btype*);
Btype*
placeholder_struct_type(const std::string&, Location);
bool
set_placeholder_struct_type(Btype* placeholder,
const std::vector<Btyped_identifier>&);
Btype*
placeholder_array_type(const std::string&, Location);
bool
set_placeholder_array_type(Btype*, Btype*, Bexpression*);
Btype*
named_type(const std::string&, Btype*, Location);
Btype*
circular_pointer_type(Btype*, bool);
bool
is_circular_pointer_type(Btype*);
int64_t
type_size(Btype*);
int64_t
type_alignment(Btype*);
int64_t
type_field_alignment(Btype*);
int64_t
type_field_offset(Btype*, size_t index);
// Expressions.
Bexpression*
zero_expression(Btype*);
Bexpression*
error_expression()
{ return this->make_expression(error_mark_node); }
Bexpression*
nil_pointer_expression()
{ return this->make_expression(null_pointer_node); }
Bexpression*
var_expression(Bvariable* var, Location);
Bexpression*
indirect_expression(Btype*, Bexpression* expr, bool known_valid, Location);
Bexpression*
named_constant_expression(Btype* btype, const std::string& name,
Bexpression* val, Location);
Bexpression*
integer_constant_expression(Btype* btype, mpz_t val);
Bexpression*
float_constant_expression(Btype* btype, mpfr_t val);
Bexpression*
complex_constant_expression(Btype* btype, mpc_t val);
Bexpression*
string_constant_expression(const std::string& val);
Bexpression*
boolean_constant_expression(bool val);
Bexpression*
real_part_expression(Bexpression* bcomplex, Location);
Bexpression*
imag_part_expression(Bexpression* bcomplex, Location);
Bexpression*
complex_expression(Bexpression* breal, Bexpression* bimag, Location);
Bexpression*
convert_expression(Btype* type, Bexpression* expr, Location);
Bexpression*
function_code_expression(Bfunction*, Location);
Bexpression*
address_expression(Bexpression*, Location);
Bexpression*
struct_field_expression(Bexpression*, size_t, Location);
Bexpression*
compound_expression(Bstatement*, Bexpression*, Location);
Bexpression*
conditional_expression(Bfunction*, Btype*, Bexpression*, Bexpression*,
Bexpression*, Location);
Bexpression*
unary_expression(Operator, Bexpression*, Location);
Bexpression*
binary_expression(Operator, Bexpression*, Bexpression*, Location);
Bexpression*
constructor_expression(Btype*, const std::vector<Bexpression*>&, Location);
Bexpression*
array_constructor_expression(Btype*, const std::vector<unsigned long>&,
const std::vector<Bexpression*>&, Location);
Bexpression*
pointer_offset_expression(Bexpression* base, Bexpression* offset, Location);
Bexpression*
array_index_expression(Bexpression* array, Bexpression* index, Location);
Bexpression*
call_expression(Bfunction* caller, Bexpression* fn,
const std::vector<Bexpression*>& args,
Bexpression* static_chain, Location);
// Statements.
Bstatement*
error_statement()
{ return this->make_statement(error_mark_node); }
Bstatement*
expression_statement(Bfunction*, Bexpression*);
Bstatement*
init_statement(Bfunction*, Bvariable* var, Bexpression* init);
Bstatement*
assignment_statement(Bfunction*, Bexpression* lhs, Bexpression* rhs,
Location);
Bstatement*
return_statement(Bfunction*, const std::vector<Bexpression*>&,
Location);
Bstatement*
if_statement(Bfunction*, Bexpression* condition, Bblock* then_block,
Bblock* else_block, Location);
Bstatement*
switch_statement(Bfunction* function, Bexpression* value,
const std::vector<std::vector<Bexpression*> >& cases,
const std::vector<Bstatement*>& statements,
Location);
Bstatement*
compound_statement(Bstatement*, Bstatement*);
Bstatement*
statement_list(const std::vector<Bstatement*>&);
Bstatement*
exception_handler_statement(Bstatement* bstat, Bstatement* except_stmt,
Bstatement* finally_stmt, Location);
// Blocks.
Bblock*
block(Bfunction*, Bblock*, const std::vector<Bvariable*>&,
Location, Location);
void
block_add_statements(Bblock*, const std::vector<Bstatement*>&);
Bstatement*
block_statement(Bblock*);
// Variables.
Bvariable*
error_variable()
{ return new Bvariable(error_mark_node); }
Bvariable*
global_variable(const std::string& var_name,
const std::string& asm_name,
Btype* btype,
unsigned int flags,
Location location);
void
global_variable_set_init(Bvariable*, Bexpression*);
Bvariable*
local_variable(Bfunction*, const std::string&, Btype*, Bvariable*,
unsigned int, Location);
Bvariable*
parameter_variable(Bfunction*, const std::string&, Btype*, unsigned int,
Location);
Bvariable*
static_chain_variable(Bfunction*, const std::string&, Btype*, unsigned int,
Location);
Bvariable*
temporary_variable(Bfunction*, Bblock*, Btype*, Bexpression*, unsigned int,
Location, Bstatement**);
Bvariable*
implicit_variable(const std::string&, const std::string&, Btype*,
unsigned int, int64_t);
void
implicit_variable_set_init(Bvariable*, const std::string&, Btype*,
unsigned int, Bexpression*);
Bvariable*
implicit_variable_reference(const std::string&, const std::string&, Btype*);
Bvariable*
immutable_struct(const std::string&, const std::string&,
unsigned int, Btype*, Location);
void
immutable_struct_set_init(Bvariable*, const std::string&, unsigned int,
Btype*, Location, Bexpression*);
Bvariable*
immutable_struct_reference(const std::string&, const std::string&,
Btype*, Location);
// Labels.
Blabel*
label(Bfunction*, const std::string& name, Location);
Bstatement*
label_definition_statement(Blabel*);
Bstatement*
goto_statement(Blabel*, Location);
Bexpression*
label_address(Blabel*, Location);
// Functions.
Bfunction*
error_function()
{ return this->make_function(error_mark_node); }
Bfunction*
function(Btype* fntype, const std::string& name, const std::string& asm_name,
unsigned int flags, Location);
Bstatement*
function_defer_statement(Bfunction* function, Bexpression* undefer,
Bexpression* defer, Location);
bool
function_set_parameters(Bfunction* function, const std::vector<Bvariable*>&);
bool
function_set_body(Bfunction* function, Bstatement* code_stmt);
Bfunction*
lookup_builtin(const std::string&);
void
write_global_definitions(const std::vector<Btype*>&,
const std::vector<Bexpression*>&,
const std::vector<Bfunction*>&,
const std::vector<Bvariable*>&);
void
write_export_data(const char* bytes, unsigned int size);
private:
// Make a Bexpression from a tree.
Bexpression*
make_expression(tree t)
{ return new Bexpression(t); }
// Make a Bstatement from a tree.
Bstatement*
make_statement(tree t)
{ return new Bstatement(t); }
// Make a Btype from a tree.
Btype*
make_type(tree t)
{ return new Btype(t); }
Bfunction*
make_function(tree t)
{ return new Bfunction(t); }
Btype*
fill_in_struct(Btype*, const std::vector<Btyped_identifier>&);
Btype*
fill_in_array(Btype*, Btype*, Bexpression*);
tree
non_zero_size_type(tree);
tree
convert_tree(tree, tree, Location);
private:
static const int builtin_const = 1 << 0;
static const int builtin_noreturn = 1 << 1;
static const int builtin_novops = 1 << 2;
void
define_builtin(built_in_function bcode, const char* name, const char* libname,
tree fntype, int flags);
// A mapping of the GCC built-ins exposed to GCCGo.
std::map<std::string, Bfunction*> builtin_functions_;
};
// A helper function to create a GCC identifier from a C++ string.
static inline tree
get_identifier_from_string(const std::string& str)
{
return get_identifier_with_length(str.data(), str.length());
}
// Define the built-in functions that are exposed to GCCGo.
Gcc_backend::Gcc_backend()
{
/* We need to define the fetch_and_add functions, since we use them
for ++ and --. */
tree t = this->integer_type(true, BITS_PER_UNIT)->get_tree();
tree p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
this->define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_1, "__sync_fetch_and_add_1",
NULL, build_function_type_list(t, p, t, NULL_TREE), 0);
t = this->integer_type(true, BITS_PER_UNIT * 2)->get_tree();
p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
this->define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_2, "__sync_fetch_and_add_2",
NULL, build_function_type_list(t, p, t, NULL_TREE), 0);
t = this->integer_type(true, BITS_PER_UNIT * 4)->get_tree();
p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
this->define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_4, "__sync_fetch_and_add_4",
NULL, build_function_type_list(t, p, t, NULL_TREE), 0);
t = this->integer_type(true, BITS_PER_UNIT * 8)->get_tree();
p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
this->define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_8, "__sync_fetch_and_add_8",
NULL, build_function_type_list(t, p, t, NULL_TREE), 0);
// We use __builtin_expect for magic import functions.
this->define_builtin(BUILT_IN_EXPECT, "__builtin_expect", NULL,
build_function_type_list(long_integer_type_node,
long_integer_type_node,
long_integer_type_node,
NULL_TREE),
builtin_const);
// We use __builtin_memcmp for struct comparisons.
this->define_builtin(BUILT_IN_MEMCMP, "__builtin_memcmp", "memcmp",
build_function_type_list(integer_type_node,
const_ptr_type_node,
const_ptr_type_node,
size_type_node,
NULL_TREE),
0);
// We use __builtin_memmove for copying data.
this->define_builtin(BUILT_IN_MEMMOVE, "__builtin_memmove", "memmove",
build_function_type_list(void_type_node,
ptr_type_node,
const_ptr_type_node,
size_type_node,
NULL_TREE),
0);
// We use __builtin_memset for zeroing data.
this->define_builtin(BUILT_IN_MEMSET, "__builtin_memset", "memset",
build_function_type_list(void_type_node,
ptr_type_node,
integer_type_node,
size_type_node,
NULL_TREE),
0);
// Used by runtime/internal/sys and math/bits.
this->define_builtin(BUILT_IN_CTZ, "__builtin_ctz", "ctz",
build_function_type_list(integer_type_node,
unsigned_type_node,
NULL_TREE),
builtin_const);
this->define_builtin(BUILT_IN_CTZLL, "__builtin_ctzll", "ctzll",
build_function_type_list(integer_type_node,
long_long_unsigned_type_node,
NULL_TREE),
builtin_const);
this->define_builtin(BUILT_IN_CLZ, "__builtin_clz", "clz",
build_function_type_list(integer_type_node,
unsigned_type_node,
NULL_TREE),
builtin_const);
this->define_builtin(BUILT_IN_CLZLL, "__builtin_clzll", "clzll",
build_function_type_list(integer_type_node,
long_long_unsigned_type_node,
NULL_TREE),
builtin_const);
this->define_builtin(BUILT_IN_POPCOUNT, "__builtin_popcount", "popcount",
build_function_type_list(integer_type_node,
unsigned_type_node,
NULL_TREE),
builtin_const);
this->define_builtin(BUILT_IN_POPCOUNTLL, "__builtin_popcountll", "popcountll",
build_function_type_list(integer_type_node,
long_long_unsigned_type_node,
NULL_TREE),
builtin_const);
this->define_builtin(BUILT_IN_BSWAP16, "__builtin_bswap16", "bswap16",
build_function_type_list(uint16_type_node,
uint16_type_node,
NULL_TREE),
builtin_const);
this->define_builtin(BUILT_IN_BSWAP32, "__builtin_bswap32", "bswap32",
build_function_type_list(uint32_type_node,
uint32_type_node,
NULL_TREE),
builtin_const);
this->define_builtin(BUILT_IN_BSWAP64, "__builtin_bswap64", "bswap64",
build_function_type_list(uint64_type_node,
uint64_type_node,
NULL_TREE),
builtin_const);
// We provide some functions for the math library.
tree math_function_type = build_function_type_list(double_type_node,
double_type_node,
NULL_TREE);
tree math_function_type_long =
build_function_type_list(long_double_type_node, long_double_type_node,
NULL_TREE);
tree math_function_type_two = build_function_type_list(double_type_node,
double_type_node,
double_type_node,
NULL_TREE);
tree math_function_type_long_two =
build_function_type_list(long_double_type_node, long_double_type_node,
long_double_type_node, NULL_TREE);
this->define_builtin(BUILT_IN_ACOS, "__builtin_acos", "acos",
math_function_type, builtin_const);
this->define_builtin(BUILT_IN_ACOSL, "__builtin_acosl", "acosl",
math_function_type_long, builtin_const);
this->define_builtin(BUILT_IN_ASIN, "__builtin_asin", "asin",
math_function_type, builtin_const);
this->define_builtin(BUILT_IN_ASINL, "__builtin_asinl", "asinl",
math_function_type_long, builtin_const);
this->define_builtin(BUILT_IN_ATAN, "__builtin_atan", "atan",
math_function_type, builtin_const);
this->define_builtin(BUILT_IN_ATANL, "__builtin_atanl", "atanl",
math_function_type_long, builtin_const);
this->define_builtin(BUILT_IN_ATAN2, "__builtin_atan2", "atan2",
math_function_type_two, builtin_const);
this->define_builtin(BUILT_IN_ATAN2L, "__builtin_atan2l", "atan2l",
math_function_type_long_two, builtin_const);
this->define_builtin(BUILT_IN_CEIL, "__builtin_ceil", "ceil",
math_function_type, builtin_const);
this->define_builtin(BUILT_IN_CEILL, "__builtin_ceill", "ceill",
math_function_type_long, builtin_const);
this->define_builtin(BUILT_IN_COS, "__builtin_cos", "cos",
math_function_type, builtin_const);
this->define_builtin(BUILT_IN_COSL, "__builtin_cosl", "cosl",
math_function_type_long, builtin_const);
this->define_builtin(BUILT_IN_EXP, "__builtin_exp", "exp",
math_function_type, builtin_const);
this->define_builtin(BUILT_IN_EXPL, "__builtin_expl", "expl",
math_function_type_long, builtin_const);
this->define_builtin(BUILT_IN_EXPM1, "__builtin_expm1", "expm1",
math_function_type, builtin_const);
this->define_builtin(BUILT_IN_EXPM1L, "__builtin_expm1l", "expm1l",
math_function_type_long, builtin_const);
this->define_builtin(BUILT_IN_FABS, "__builtin_fabs", "fabs",
math_function_type, builtin_const);
this->define_builtin(BUILT_IN_FABSL, "__builtin_fabsl", "fabsl",
math_function_type_long, builtin_const);
this->define_builtin(BUILT_IN_FLOOR, "__builtin_floor", "floor",
math_function_type, builtin_const);
this->define_builtin(BUILT_IN_FLOORL, "__builtin_floorl", "floorl",
math_function_type_long, builtin_const);
this->define_builtin(BUILT_IN_FMOD, "__builtin_fmod", "fmod",
math_function_type_two, builtin_const);
this->define_builtin(BUILT_IN_FMODL, "__builtin_fmodl", "fmodl",
math_function_type_long_two, builtin_const);
this->define_builtin(BUILT_IN_LDEXP, "__builtin_ldexp", "ldexp",
build_function_type_list(double_type_node,
double_type_node,
integer_type_node,
NULL_TREE),
builtin_const);
this->define_builtin(BUILT_IN_LDEXPL, "__builtin_ldexpl", "ldexpl",
build_function_type_list(long_double_type_node,
long_double_type_node,
integer_type_node,
NULL_TREE),
builtin_const);
this->define_builtin(BUILT_IN_LOG, "__builtin_log", "log",
math_function_type, builtin_const);
this->define_builtin(BUILT_IN_LOGL, "__builtin_logl", "logl",
math_function_type_long, builtin_const);
this->define_builtin(BUILT_IN_LOG1P, "__builtin_log1p", "log1p",
math_function_type, builtin_const);
this->define_builtin(BUILT_IN_LOG1PL, "__builtin_log1pl", "log1pl",
math_function_type_long, builtin_const);
this->define_builtin(BUILT_IN_LOG10, "__builtin_log10", "log10",
math_function_type, builtin_const);
this->define_builtin(BUILT_IN_LOG10L, "__builtin_log10l", "log10l",
math_function_type_long, builtin_const);
this->define_builtin(BUILT_IN_LOG2, "__builtin_log2", "log2",
math_function_type, builtin_const);
this->define_builtin(BUILT_IN_LOG2L, "__builtin_log2l", "log2l",
math_function_type_long, builtin_const);
this->define_builtin(BUILT_IN_SIN, "__builtin_sin", "sin",
math_function_type, builtin_const);
this->define_builtin(BUILT_IN_SINL, "__builtin_sinl", "sinl",
math_function_type_long, builtin_const);
this->define_builtin(BUILT_IN_SQRT, "__builtin_sqrt", "sqrt",
math_function_type, builtin_const);
this->define_builtin(BUILT_IN_SQRTL, "__builtin_sqrtl", "sqrtl",
math_function_type_long, builtin_const);
this->define_builtin(BUILT_IN_TAN, "__builtin_tan", "tan",
math_function_type, builtin_const);
this->define_builtin(BUILT_IN_TANL, "__builtin_tanl", "tanl",
math_function_type_long, builtin_const);
this->define_builtin(BUILT_IN_TRUNC, "__builtin_trunc", "trunc",
math_function_type, builtin_const);
this->define_builtin(BUILT_IN_TRUNCL, "__builtin_truncl", "truncl",
math_function_type_long, builtin_const);
// We use __builtin_return_address in the thunk we build for
// functions which call recover, and for runtime.getcallerpc.
t = build_function_type_list(ptr_type_node, unsigned_type_node, NULL_TREE);
this->define_builtin(BUILT_IN_RETURN_ADDRESS, "__builtin_return_address",
NULL, t, 0);
// The runtime calls __builtin_dwarf_cfa for runtime.getcallersp.
t = build_function_type_list(ptr_type_node, NULL_TREE);
this->define_builtin(BUILT_IN_DWARF_CFA, "__builtin_dwarf_cfa",
NULL, t, 0);
// The runtime calls __builtin_extract_return_addr when recording
// the address to which a function returns.
this->define_builtin(BUILT_IN_EXTRACT_RETURN_ADDR,
"__builtin_extract_return_addr", NULL,
build_function_type_list(ptr_type_node,
ptr_type_node,
NULL_TREE),
0);
// The compiler uses __builtin_trap for some exception handling
// cases.
this->define_builtin(BUILT_IN_TRAP, "__builtin_trap", NULL,
build_function_type(void_type_node, void_list_node),
builtin_noreturn);
// The runtime uses __builtin_prefetch.
this->define_builtin(BUILT_IN_PREFETCH, "__builtin_prefetch", NULL,
build_varargs_function_type_list(void_type_node,
const_ptr_type_node,
NULL_TREE),
builtin_novops);
// The compiler uses __builtin_unreachable for cases that cannot
// occur.
this->define_builtin(BUILT_IN_UNREACHABLE, "__builtin_unreachable", NULL,
build_function_type(void_type_node, void_list_node),
builtin_const | builtin_noreturn);
// We provide some atomic functions.
t = build_function_type_list(uint32_type_node,
ptr_type_node,
integer_type_node,
NULL_TREE);
this->define_builtin(BUILT_IN_ATOMIC_LOAD_4, "__atomic_load_4", NULL,
t, 0);
t = build_function_type_list(uint64_type_node,
ptr_type_node,
integer_type_node,
NULL_TREE);
this->define_builtin(BUILT_IN_ATOMIC_LOAD_8, "__atomic_load_8", NULL,
t, 0);
t = build_function_type_list(void_type_node,
ptr_type_node,
uint32_type_node,
integer_type_node,
NULL_TREE);
this->define_builtin(BUILT_IN_ATOMIC_STORE_4, "__atomic_store_4", NULL,
t, 0);
t = build_function_type_list(void_type_node,
ptr_type_node,
uint64_type_node,
integer_type_node,
NULL_TREE);
this->define_builtin(BUILT_IN_ATOMIC_STORE_8, "__atomic_store_8", NULL,
t, 0);
t = build_function_type_list(uint32_type_node,
ptr_type_node,
uint32_type_node,
integer_type_node,
NULL_TREE);
this->define_builtin(BUILT_IN_ATOMIC_EXCHANGE_4, "__atomic_exchange_4", NULL,
t, 0);
t = build_function_type_list(uint64_type_node,
ptr_type_node,
uint64_type_node,
integer_type_node,
NULL_TREE);
this->define_builtin(BUILT_IN_ATOMIC_EXCHANGE_8, "__atomic_exchange_8", NULL,
t, 0);
t = build_function_type_list(boolean_type_node,
ptr_type_node,
ptr_type_node,
uint32_type_node,
boolean_type_node,
integer_type_node,
integer_type_node,
NULL_TREE);
this->define_builtin(BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4,
"__atomic_compare_exchange_4", NULL,
t, 0);
t = build_function_type_list(boolean_type_node,
ptr_type_node,
ptr_type_node,
uint64_type_node,
boolean_type_node,
integer_type_node,
integer_type_node,
NULL_TREE);
this->define_builtin(BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8,
"__atomic_compare_exchange_8", NULL,
t, 0);
t = build_function_type_list(uint32_type_node,
ptr_type_node,
uint32_type_node,
integer_type_node,
NULL_TREE);
this->define_builtin(BUILT_IN_ATOMIC_ADD_FETCH_4, "__atomic_add_fetch_4", NULL,
t, 0);
t = build_function_type_list(uint64_type_node,
ptr_type_node,
uint64_type_node,
integer_type_node,
NULL_TREE);
this->define_builtin(BUILT_IN_ATOMIC_ADD_FETCH_8, "__atomic_add_fetch_8", NULL,
t, 0);
t = build_function_type_list(unsigned_char_type_node,
ptr_type_node,
unsigned_char_type_node,
integer_type_node,
NULL_TREE);
this->define_builtin(BUILT_IN_ATOMIC_AND_FETCH_1, "__atomic_and_fetch_1", NULL,
t, 0);
this->define_builtin(BUILT_IN_ATOMIC_FETCH_AND_1, "__atomic_fetch_and_1", NULL,
t, 0);
t = build_function_type_list(unsigned_char_type_node,
ptr_type_node,
unsigned_char_type_node,
integer_type_node,
NULL_TREE);
this->define_builtin(BUILT_IN_ATOMIC_OR_FETCH_1, "__atomic_or_fetch_1", NULL,
t, 0);
this->define_builtin(BUILT_IN_ATOMIC_FETCH_OR_1, "__atomic_fetch_or_1", NULL,
t, 0);
}
// Get an unnamed integer type.
Btype*
Gcc_backend::integer_type(bool is_unsigned, int bits)
{
tree type;
if (is_unsigned)
{
if (bits == INT_TYPE_SIZE)
type = unsigned_type_node;
else if (bits == CHAR_TYPE_SIZE)
type = unsigned_char_type_node;
else if (bits == SHORT_TYPE_SIZE)
type = short_unsigned_type_node;
else if (bits == LONG_TYPE_SIZE)
type = long_unsigned_type_node;
else if (bits == LONG_LONG_TYPE_SIZE)
type = long_long_unsigned_type_node;
else
type = make_unsigned_type(bits);
}
else
{
if (bits == INT_TYPE_SIZE)
type = integer_type_node;
else if (bits == CHAR_TYPE_SIZE)
type = signed_char_type_node;
else if (bits == SHORT_TYPE_SIZE)
type = short_integer_type_node;
else if (bits == LONG_TYPE_SIZE)
type = long_integer_type_node;
else if (bits == LONG_LONG_TYPE_SIZE)
type = long_long_integer_type_node;
else
type = make_signed_type(bits);
}
return this->make_type(type);
}
// Get an unnamed float type.
Btype*
Gcc_backend::float_type(int bits)
{
tree type;
if (bits == FLOAT_TYPE_SIZE)
type = float_type_node;
else if (bits == DOUBLE_TYPE_SIZE)
type = double_type_node;
else if (bits == LONG_DOUBLE_TYPE_SIZE)
type = long_double_type_node;
else
{
type = make_node(REAL_TYPE);
TYPE_PRECISION(type) = bits;
layout_type(type);
}
return this->make_type(type);
}
// Get an unnamed complex type.
Btype*
Gcc_backend::complex_type(int bits)
{
tree type;
if (bits == FLOAT_TYPE_SIZE * 2)
type = complex_float_type_node;
else if (bits == DOUBLE_TYPE_SIZE * 2)
type = complex_double_type_node;
else if (bits == LONG_DOUBLE_TYPE_SIZE * 2)
type = complex_long_double_type_node;
else
{
type = make_node(REAL_TYPE);
TYPE_PRECISION(type) = bits / 2;
layout_type(type);
type = build_complex_type(type);
}
return this->make_type(type);
}
// Get a pointer type.
Btype*
Gcc_backend::pointer_type(Btype* to_type)
{
tree to_type_tree = to_type->get_tree();
if (to_type_tree == error_mark_node)
return this->error_type();
tree type = build_pointer_type(to_type_tree);
return this->make_type(type);
}
// Make a function type.
Btype*
Gcc_backend::function_type(const Btyped_identifier& receiver,
const std::vector<Btyped_identifier>& parameters,
const std::vector<Btyped_identifier>& results,
Btype* result_struct,
Location)
{
tree args = NULL_TREE;
tree* pp = &args;
if (receiver.btype != NULL)
{
tree t = receiver.btype->get_tree();
if (t == error_mark_node)
return this->error_type();
*pp = tree_cons(NULL_TREE, t, NULL_TREE);
pp = &TREE_CHAIN(*pp);
}
for (std::vector<Btyped_identifier>::const_iterator p = parameters.begin();
p != parameters.end();
++p)
{
tree t = p->btype->get_tree();
if (t == error_mark_node)
return this->error_type();
*pp = tree_cons(NULL_TREE, t, NULL_TREE);
pp = &TREE_CHAIN(*pp);
}
// Varargs is handled entirely at the Go level. When converted to
// GENERIC functions are not varargs.
*pp = void_list_node;
tree result;
if (results.empty())
result = void_type_node;
else if (results.size() == 1)
result = results.front().btype->get_tree();
else
{
gcc_assert(result_struct != NULL);
result = result_struct->get_tree();
}
if (result == error_mark_node)
return this->error_type();
// The libffi library cannot represent a zero-sized object. To
// avoid causing confusion on 32-bit SPARC, we treat a function that
// returns a zero-sized value as returning void. That should do no
// harm since there is no actual value to be returned. See
// https://gcc.gnu.org/PR72814 for details.
if (result != void_type_node && int_size_in_bytes(result) == 0)
result = void_type_node;
tree fntype = build_function_type(result, args);
if (fntype == error_mark_node)
return this->error_type();
return this->make_type(build_pointer_type(fntype));
}
// Make a struct type.
Btype*
Gcc_backend::struct_type(const std::vector<Btyped_identifier>& fields)
{
return this->fill_in_struct(this->make_type(make_node(RECORD_TYPE)), fields);
}
// Fill in the fields of a struct type.
Btype*
Gcc_backend::fill_in_struct(Btype* fill,
const std::vector<Btyped_identifier>& fields)
{
tree fill_tree = fill->get_tree();
tree field_trees = NULL_TREE;
tree* pp = &field_trees;
for (std::vector<Btyped_identifier>::const_iterator p = fields.begin();
p != fields.end();
++p)
{
tree name_tree = get_identifier_from_string(p->name);
tree type_tree = p->btype->get_tree();
if (type_tree == error_mark_node)
return this->error_type();
tree field = build_decl(p->location.gcc_location(), FIELD_DECL, name_tree,
type_tree);
DECL_CONTEXT(field) = fill_tree;
*pp = field;
pp = &DECL_CHAIN(field);
}
TYPE_FIELDS(fill_tree) = field_trees;
layout_type(fill_tree);
// Because Go permits converting between named struct types and
// equivalent struct types, for which we use VIEW_CONVERT_EXPR, and
// because we don't try to maintain TYPE_CANONICAL for struct types,
// we need to tell the middle-end to use structural equality.
SET_TYPE_STRUCTURAL_EQUALITY(fill_tree);
return fill;
}
// Make an array type.
Btype*
Gcc_backend::array_type(Btype* element_btype, Bexpression* length)
{
return this->fill_in_array(this->make_type(make_node(ARRAY_TYPE)),
element_btype, length);
}
// Fill in an array type.
Btype*
Gcc_backend::fill_in_array(Btype* fill, Btype* element_type,
Bexpression* length)
{
tree element_type_tree = element_type->get_tree();
tree length_tree = length->get_tree();
if (element_type_tree == error_mark_node || length_tree == error_mark_node)
return this->error_type();
gcc_assert(TYPE_SIZE(element_type_tree) != NULL_TREE);
length_tree = fold_convert(sizetype, length_tree);
// build_index_type takes the maximum index, which is one less than
// the length.
tree index_type_tree = build_index_type(fold_build2(MINUS_EXPR, sizetype,
length_tree,
size_one_node));
tree fill_tree = fill->get_tree();
TREE_TYPE(fill_tree) = element_type_tree;
TYPE_DOMAIN(fill_tree) = index_type_tree;
TYPE_ADDR_SPACE(fill_tree) = TYPE_ADDR_SPACE(element_type_tree);
layout_type(fill_tree);
if (TYPE_STRUCTURAL_EQUALITY_P(element_type_tree))
SET_TYPE_STRUCTURAL_EQUALITY(fill_tree);
else if (TYPE_CANONICAL(element_type_tree) != element_type_tree
|| TYPE_CANONICAL(index_type_tree) != index_type_tree)
TYPE_CANONICAL(fill_tree) =
build_array_type(TYPE_CANONICAL(element_type_tree),
TYPE_CANONICAL(index_type_tree));
return fill;
}
// Create a placeholder for a pointer type.
Btype*
Gcc_backend::placeholder_pointer_type(const std::string& name,
Location location, bool)
{
tree ret = build_distinct_type_copy(ptr_type_node);
if (!name.empty())
{
tree decl = build_decl(location.gcc_location(), TYPE_DECL,
get_identifier_from_string(name),
ret);
TYPE_NAME(ret) = decl;
}
return this->make_type(ret);
}
// Set the real target type for a placeholder pointer type.
bool
Gcc_backend::set_placeholder_pointer_type(Btype* placeholder,
Btype* to_type)
{
tree pt = placeholder->get_tree();
if (pt == error_mark_node)
return false;
gcc_assert(TREE_CODE(pt) == POINTER_TYPE);
tree tt = to_type->get_tree();
if (tt == error_mark_node)
{
placeholder->set_tree(error_mark_node);
return false;
}
gcc_assert(TREE_CODE(tt) == POINTER_TYPE);
TREE_TYPE(pt) = TREE_TYPE(tt);
TYPE_CANONICAL(pt) = TYPE_CANONICAL(tt);
if (TYPE_NAME(pt) != NULL_TREE)
{
// Build the data structure gcc wants to see for a typedef.
tree copy = build_variant_type_copy(pt);
TYPE_NAME(copy) = NULL_TREE;
DECL_ORIGINAL_TYPE(TYPE_NAME(pt)) = copy;
}
return true;
}
// Set the real values for a placeholder function type.
bool
Gcc_backend::set_placeholder_function_type(Btype* placeholder, Btype* ft)
{
return this->set_placeholder_pointer_type(placeholder, ft);
}
// Create a placeholder for a struct type.
Btype*
Gcc_backend::placeholder_struct_type(const std::string& name,
Location location)
{
tree ret = make_node(RECORD_TYPE);
if (!name.empty())
{
tree decl = build_decl(location.gcc_location(), TYPE_DECL,
get_identifier_from_string(name),
ret);
TYPE_NAME(ret) = decl;
// The struct type that eventually replaces this placeholder will require
// structural equality. The placeholder must too, so that the requirement
// for structural equality propagates to references that are constructed
// before the replacement occurs.
SET_TYPE_STRUCTURAL_EQUALITY(ret);
}
return this->make_type(ret);
}
// Fill in the fields of a placeholder struct type.
bool
Gcc_backend::set_placeholder_struct_type(
Btype* placeholder,
const std::vector<Btyped_identifier>& fields)
{
tree t = placeholder->get_tree();
gcc_assert(TREE_CODE(t) == RECORD_TYPE && TYPE_FIELDS(t) == NULL_TREE);
Btype* r = this->fill_in_struct(placeholder, fields);
if (TYPE_NAME(t) != NULL_TREE)
{
// Build the data structure gcc wants to see for a typedef.
tree copy = build_distinct_type_copy(t);
TYPE_NAME(copy) = NULL_TREE;
DECL_ORIGINAL_TYPE(TYPE_NAME(t)) = copy;
TYPE_SIZE(copy) = NULL_TREE;
Btype* bc = this->make_type(copy);
this->fill_in_struct(bc, fields);
delete bc;
}
return r->get_tree() != error_mark_node;
}
// Create a placeholder for an array type.
Btype*
Gcc_backend::placeholder_array_type(const std::string& name,
Location location)
{
tree ret = make_node(ARRAY_TYPE);
tree decl = build_decl(location.gcc_location(), TYPE_DECL,
get_identifier_from_string(name),
ret);
TYPE_NAME(ret) = decl;
return this->make_type(ret);
}
// Fill in the fields of a placeholder array type.
bool
Gcc_backend::set_placeholder_array_type(Btype* placeholder,
Btype* element_btype,
Bexpression* length)
{
tree t = placeholder->get_tree();
gcc_assert(TREE_CODE(t) == ARRAY_TYPE && TREE_TYPE(t) == NULL_TREE);
Btype* r = this->fill_in_array(placeholder, element_btype, length);
// Build the data structure gcc wants to see for a typedef.
tree copy = build_distinct_type_copy(t);
TYPE_NAME(copy) = NULL_TREE;
DECL_ORIGINAL_TYPE(TYPE_NAME(t)) = copy;
return r->get_tree() != error_mark_node;
}
// Return a named version of a type.
Btype*
Gcc_backend::named_type(const std::string& name, Btype* btype,
Location location)
{
tree type = btype->get_tree();
if (type == error_mark_node)
return this->error_type();
// The middle-end expects a basic type to have a name. In Go every
// basic type will have a name. The first time we see a basic type,
// give it whatever Go name we have at this point.
if (TYPE_NAME(type) == NULL_TREE
&& location.gcc_location() == BUILTINS_LOCATION
&& (TREE_CODE(type) == INTEGER_TYPE
|| TREE_CODE(type) == REAL_TYPE
|| TREE_CODE(type) == COMPLEX_TYPE
|| TREE_CODE(type) == BOOLEAN_TYPE))
{
tree decl = build_decl(BUILTINS_LOCATION, TYPE_DECL,
get_identifier_from_string(name),
type);
TYPE_NAME(type) = decl;
return this->make_type(type);
}
tree copy = build_variant_type_copy(type);
tree decl = build_decl(location.gcc_location(), TYPE_DECL,
get_identifier_from_string(name),
copy);
DECL_ORIGINAL_TYPE(decl) = type;
TYPE_NAME(copy) = decl;
return this->make_type(copy);
}
// Return a pointer type used as a marker for a circular type.
Btype*
Gcc_backend::circular_pointer_type(Btype*, bool)
{
return this->make_type(ptr_type_node);
}
// Return whether we might be looking at a circular type.
bool
Gcc_backend::is_circular_pointer_type(Btype* btype)
{
return btype->get_tree() == ptr_type_node;
}
// Return the size of a type.
int64_t
Gcc_backend::type_size(Btype* btype)
{
tree t = btype->get_tree();
if (t == error_mark_node)
return 1;
if (t == void_type_node)
return 0;
t = TYPE_SIZE_UNIT(t);
gcc_assert(tree_fits_uhwi_p (t));
unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(t);
int64_t ret = static_cast<int64_t>(val_wide);
if (ret < 0 || static_cast<unsigned HOST_WIDE_INT>(ret) != val_wide)
return -1;
return ret;
}
// Return the alignment of a type.
int64_t
Gcc_backend::type_alignment(Btype* btype)
{
tree t = btype->get_tree();
if (t == error_mark_node)
return 1;
return TYPE_ALIGN_UNIT(t);
}
// Return the alignment of a struct field of type BTYPE.
int64_t
Gcc_backend::type_field_alignment(Btype* btype)
{
tree t = btype->get_tree();
if (t == error_mark_node)
return 1;
return go_field_alignment(t);
}
// Return the offset of a field in a struct.
int64_t
Gcc_backend::type_field_offset(Btype* btype, size_t index)
{
tree struct_tree = btype->get_tree();
if (struct_tree == error_mark_node)
return 0;
gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
tree field = TYPE_FIELDS(struct_tree);
for (; index > 0; --index)
{
field = DECL_CHAIN(field);
gcc_assert(field != NULL_TREE);
}
HOST_WIDE_INT offset_wide = int_byte_position(field);
int64_t ret = static_cast<int64_t>(offset_wide);
gcc_assert(ret == offset_wide);
return ret;
}
// Return the zero value for a type.
Bexpression*
Gcc_backend::zero_expression(Btype* btype)
{
tree t = btype->get_tree();
tree ret;
if (t == error_mark_node)
ret = error_mark_node;
else
ret = build_zero_cst(t);
return this->make_expression(ret);
}
// An expression that references a variable.
Bexpression*
Gcc_backend::var_expression(Bvariable* var, Location location)
{
tree ret = var->get_tree(location);
if (ret == error_mark_node)
return this->error_expression();
return this->make_expression(ret);
}
// An expression that indirectly references an expression.
Bexpression*
Gcc_backend::indirect_expression(Btype* btype, Bexpression* expr,
bool known_valid, Location location)
{
tree expr_tree = expr->get_tree();
tree type_tree = btype->get_tree();
if (expr_tree == error_mark_node || type_tree == error_mark_node)
return this->error_expression();
// If the type of EXPR is a recursive pointer type, then we
// need to insert a cast before indirecting.
tree target_type_tree = TREE_TYPE(TREE_TYPE(expr_tree));
if (VOID_TYPE_P(target_type_tree))
expr_tree = fold_convert_loc(location.gcc_location(),
build_pointer_type(type_tree), expr_tree);
tree ret = build_fold_indirect_ref_loc(location.gcc_location(),
expr_tree);
if (known_valid)
TREE_THIS_NOTRAP(ret) = 1;
return this->make_expression(ret);
}
// Return an expression that declares a constant named NAME with the
// constant value VAL in BTYPE.
Bexpression*
Gcc_backend::named_constant_expression(Btype* btype, const std::string& name,
Bexpression* val, Location location)
{
tree type_tree = btype->get_tree();
tree const_val = val->get_tree();
if (type_tree == error_mark_node || const_val == error_mark_node)
return this->error_expression();
tree name_tree = get_identifier_from_string(name);
tree decl = build_decl(location.gcc_location(), CONST_DECL, name_tree,
type_tree);
DECL_INITIAL(decl) = const_val;
TREE_CONSTANT(decl) = 1;
TREE_READONLY(decl) = 1;
go_preserve_from_gc(decl);
return this->make_expression(decl);
}
// Return a typed value as a constant integer.
Bexpression*
Gcc_backend::integer_constant_expression(Btype* btype, mpz_t val)
{
tree t = btype->get_tree();
if (t == error_mark_node)
return this->error_expression();
tree ret = double_int_to_tree(t, mpz_get_double_int(t, val, true));
return this->make_expression(ret);
}
// Return a typed value as a constant floating-point number.
Bexpression*
Gcc_backend::float_constant_expression(Btype* btype, mpfr_t val)
{
tree t = btype->get_tree();
tree ret;
if (t == error_mark_node)
return this->error_expression();
REAL_VALUE_TYPE r1;
real_from_mpfr(&r1, val, t, GMP_RNDN);
REAL_VALUE_TYPE r2;
real_convert(&r2, TYPE_MODE(t), &r1);
ret = build_real(t, r2);
return this->make_expression(ret);
}
// Return a typed real and imaginary value as a constant complex number.
Bexpression*
Gcc_backend::complex_constant_expression(Btype* btype, mpc_t val)
{
tree t = btype->get_tree();
tree ret;
if (t == error_mark_node)
return this->error_expression();
REAL_VALUE_TYPE r1;
real_from_mpfr(&r1, mpc_realref(val), TREE_TYPE(t), GMP_RNDN);
REAL_VALUE_TYPE r2;
real_convert(&r2, TYPE_MODE(TREE_TYPE(t)), &r1);
REAL_VALUE_TYPE r3;
real_from_mpfr(&r3, mpc_imagref(val), TREE_TYPE(t), GMP_RNDN);
REAL_VALUE_TYPE r4;
real_convert(&r4, TYPE_MODE(TREE_TYPE(t)), &r3);
ret = build_complex(t, build_real(TREE_TYPE(t), r2),
build_real(TREE_TYPE(t), r4));
return this->make_expression(ret);
}
// Make a constant string expression.
Bexpression*
Gcc_backend::string_constant_expression(const std::string& val)
{
tree index_type = build_index_type(size_int(val.length()));
tree const_char_type = build_qualified_type(unsigned_char_type_node,
TYPE_QUAL_CONST);
tree string_type = build_array_type(const_char_type, index_type);
TYPE_STRING_FLAG(string_type) = 1;
tree string_val = build_string(val.length(), val.data());
TREE_TYPE(string_val) = string_type;
return this->make_expression(string_val);
}
// Make a constant boolean expression.
Bexpression*
Gcc_backend::boolean_constant_expression(bool val)
{
tree bool_cst = val ? boolean_true_node : boolean_false_node;
return this->make_expression(bool_cst);
}
// Return the real part of a complex expression.
Bexpression*
Gcc_backend::real_part_expression(Bexpression* bcomplex, Location location)
{
tree complex_tree = bcomplex->get_tree();
if (complex_tree == error_mark_node)
return this->error_expression();
gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(complex_tree)));
tree ret = fold_build1_loc(location.gcc_location(), REALPART_EXPR,
TREE_TYPE(TREE_TYPE(complex_tree)),
complex_tree);
return this->make_expression(ret);
}
// Return the imaginary part of a complex expression.
Bexpression*
Gcc_backend::imag_part_expression(Bexpression* bcomplex, Location location)
{
tree complex_tree = bcomplex->get_tree();
if (complex_tree == error_mark_node)
return this->error_expression();
gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(complex_tree)));
tree ret = fold_build1_loc(location.gcc_location(), IMAGPART_EXPR,
TREE_TYPE(TREE_TYPE(complex_tree)),
complex_tree);
return this->make_expression(ret);
}
// Make a complex expression given its real and imaginary parts.
Bexpression*
Gcc_backend::complex_expression(Bexpression* breal, Bexpression* bimag,
Location location)
{
tree real_tree = breal->get_tree();
tree imag_tree = bimag->get_tree();
if (real_tree == error_mark_node || imag_tree == error_mark_node)
return this->error_expression();
gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(real_tree))
== TYPE_MAIN_VARIANT(TREE_TYPE(imag_tree)));
gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(real_tree)));
tree ret = fold_build2_loc(location.gcc_location(), COMPLEX_EXPR,
build_complex_type(TREE_TYPE(real_tree)),
real_tree, imag_tree);
return this->make_expression(ret);
}
// An expression that converts an expression to a different type.
Bexpression*
Gcc_backend::convert_expression(Btype* type, Bexpression* expr,
Location location)
{
tree type_tree = type->get_tree();
tree expr_tree = expr->get_tree();
if (type_tree == error_mark_node
|| expr_tree == error_mark_node
|| TREE_TYPE(expr_tree) == error_mark_node)
return this->error_expression();
tree ret;
if (this->type_size(type) == 0
|| TREE_TYPE(expr_tree) == void_type_node)
{
// Do not convert zero-sized types.
ret = expr_tree;
}
else if (TREE_CODE(type_tree) == INTEGER_TYPE)
ret = fold(convert_to_integer(type_tree, expr_tree));
else if (TREE_CODE(type_tree) == REAL_TYPE)
ret = fold(convert_to_real(type_tree, expr_tree));
else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
ret = fold(convert_to_complex(type_tree, expr_tree));
else if (TREE_CODE(type_tree) == POINTER_TYPE
&& TREE_CODE(TREE_TYPE(expr_tree)) == INTEGER_TYPE)
ret = fold(convert_to_pointer(type_tree, expr_tree));
else if (TREE_CODE(type_tree) == RECORD_TYPE
|| TREE_CODE(type_tree) == ARRAY_TYPE)
ret = fold_build1_loc(location.gcc_location(), VIEW_CONVERT_EXPR,
type_tree, expr_tree);
else
ret = fold_convert_loc(location.gcc_location(), type_tree, expr_tree);
return this->make_expression(ret);
}
// Get the address of a function.
Bexpression*
Gcc_backend::function_code_expression(Bfunction* bfunc, Location location)
{
tree func = bfunc->get_tree();
if (func == error_mark_node)
return this->error_expression();
tree ret = build_fold_addr_expr_loc(location.gcc_location(), func);
return this->make_expression(ret);
}
// Get the address of an expression.
Bexpression*
Gcc_backend::address_expression(Bexpression* bexpr, Location location)
{
tree expr = bexpr->get_tree();
if (expr == error_mark_node)
return this->error_expression();
tree ret = build_fold_addr_expr_loc(location.gcc_location(), expr);
return this->make_expression(ret);
}
// Return an expression for the field at INDEX in BSTRUCT.
Bexpression*
Gcc_backend::struct_field_expression(Bexpression* bstruct, size_t index,
Location location)
{
tree struct_tree = bstruct->get_tree();
if (struct_tree == error_mark_node
|| TREE_TYPE(struct_tree) == error_mark_node)
return this->error_expression();
gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
if (field == NULL_TREE)
{
// This can happen for a type which refers to itself indirectly
// and then turns out to be erroneous.
return this->error_expression();
}
for (unsigned int i = index; i > 0; --i)
{
field = DECL_CHAIN(field);
gcc_assert(field != NULL_TREE);
}
if (TREE_TYPE(field) == error_mark_node)
return this->error_expression();
tree ret = fold_build3_loc(location.gcc_location(), COMPONENT_REF,
TREE_TYPE(field), struct_tree, field,
NULL_TREE);
if (TREE_CONSTANT(struct_tree))
TREE_CONSTANT(ret) = 1;
return this->make_expression(ret);
}
// Return an expression that executes BSTAT before BEXPR.
Bexpression*
Gcc_backend::compound_expression(Bstatement* bstat, Bexpression* bexpr,
Location location)
{
tree stat = bstat->get_tree();
tree expr = bexpr->get_tree();
if (stat == error_mark_node || expr == error_mark_node)
return this->error_expression();
tree ret = fold_build2_loc(location.gcc_location(), COMPOUND_EXPR,
TREE_TYPE(expr), stat, expr);
return this->make_expression(ret);
}
// Return an expression that executes THEN_EXPR if CONDITION is true, or
// ELSE_EXPR otherwise.
Bexpression*
Gcc_backend::conditional_expression(Bfunction*, Btype* btype,
Bexpression* condition,
Bexpression* then_expr,
Bexpression* else_expr, Location location)
{
tree type_tree = btype == NULL ? void_type_node : btype->get_tree();
tree cond_tree = condition->get_tree();
tree then_tree = then_expr->get_tree();
tree else_tree = else_expr == NULL ? NULL_TREE : else_expr->get_tree();
if (type_tree == error_mark_node
|| cond_tree == error_mark_node
|| then_tree == error_mark_node
|| else_tree == error_mark_node)
return this->error_expression();
tree ret = build3_loc(location.gcc_location(), COND_EXPR, type_tree,
cond_tree, then_tree, else_tree);
return this->make_expression(ret);
}
// Return an expression for the unary operation OP EXPR.
Bexpression*
Gcc_backend::unary_expression(Operator op, Bexpression* expr, Location location)
{
tree expr_tree = expr->get_tree();
if (expr_tree == error_mark_node
|| TREE_TYPE(expr_tree) == error_mark_node)
return this->error_expression();
tree type_tree = TREE_TYPE(expr_tree);
enum tree_code code;
switch (op)
{
case OPERATOR_MINUS:
{
tree computed_type = excess_precision_type(type_tree);
if (computed_type != NULL_TREE)
{
expr_tree = convert(computed_type, expr_tree);
type_tree = computed_type;
}
code = NEGATE_EXPR;
break;
}
case OPERATOR_NOT:
code = TRUTH_NOT_EXPR;
break;
case OPERATOR_XOR:
code = BIT_NOT_EXPR;
break;
default:
gcc_unreachable();
break;
}
tree ret = fold_build1_loc(location.gcc_location(), code, type_tree,
expr_tree);
return this->make_expression(ret);
}
// Convert a gofrontend operator to an equivalent tree_code.
static enum tree_code
operator_to_tree_code(Operator op, tree type)
{
enum tree_code code;
switch (op)
{
case OPERATOR_EQEQ:
code = EQ_EXPR;
break;
case OPERATOR_NOTEQ:
code = NE_EXPR;
break;
case OPERATOR_LT:
code = LT_EXPR;
break;
case OPERATOR_LE:
code = LE_EXPR;
break;
case OPERATOR_GT:
code = GT_EXPR;
break;
case OPERATOR_GE:
code = GE_EXPR;
break;
case OPERATOR_OROR:
code = TRUTH_ORIF_EXPR;
break;
case OPERATOR_ANDAND:
code = TRUTH_ANDIF_EXPR;
break;
case OPERATOR_PLUS:
code = PLUS_EXPR;
break;
case OPERATOR_MINUS:
code = MINUS_EXPR;
break;
case OPERATOR_OR:
code = BIT_IOR_EXPR;
break;
case OPERATOR_XOR:
code = BIT_XOR_EXPR;
break;
case OPERATOR_MULT:
code = MULT_EXPR;
break;
case OPERATOR_DIV:
if (TREE_CODE(type) == REAL_TYPE || TREE_CODE(type) == COMPLEX_TYPE)
code = RDIV_EXPR;
else
code = TRUNC_DIV_EXPR;
break;
case OPERATOR_MOD:
code = TRUNC_MOD_EXPR;
break;
case OPERATOR_LSHIFT:
code = LSHIFT_EXPR;
break;
case OPERATOR_RSHIFT:
code = RSHIFT_EXPR;
break;
case OPERATOR_AND:
code = BIT_AND_EXPR;
break;
case OPERATOR_BITCLEAR:
code = BIT_AND_EXPR;
break;
default:
gcc_unreachable();
}
return code;
}
// Return an expression for the binary operation LEFT OP RIGHT.
Bexpression*
Gcc_backend::binary_expression(Operator op, Bexpression* left,
Bexpression* right, Location location)
{
tree left_tree = left->get_tree();
tree right_tree = right->get_tree();
if (left_tree == error_mark_node
|| right_tree == error_mark_node)
return this->error_expression();
enum tree_code code = operator_to_tree_code(op, TREE_TYPE(left_tree));
bool use_left_type = op != OPERATOR_OROR && op != OPERATOR_ANDAND;
tree type_tree = use_left_type ? TREE_TYPE(left_tree) : TREE_TYPE(right_tree);
tree computed_type = excess_precision_type(type_tree);
if (computed_type != NULL_TREE)
{
left_tree = convert(computed_type, left_tree);
right_tree = convert(computed_type, right_tree);
type_tree = computed_type;
}
// For comparison operators, the resulting type should be boolean.
switch (op)
{
case OPERATOR_EQEQ:
case OPERATOR_NOTEQ:
case OPERATOR_LT:
case OPERATOR_LE:
case OPERATOR_GT:
case OPERATOR_GE:
type_tree = boolean_type_node;
break;
default:
break;
}
tree ret = fold_build2_loc(location.gcc_location(), code, type_tree,
left_tree, right_tree);
return this->make_expression(ret);
}
// Return an expression that constructs BTYPE with VALS.
Bexpression*
Gcc_backend::constructor_expression(Btype* btype,
const std::vector<Bexpression*>& vals,
Location location)
{
tree type_tree = btype->get_tree();
if (type_tree == error_mark_node)
return this->error_expression();
vec<constructor_elt, va_gc> *init;
vec_alloc(init, vals.size());
tree sink = NULL_TREE;
bool is_constant = true;
tree field = TYPE_FIELDS(type_tree);
for (std::vector<Bexpression*>::const_iterator p = vals.begin();
p != vals.end();
++p, field = DECL_CHAIN(field))
{
gcc_assert(field != NULL_TREE);
tree val = (*p)->get_tree();
if (TREE_TYPE(field) == error_mark_node
|| val == error_mark_node
|| TREE_TYPE(val) == error_mark_node)
return this->error_expression();
if (int_size_in_bytes(TREE_TYPE(field)) == 0)
{
// GIMPLE cannot represent indices of zero-sized types so
// trying to construct a map with zero-sized keys might lead
// to errors. Instead, we evaluate each expression that
// would have been added as a map element for its
// side-effects and construct an empty map.
append_to_statement_list(val, &sink);
continue;
}
constructor_elt empty = {NULL, NULL};
constructor_elt* elt = init->quick_push(empty);
elt->index = field;
elt->value = this->convert_tree(TREE_TYPE(field), val, location);
if (!TREE_CONSTANT(elt->value))
is_constant = false;
}
gcc_assert(field == NULL_TREE);
tree ret = build_constructor(type_tree, init);
if (is_constant)
TREE_CONSTANT(ret) = 1;
if (sink != NULL_TREE)
ret = fold_build2_loc(location.gcc_location(), COMPOUND_EXPR,
type_tree, sink, ret);
return this->make_expression(ret);
}
Bexpression*
Gcc_backend::array_constructor_expression(
Btype* array_btype, const std::vector<unsigned long>& indexes,
const std::vector<Bexpression*>& vals, Location location)
{
tree type_tree = array_btype->get_tree();
if (type_tree == error_mark_node)
return this->error_expression();
gcc_assert(indexes.size() == vals.size());
tree element_type = TREE_TYPE(type_tree);
HOST_WIDE_INT element_size = int_size_in_bytes(element_type);
vec<constructor_elt, va_gc> *init;
vec_alloc(init, element_size == 0 ? 0 : vals.size());
tree sink = NULL_TREE;
bool is_constant = true;
for (size_t i = 0; i < vals.size(); ++i)
{
tree index = size_int(indexes[i]);
tree val = (vals[i])->get_tree();
if (index == error_mark_node
|| val == error_mark_node)
return this->error_expression();
if (element_size == 0)
{
// GIMPLE cannot represent arrays of zero-sized types so trying
// to construct an array of zero-sized values might lead to errors.
// Instead, we evaluate each expression that would have been added as
// an array value for its side-effects and construct an empty array.
append_to_statement_list(val, &sink);
continue;
}
if (!TREE_CONSTANT(val))
is_constant = false;
constructor_elt empty = {NULL, NULL};
constructor_elt* elt = init->quick_push(empty);
elt->index = index;
elt->value = val;
}
tree ret = build_constructor(type_tree, init);
if (is_constant)
TREE_CONSTANT(ret) = 1;
if (sink != NULL_TREE)
ret = fold_build2_loc(location.gcc_location(), COMPOUND_EXPR,
type_tree, sink, ret);
return this->make_expression(ret);
}
// Return an expression for the address of BASE[INDEX].
Bexpression*
Gcc_backend::pointer_offset_expression(Bexpression* base, Bexpression* index,
Location location)
{
tree base_tree = base->get_tree();
tree index_tree = index->get_tree();
tree element_type_tree = TREE_TYPE(TREE_TYPE(base_tree));
if (base_tree == error_mark_node
|| TREE_TYPE(base_tree) == error_mark_node
|| index_tree == error_mark_node
|| element_type_tree == error_mark_node)
return this->error_expression();
tree element_size = TYPE_SIZE_UNIT(element_type_tree);
index_tree = fold_convert_loc(location.gcc_location(), sizetype, index_tree);
tree offset = fold_build2_loc(location.gcc_location(), MULT_EXPR, sizetype,
index_tree, element_size);
tree ptr = fold_build2_loc(location.gcc_location(), POINTER_PLUS_EXPR,
TREE_TYPE(base_tree), base_tree, offset);
return this->make_expression(ptr);
}
// Return an expression representing ARRAY[INDEX]
Bexpression*
Gcc_backend::array_index_expression(Bexpression* array, Bexpression* index,
Location location)
{
tree array_tree = array->get_tree();
tree index_tree = index->get_tree();
if (array_tree == error_mark_node
|| TREE_TYPE(array_tree) == error_mark_node
|| index_tree == error_mark_node)
return this->error_expression();
// A function call that returns a zero sized object will have been
// changed to return void. If we see void here, assume we are
// dealing with a zero sized type and just evaluate the operands.
tree ret;
if (TREE_TYPE(array_tree) != void_type_node)
ret = build4_loc(location.gcc_location(), ARRAY_REF,
TREE_TYPE(TREE_TYPE(array_tree)), array_tree,
index_tree, NULL_TREE, NULL_TREE);
else
ret = fold_build2_loc(location.gcc_location(), COMPOUND_EXPR,
void_type_node, array_tree, index_tree);
return this->make_expression(ret);
}
// Create an expression for a call to FN_EXPR with FN_ARGS.
Bexpression*
Gcc_backend::call_expression(Bfunction*, // containing fcn for call
Bexpression* fn_expr,
const std::vector<Bexpression*>& fn_args,
Bexpression* chain_expr,
Location location)
{
tree fn = fn_expr->get_tree();
if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
return this->error_expression();
gcc_assert(FUNCTION_POINTER_TYPE_P(TREE_TYPE(fn)));
tree rettype = TREE_TYPE(TREE_TYPE(TREE_TYPE(fn)));
size_t nargs = fn_args.size();
tree* args = nargs == 0 ? NULL : new tree[nargs];
for (size_t i = 0; i < nargs; ++i)
{
args[i] = fn_args.at(i)->get_tree();
if (args[i] == error_mark_node)
return this->error_expression();
}
tree fndecl = fn;
if (TREE_CODE(fndecl) == ADDR_EXPR)
fndecl = TREE_OPERAND(fndecl, 0);
// This is to support builtin math functions when using 80387 math.
tree excess_type = NULL_TREE;
if (optimize
&& TREE_CODE(fndecl) == FUNCTION_DECL
&& fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
&& DECL_IS_UNDECLARED_BUILTIN (fndecl)
&& nargs > 0
&& ((SCALAR_FLOAT_TYPE_P(rettype)
&& SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
|| (COMPLEX_FLOAT_TYPE_P(rettype)
&& COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
{
excess_type = excess_precision_type(TREE_TYPE(args[0]));
if (excess_type != NULL_TREE)
{
tree excess_fndecl = mathfn_built_in(excess_type,
DECL_FUNCTION_CODE(fndecl));
if (excess_fndecl == NULL_TREE)
excess_type = NULL_TREE;
else
{
fn = build_fold_addr_expr_loc(location.gcc_location(),
excess_fndecl);
for (size_t i = 0; i < nargs; ++i)
{
if (SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[i]))
|| COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[i])))
args[i] = ::convert(excess_type, args[i]);
}
}
}
}
tree ret =
build_call_array_loc(location.gcc_location(),
excess_type != NULL_TREE ? excess_type : rettype,
fn, nargs, args);
if (chain_expr)
CALL_EXPR_STATIC_CHAIN (ret) = chain_expr->get_tree();
if (excess_type != NULL_TREE)
{
// Calling convert here can undo our excess precision change.
// That may or may not be a bug in convert_to_real.
ret = build1_loc(location.gcc_location(), NOP_EXPR, rettype, ret);
}
delete[] args;
return this->make_expression(ret);
}
// An expression as a statement.
Bstatement*
Gcc_backend::expression_statement(Bfunction*, Bexpression* expr)
{
return this->make_statement(expr->get_tree());
}
// Variable initialization.
Bstatement*
Gcc_backend::init_statement(Bfunction*, Bvariable* var, Bexpression* init)
{
tree var_tree = var->get_decl();
tree init_tree = init->get_tree();
if (var_tree == error_mark_node || init_tree == error_mark_node)
return this->error_statement();
gcc_assert(TREE_CODE(var_tree) == VAR_DECL);
// To avoid problems with GNU ld, we don't make zero-sized
// externally visible variables. That might lead us to doing an
// initialization of a zero-sized expression to a non-zero sized
// variable, or vice-versa. Avoid crashes by omitting the
// initializer. Such initializations don't mean anything anyhow.
if (int_size_in_bytes(TREE_TYPE(var_tree)) != 0
&& init_tree != NULL_TREE
&& TREE_TYPE(init_tree) != void_type_node
&& int_size_in_bytes(TREE_TYPE(init_tree)) != 0)
{
DECL_INITIAL(var_tree) = init_tree;
init_tree = NULL_TREE;
}
tree ret = build1_loc(DECL_SOURCE_LOCATION(var_tree), DECL_EXPR,
void_type_node, var_tree);
if (init_tree != NULL_TREE)
ret = build2_loc(DECL_SOURCE_LOCATION(var_tree), COMPOUND_EXPR,
void_type_node, init_tree, ret);
return this->make_statement(ret);
}
// Assignment.
Bstatement*
Gcc_backend::assignment_statement(Bfunction* bfn, Bexpression* lhs,
Bexpression* rhs, Location location)
{
tree lhs_tree = lhs->get_tree();
tree rhs_tree = rhs->get_tree();
if (lhs_tree == error_mark_node || rhs_tree == error_mark_node)
return this->error_statement();
// To avoid problems with GNU ld, we don't make zero-sized
// externally visible variables. That might lead us to doing an
// assignment of a zero-sized expression to a non-zero sized
// expression; avoid crashes here by avoiding assignments of
// zero-sized expressions. Such assignments don't really mean
// anything anyhow.
if (TREE_TYPE(lhs_tree) == void_type_node
|| int_size_in_bytes(TREE_TYPE(lhs_tree)) == 0
|| TREE_TYPE(rhs_tree) == void_type_node
|| int_size_in_bytes(TREE_TYPE(rhs_tree)) == 0)
return this->compound_statement(this->expression_statement(bfn, lhs),
this->expression_statement(bfn, rhs));
rhs_tree = this->convert_tree(TREE_TYPE(lhs_tree), rhs_tree, location);
return this->make_statement(fold_build2_loc(location.gcc_location(),
MODIFY_EXPR,
void_type_node,
lhs_tree, rhs_tree));
}
// Return.
Bstatement*
Gcc_backend::return_statement(Bfunction* bfunction,
const std::vector<Bexpression*>& vals,
Location location)
{
tree fntree = bfunction->get_tree();
if (fntree == error_mark_node)
return this->error_statement();
tree result = DECL_RESULT(fntree);
if (result == error_mark_node)
return this->error_statement();
// If the result size is zero bytes, we have set the function type
// to have a result type of void, so don't return anything.
// See the function_type method.
tree res_type = TREE_TYPE(result);
if (res_type == void_type_node || int_size_in_bytes(res_type) == 0)
{
tree stmt_list = NULL_TREE;
for (std::vector<Bexpression*>::const_iterator p = vals.begin();
p != vals.end();
p++)
{
tree val = (*p)->get_tree();
if (val == error_mark_node)
return this->error_statement();
append_to_statement_list(val, &stmt_list);
}
tree ret = fold_build1_loc(location.gcc_location(), RETURN_EXPR,
void_type_node, NULL_TREE);
append_to_statement_list(ret, &stmt_list);
return this->make_statement(stmt_list);
}
tree ret;
if (vals.empty())
ret = fold_build1_loc(location.gcc_location(), RETURN_EXPR, void_type_node,
NULL_TREE);
else if (vals.size() == 1)
{
tree val = vals.front()->get_tree();
if (val == error_mark_node)
return this->error_statement();
tree set = fold_build2_loc(location.gcc_location(), MODIFY_EXPR,
void_type_node, result,
vals.front()->get_tree());
ret = fold_build1_loc(location.gcc_location(), RETURN_EXPR,
void_type_node, set);
}
else
{
// To return multiple values, copy the values into a temporary
// variable of the right structure type, and then assign the
// temporary variable to the DECL_RESULT in the return
// statement.
tree stmt_list = NULL_TREE;
tree rettype = TREE_TYPE(result);
if (DECL_STRUCT_FUNCTION(fntree) == NULL)
push_struct_function(fntree);
else
push_cfun(DECL_STRUCT_FUNCTION(fntree));
tree rettmp = create_tmp_var(rettype, "RESULT");
pop_cfun();
tree field = TYPE_FIELDS(rettype);
for (std::vector<Bexpression*>::const_iterator p = vals.begin();
p != vals.end();
p++, field = DECL_CHAIN(field))
{
gcc_assert(field != NULL_TREE);
tree ref = fold_build3_loc(location.gcc_location(), COMPONENT_REF,
TREE_TYPE(field), rettmp, field,
NULL_TREE);
tree val = (*p)->get_tree();
if (val == error_mark_node)
return this->error_statement();
tree set = fold_build2_loc(location.gcc_location(), MODIFY_EXPR,
void_type_node,
ref, (*p)->get_tree());
append_to_statement_list(set, &stmt_list);
}
gcc_assert(field == NULL_TREE);
tree set = fold_build2_loc(location.gcc_location(), MODIFY_EXPR,
void_type_node,
result, rettmp);
tree ret_expr = fold_build1_loc(location.gcc_location(), RETURN_EXPR,
void_type_node, set);
append_to_statement_list(ret_expr, &stmt_list);
ret = stmt_list;
}
return this->make_statement(ret);
}
// Create a statement that attempts to execute BSTAT and calls EXCEPT_STMT if an
// error occurs. EXCEPT_STMT may be NULL. FINALLY_STMT may be NULL and if not
// NULL, it will always be executed. This is used for handling defers in Go
// functions. In C++, the resulting code is of this form:
// try { BSTAT; } catch { EXCEPT_STMT; } finally { FINALLY_STMT; }
Bstatement*
Gcc_backend::exception_handler_statement(Bstatement* bstat,
Bstatement* except_stmt,
Bstatement* finally_stmt,
Location location)
{
tree stat_tree = bstat->get_tree();
tree except_tree = except_stmt == NULL ? NULL_TREE : except_stmt->get_tree();
tree finally_tree = finally_stmt == NULL
? NULL_TREE
: finally_stmt->get_tree();
if (stat_tree == error_mark_node
|| except_tree == error_mark_node
|| finally_tree == error_mark_node)
return this->error_statement();
if (except_tree != NULL_TREE)
stat_tree = build2_loc(location.gcc_location(), TRY_CATCH_EXPR,
void_type_node, stat_tree,
build2_loc(location.gcc_location(), CATCH_EXPR,
void_type_node, NULL, except_tree));
if (finally_tree != NULL_TREE)
stat_tree = build2_loc(location.gcc_location(), TRY_FINALLY_EXPR,
void_type_node, stat_tree, finally_tree);
return this->make_statement(stat_tree);
}
// If.
Bstatement*
Gcc_backend::if_statement(Bfunction*, Bexpression* condition,
Bblock* then_block, Bblock* else_block,
Location location)
{
tree cond_tree = condition->get_tree();
tree then_tree = then_block->get_tree();
tree else_tree = else_block == NULL ? NULL_TREE : else_block->get_tree();
if (cond_tree == error_mark_node
|| then_tree == error_mark_node
|| else_tree == error_mark_node)
return this->error_statement();
tree ret = build3_loc(location.gcc_location(), COND_EXPR, void_type_node,
cond_tree, then_tree, else_tree);
return this->make_statement(ret);
}
// Switch.
Bstatement*
Gcc_backend::switch_statement(
Bfunction* function,
Bexpression* value,
const std::vector<std::vector<Bexpression*> >& cases,
const std::vector<Bstatement*>& statements,
Location switch_location)
{
gcc_assert(cases.size() == statements.size());
tree decl = function->get_tree();
if (DECL_STRUCT_FUNCTION(decl) == NULL)
push_struct_function(decl);
else
push_cfun(DECL_STRUCT_FUNCTION(decl));
tree stmt_list = NULL_TREE;
std::vector<std::vector<Bexpression*> >::const_iterator pc = cases.begin();
for (std::vector<Bstatement*>::const_iterator ps = statements.begin();
ps != statements.end();
++ps, ++pc)
{
if (pc->empty())
{
location_t loc = (*ps != NULL
? EXPR_LOCATION((*ps)->get_tree())
: UNKNOWN_LOCATION);
tree label = create_artificial_label(loc);
tree c = build_case_label(NULL_TREE, NULL_TREE, label);
append_to_statement_list(c, &stmt_list);
}
else
{
for (std::vector<Bexpression*>::const_iterator pcv = pc->begin();
pcv != pc->end();
++pcv)
{
tree t = (*pcv)->get_tree();
if (t == error_mark_node)
return this->error_statement();
location_t loc = EXPR_LOCATION(t);
tree label = create_artificial_label(loc);
tree c = build_case_label((*pcv)->get_tree(), NULL_TREE, label);
append_to_statement_list(c, &stmt_list);
}
}
if (*ps != NULL)
{
tree t = (*ps)->get_tree();
if (t == error_mark_node)
return this->error_statement();
append_to_statement_list(t, &stmt_list);
}
}
pop_cfun();
tree tv = value->get_tree();
if (tv == error_mark_node)
return this->error_statement();
tree t = build2_loc(switch_location.gcc_location(), SWITCH_EXPR,
NULL_TREE, tv, stmt_list);
return this->make_statement(t);
}
// Pair of statements.
Bstatement*
Gcc_backend::compound_statement(Bstatement* s1, Bstatement* s2)
{
tree stmt_list = NULL_TREE;
tree t = s1->get_tree();
if (t == error_mark_node)
return this->error_statement();
append_to_statement_list(t, &stmt_list);
t = s2->get_tree();
if (t == error_mark_node)
return this->error_statement();
append_to_statement_list(t, &stmt_list);
// If neither statement has any side effects, stmt_list can be NULL
// at this point.
if (stmt_list == NULL_TREE)
stmt_list = integer_zero_node;
return this->make_statement(stmt_list);
}
// List of statements.
Bstatement*
Gcc_backend::statement_list(const std::vector<Bstatement*>& statements)
{
tree stmt_list = NULL_TREE;
for (std::vector<Bstatement*>::const_iterator p = statements.begin();
p != statements.end();
++p)
{
tree t = (*p)->get_tree();
if (t == error_mark_node)
return this->error_statement();
append_to_statement_list(t, &stmt_list);
}
return this->make_statement(stmt_list);
}
// Make a block. For some reason gcc uses a dual structure for
// blocks: BLOCK tree nodes and BIND_EXPR tree nodes. Since the
// BIND_EXPR node points to the BLOCK node, we store the BIND_EXPR in
// the Bblock.
Bblock*
Gcc_backend::block(Bfunction* function, Bblock* enclosing,
const std::vector<Bvariable*>& vars,
Location start_location,
Location)
{
tree block_tree = make_node(BLOCK);
if (enclosing == NULL)
{
tree fndecl = function->get_tree();
gcc_assert(fndecl != NULL_TREE);
// We may have already created a block for local variables when
// we take the address of a parameter.
if (DECL_INITIAL(fndecl) == NULL_TREE)
{
BLOCK_SUPERCONTEXT(block_tree) = fndecl;
DECL_INITIAL(fndecl) = block_tree;
}
else
{
tree superblock_tree = DECL_INITIAL(fndecl);
BLOCK_SUPERCONTEXT(block_tree) = superblock_tree;
tree* pp;
for (pp = &BLOCK_SUBBLOCKS(superblock_tree);
*pp != NULL_TREE;
pp = &BLOCK_CHAIN(*pp))
;
*pp = block_tree;
}
}
else
{
tree superbind_tree = enclosing->get_tree();
tree superblock_tree = BIND_EXPR_BLOCK(superbind_tree);
gcc_assert(TREE_CODE(superblock_tree) == BLOCK);
BLOCK_SUPERCONTEXT(block_tree) = superblock_tree;
tree* pp;
for (pp = &BLOCK_SUBBLOCKS(superblock_tree);
*pp != NULL_TREE;
pp = &BLOCK_CHAIN(*pp))
;
*pp = block_tree;
}
tree* pp = &BLOCK_VARS(block_tree);
for (std::vector<Bvariable*>::const_iterator pv = vars.begin();
pv != vars.end();
++pv)
{
*pp = (*pv)->get_decl();
if (*pp != error_mark_node)
pp = &DECL_CHAIN(*pp);
}
*pp = NULL_TREE;
TREE_USED(block_tree) = 1;
tree bind_tree = build3_loc(start_location.gcc_location(), BIND_EXPR,
void_type_node, BLOCK_VARS(block_tree),
NULL_TREE, block_tree);
TREE_SIDE_EFFECTS(bind_tree) = 1;
return new Bblock(bind_tree);
}
// Add statements to a block.
void
Gcc_backend::block_add_statements(Bblock* bblock,
const std::vector<Bstatement*>& statements)
{
tree stmt_list = NULL_TREE;
for (std::vector<Bstatement*>::const_iterator p = statements.begin();
p != statements.end();
++p)
{
tree s = (*p)->get_tree();
if (s != error_mark_node)
append_to_statement_list(s, &stmt_list);
}
tree bind_tree = bblock->get_tree();
gcc_assert(TREE_CODE(bind_tree) == BIND_EXPR);
BIND_EXPR_BODY(bind_tree) = stmt_list;
}
// Return a block as a statement.
Bstatement*
Gcc_backend::block_statement(Bblock* bblock)
{
tree bind_tree = bblock->get_tree();
gcc_assert(TREE_CODE(bind_tree) == BIND_EXPR);
return this->make_statement(bind_tree);
}
// This is not static because we declare it with GTY(()) in go-c.h.
tree go_non_zero_struct;
// Return a type corresponding to TYPE with non-zero size.
tree
Gcc_backend::non_zero_size_type(tree type)
{
if (int_size_in_bytes(type) != 0)
return type;
switch (TREE_CODE(type))
{
case RECORD_TYPE:
if (TYPE_FIELDS(type) != NULL_TREE)
{
tree ns = make_node(RECORD_TYPE);
tree field_trees = NULL_TREE;
tree *pp = &field_trees;
for (tree field = TYPE_FIELDS(type);
field != NULL_TREE;
field = DECL_CHAIN(field))
{
tree ft = TREE_TYPE(field);
if (field == TYPE_FIELDS(type))
ft = non_zero_size_type(ft);
tree f = build_decl(DECL_SOURCE_LOCATION(field), FIELD_DECL,
DECL_NAME(field), ft);
DECL_CONTEXT(f) = ns;
*pp = f;
pp = &DECL_CHAIN(f);
}
TYPE_FIELDS(ns) = field_trees;
layout_type(ns);
return ns;
}
if (go_non_zero_struct == NULL_TREE)
{
type = make_node(RECORD_TYPE);
tree field = build_decl(UNKNOWN_LOCATION, FIELD_DECL,
get_identifier("dummy"),
boolean_type_node);
DECL_CONTEXT(field) = type;
TYPE_FIELDS(type) = field;
layout_type(type);
go_non_zero_struct = type;
}
return go_non_zero_struct;
case ARRAY_TYPE:
{
tree element_type = non_zero_size_type(TREE_TYPE(type));
return build_array_type_nelts(element_type, 1);
}
default:
gcc_unreachable();
}
gcc_unreachable();
}
// Convert EXPR_TREE to TYPE_TREE. Sometimes the same unnamed Go type
// can be created multiple times and thus have multiple tree
// representations. Make sure this does not confuse the middle-end.
tree
Gcc_backend::convert_tree(tree type_tree, tree expr_tree, Location location)
{
if (type_tree == TREE_TYPE(expr_tree))
return expr_tree;
if (type_tree == error_mark_node
|| expr_tree == error_mark_node
|| TREE_TYPE(expr_tree) == error_mark_node)
return error_mark_node;
gcc_assert(TREE_CODE(type_tree) == TREE_CODE(TREE_TYPE(expr_tree)));
if (POINTER_TYPE_P(type_tree)
|| INTEGRAL_TYPE_P(type_tree)
|| SCALAR_FLOAT_TYPE_P(type_tree)
|| COMPLEX_FLOAT_TYPE_P(type_tree))
return fold_convert_loc(location.gcc_location(), type_tree, expr_tree);
else if (TREE_CODE(type_tree) == RECORD_TYPE
|| TREE_CODE(type_tree) == ARRAY_TYPE)
{
gcc_assert(int_size_in_bytes(type_tree)
== int_size_in_bytes(TREE_TYPE(expr_tree)));
if (TYPE_MAIN_VARIANT(type_tree)
== TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
return fold_build1_loc(location.gcc_location(), NOP_EXPR,
type_tree, expr_tree);
return fold_build1_loc(location.gcc_location(), VIEW_CONVERT_EXPR,
type_tree, expr_tree);
}
gcc_unreachable();
}
// Make a global variable.
Bvariable*
Gcc_backend::global_variable(const std::string& var_name,
const std::string& asm_name,
Btype* btype,
unsigned int flags,
Location location)
{
tree type_tree = btype->get_tree();
if (type_tree == error_mark_node)
return this->error_variable();
// The GNU linker does not like dynamic variables with zero size.
tree orig_type_tree = type_tree;
bool is_external = (flags & variable_is_external) != 0;
bool is_hidden = (flags & variable_is_hidden) != 0;
if ((is_external || !is_hidden) && int_size_in_bytes(type_tree) == 0)
type_tree = this->non_zero_size_type(type_tree);
tree decl = build_decl(location.gcc_location(), VAR_DECL,
get_identifier_from_string(var_name),
type_tree);
if ((flags & variable_is_external) != 0)
{
DECL_EXTERNAL(decl) = 1;
flags &=~ variable_is_external;
}
else
TREE_STATIC(decl) = 1;
if ((flags & variable_is_hidden) == 0)
TREE_PUBLIC(decl) = 1;
else
flags &=~ variable_is_hidden;
if ((flags & variable_address_is_taken) != 0)
{
TREE_ADDRESSABLE(decl) = 1;
flags &=~ variable_address_is_taken;
}
// We take the address in Bvariable::get_tree if orig_type_tree is
// different from type_tree.
if (orig_type_tree != type_tree)
TREE_ADDRESSABLE(decl) = 1;
SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name));
TREE_USED(decl) = 1;
if ((flags & variable_in_unique_section) != 0)
{
resolve_unique_section (decl, 0, 1);
flags &=~ variable_in_unique_section;
}
gcc_assert(flags == 0);
go_preserve_from_gc(decl);
return new Bvariable(decl, orig_type_tree);
}
// Set the initial value of a global variable.
void
Gcc_backend::global_variable_set_init(Bvariable* var, Bexpression* expr)
{
tree expr_tree = expr->get_tree();
if (expr_tree == error_mark_node)
return;
gcc_assert(TREE_CONSTANT(expr_tree));
tree var_decl = var->get_decl();
if (var_decl == error_mark_node)
return;
DECL_INITIAL(var_decl) = expr_tree;
// If this variable goes in a unique section, it may need to go into
// a different one now that DECL_INITIAL is set.
if (symtab_node::get(var_decl)
&& symtab_node::get(var_decl)->implicit_section)
{
set_decl_section_name (var_decl, (const char *) NULL);
resolve_unique_section (var_decl,
compute_reloc_for_constant (expr_tree),
1);
}
}
// Make a local variable.
Bvariable*
Gcc_backend::local_variable(Bfunction* function, const std::string& name,
Btype* btype, Bvariable* decl_var,
unsigned int flags, Location location)
{
tree type_tree = btype->get_tree();
if (type_tree == error_mark_node)
return this->error_variable();
tree decl = build_decl(location.gcc_location(), VAR_DECL,
get_identifier_from_string(name),
type_tree);
DECL_CONTEXT(decl) = function->get_tree();
TREE_USED(decl) = 1;
if ((flags & variable_address_is_taken) != 0)
{
TREE_ADDRESSABLE(decl) = 1;
flags &=~ variable_address_is_taken;
}
if (decl_var != NULL)
{
DECL_HAS_VALUE_EXPR_P(decl) = 1;
SET_DECL_VALUE_EXPR(decl, decl_var->get_decl());
}
go_assert(flags == 0);
go_preserve_from_gc(decl);
return new Bvariable(decl);
}
// Make a function parameter variable.
Bvariable*
Gcc_backend::parameter_variable(Bfunction* function, const std::string& name,
Btype* btype, unsigned int flags,
Location location)
{
tree type_tree = btype->get_tree();
if (type_tree == error_mark_node)
return this->error_variable();
tree decl = build_decl(location.gcc_location(), PARM_DECL,
get_identifier_from_string(name),
type_tree);
DECL_CONTEXT(decl) = function->get_tree();
DECL_ARG_TYPE(decl) = type_tree;
TREE_USED(decl) = 1;
if ((flags & variable_address_is_taken) != 0)
{
TREE_ADDRESSABLE(decl) = 1;
flags &=~ variable_address_is_taken;
}
go_assert(flags == 0);
go_preserve_from_gc(decl);
return new Bvariable(decl);
}
// Make a static chain variable.
Bvariable*
Gcc_backend::static_chain_variable(Bfunction* function, const std::string& name,
Btype* btype, unsigned int flags,
Location location)
{
tree type_tree = btype->get_tree();
if (type_tree == error_mark_node)
return this->error_variable();
tree decl = build_decl(location.gcc_location(), PARM_DECL,
get_identifier_from_string(name), type_tree);
tree fndecl = function->get_tree();
DECL_CONTEXT(decl) = fndecl;
DECL_ARG_TYPE(decl) = type_tree;
TREE_USED(decl) = 1;
DECL_ARTIFICIAL(decl) = 1;
DECL_IGNORED_P(decl) = 1;
DECL_NAMELESS(decl) = 1;
TREE_READONLY(decl) = 1;
struct function *f = DECL_STRUCT_FUNCTION(fndecl);
if (f == NULL)
{
push_struct_function(fndecl);
pop_cfun();
f = DECL_STRUCT_FUNCTION(fndecl);
}
gcc_assert(f->static_chain_decl == NULL);
f->static_chain_decl = decl;
DECL_STATIC_CHAIN(fndecl) = 1;
go_assert(flags == 0);
go_preserve_from_gc(decl);
return new Bvariable(decl);
}
// Make a temporary variable.
Bvariable*
Gcc_backend::temporary_variable(Bfunction* function, Bblock* bblock,
Btype* btype, Bexpression* binit,
unsigned int flags,
Location location,
Bstatement** pstatement)
{
gcc_assert(function != NULL);
tree decl = function->get_tree();
tree type_tree = btype->get_tree();
tree init_tree = binit == NULL ? NULL_TREE : binit->get_tree();
if (type_tree == error_mark_node
|| init_tree == error_mark_node
|| decl == error_mark_node)
{
*pstatement = this->error_statement();
return this->error_variable();
}
tree var;
// We can only use create_tmp_var if the type is not addressable.
if (!TREE_ADDRESSABLE(type_tree))
{
if (DECL_STRUCT_FUNCTION(decl) == NULL)
push_struct_function(decl);
else
push_cfun(DECL_STRUCT_FUNCTION(decl));
var = create_tmp_var(type_tree, "GOTMP");
pop_cfun();
}
else
{
gcc_assert(bblock != NULL);
var = build_decl(location.gcc_location(), VAR_DECL,
create_tmp_var_name("GOTMP"),
type_tree);
DECL_ARTIFICIAL(var) = 1;
DECL_IGNORED_P(var) = 1;
DECL_NAMELESS(var) = 1;
TREE_USED(var) = 1;
DECL_CONTEXT(var) = decl;
// We have to add this variable to the BLOCK and the BIND_EXPR.
tree bind_tree = bblock->get_tree();
gcc_assert(TREE_CODE(bind_tree) == BIND_EXPR);
tree block_tree = BIND_EXPR_BLOCK(bind_tree);
gcc_assert(TREE_CODE(block_tree) == BLOCK);
DECL_CHAIN(var) = BLOCK_VARS(block_tree);
BLOCK_VARS(block_tree) = var;
BIND_EXPR_VARS(bind_tree) = BLOCK_VARS(block_tree);
}
if (this->type_size(btype) != 0
&& init_tree != NULL_TREE
&& TREE_TYPE(init_tree) != void_type_node)
DECL_INITIAL(var) = this->convert_tree(type_tree, init_tree, location);
if ((flags & variable_address_is_taken) != 0)
{
TREE_ADDRESSABLE(var) = 1;
flags &=~ variable_address_is_taken;
}
gcc_assert(flags == 0);
*pstatement = this->make_statement(build1_loc(location.gcc_location(),
DECL_EXPR,
void_type_node, var));
// For a zero sized type, don't initialize VAR with BINIT, but still
// evaluate BINIT for its side effects.
if (init_tree != NULL_TREE
&& (this->type_size(btype) == 0
|| TREE_TYPE(init_tree) == void_type_node))
*pstatement =
this->compound_statement(this->expression_statement(function, binit),
*pstatement);
return new Bvariable(var);
}
// Create an implicit variable that is compiler-defined. This is used when
// generating GC root variables and storing the values of a slice initializer.
Bvariable*
Gcc_backend::implicit_variable(const std::string& name,
const std::string& asm_name,
Btype* type, unsigned int flags,
int64_t alignment)
{
tree type_tree = type->get_tree();
if (type_tree == error_mark_node)
return this->error_variable();
tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL,
get_identifier_from_string(name), type_tree);
DECL_EXTERNAL(decl) = 0;
if ((flags & variable_is_hidden) != 0)
flags &=~ variable_is_hidden;
else
TREE_PUBLIC(decl) = 1;
TREE_STATIC(decl) = 1;
TREE_USED(decl) = 1;
DECL_ARTIFICIAL(decl) = 1;
if ((flags & variable_is_common) != 0)
{
DECL_COMMON(decl) = 1;
// When the initializer for one implicit_variable refers to another,
// it needs to know the visibility of the referenced struct so that
// compute_reloc_for_constant will return the right value. On many
// systems calling make_decl_one_only will mark the decl as weak,
// which will change the return value of compute_reloc_for_constant.
// We can't reliably call make_decl_one_only yet, because we don't
// yet know the initializer. This issue doesn't arise in C because
// Go initializers, unlike C initializers, can be indirectly
// recursive. To ensure that compute_reloc_for_constant computes
// the right value if some other initializer refers to this one, we
// mark this symbol as weak here. We undo that below in
// immutable_struct_set_init before calling mark_decl_one_only.
DECL_WEAK(decl) = 1;
flags &=~ variable_is_common;
}
if ((flags & variable_is_constant) != 0)
{
TREE_READONLY(decl) = 1;
TREE_CONSTANT(decl) = 1;
flags &=~ variable_is_constant;
}
if ((flags & variable_address_is_taken) != 0)
{
TREE_ADDRESSABLE(decl) = 1;
flags &=~ variable_address_is_taken;
}
if (alignment != 0)
{
SET_DECL_ALIGN(decl, alignment * BITS_PER_UNIT);
DECL_USER_ALIGN(decl) = 1;
}
if (! asm_name.empty())
SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name));
gcc_assert(flags == 0);
go_preserve_from_gc(decl);
return new Bvariable(decl);
}
// Set the initalizer for a variable created by implicit_variable.
// This is where we finish compiling the variable.
void
Gcc_backend::implicit_variable_set_init(Bvariable* var, const std::string&,
Btype*, unsigned int flags,
Bexpression* init)
{
tree decl = var->get_decl();
tree init_tree;
if (init == NULL)
init_tree = NULL_TREE;
else
init_tree = init->get_tree();
if (decl == error_mark_node || init_tree == error_mark_node)
return;
DECL_INITIAL(decl) = init_tree;
// Now that DECL_INITIAL is set, we can't call make_decl_one_only.
// See the comment where DECL_WEAK is set in implicit_variable.
if ((flags & variable_is_common) != 0)
{
DECL_WEAK(decl) = 0;
make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
}
resolve_unique_section(decl, 2, 1);
rest_of_decl_compilation(decl, 1, 0);
}
// Return a reference to an implicit variable defined in another package.
Bvariable*
Gcc_backend::implicit_variable_reference(const std::string& name,
const std::string& asm_name,
Btype* btype)
{
tree type_tree = btype->get_tree();
if (type_tree ==