| //===-- tsan_rtl_report.cpp -----------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of ThreadSanitizer (TSan), a race detector. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "sanitizer_common/sanitizer_libc.h" |
| #include "sanitizer_common/sanitizer_placement_new.h" |
| #include "sanitizer_common/sanitizer_stackdepot.h" |
| #include "sanitizer_common/sanitizer_common.h" |
| #include "sanitizer_common/sanitizer_stacktrace.h" |
| #include "tsan_platform.h" |
| #include "tsan_rtl.h" |
| #include "tsan_suppressions.h" |
| #include "tsan_symbolize.h" |
| #include "tsan_report.h" |
| #include "tsan_sync.h" |
| #include "tsan_mman.h" |
| #include "tsan_flags.h" |
| #include "tsan_fd.h" |
| |
| namespace __tsan { |
| |
| using namespace __sanitizer; |
| |
| static ReportStack *SymbolizeStack(StackTrace trace); |
| |
| // Can be overriden by an application/test to intercept reports. |
| #ifdef TSAN_EXTERNAL_HOOKS |
| bool OnReport(const ReportDesc *rep, bool suppressed); |
| #else |
| SANITIZER_WEAK_CXX_DEFAULT_IMPL |
| bool OnReport(const ReportDesc *rep, bool suppressed) { |
| (void)rep; |
| return suppressed; |
| } |
| #endif |
| |
| SANITIZER_WEAK_DEFAULT_IMPL |
| void __tsan_on_report(const ReportDesc *rep) { |
| (void)rep; |
| } |
| |
| static void StackStripMain(SymbolizedStack *frames) { |
| SymbolizedStack *last_frame = nullptr; |
| SymbolizedStack *last_frame2 = nullptr; |
| for (SymbolizedStack *cur = frames; cur; cur = cur->next) { |
| last_frame2 = last_frame; |
| last_frame = cur; |
| } |
| |
| if (last_frame2 == 0) |
| return; |
| #if !SANITIZER_GO |
| const char *last = last_frame->info.function; |
| const char *last2 = last_frame2->info.function; |
| // Strip frame above 'main' |
| if (last2 && 0 == internal_strcmp(last2, "main")) { |
| last_frame->ClearAll(); |
| last_frame2->next = nullptr; |
| // Strip our internal thread start routine. |
| } else if (last && 0 == internal_strcmp(last, "__tsan_thread_start_func")) { |
| last_frame->ClearAll(); |
| last_frame2->next = nullptr; |
| // Strip global ctors init, .preinit_array and main caller. |
| } else if (last && (0 == internal_strcmp(last, "__do_global_ctors_aux") || |
| 0 == internal_strcmp(last, "__libc_csu_init") || |
| 0 == internal_strcmp(last, "__libc_start_main"))) { |
| last_frame->ClearAll(); |
| last_frame2->next = nullptr; |
| // If both are 0, then we probably just failed to symbolize. |
| } else if (last || last2) { |
| // Ensure that we recovered stack completely. Trimmed stack |
| // can actually happen if we do not instrument some code, |
| // so it's only a debug print. However we must try hard to not miss it |
| // due to our fault. |
| DPrintf("Bottom stack frame is missed\n"); |
| } |
| #else |
| // The last frame always point into runtime (gosched0, goexit0, runtime.main). |
| last_frame->ClearAll(); |
| last_frame2->next = nullptr; |
| #endif |
| } |
| |
| ReportStack *SymbolizeStackId(u32 stack_id) { |
| if (stack_id == 0) |
| return 0; |
| StackTrace stack = StackDepotGet(stack_id); |
| if (stack.trace == nullptr) |
| return nullptr; |
| return SymbolizeStack(stack); |
| } |
| |
| static ReportStack *SymbolizeStack(StackTrace trace) { |
| if (trace.size == 0) |
| return 0; |
| SymbolizedStack *top = nullptr; |
| for (uptr si = 0; si < trace.size; si++) { |
| const uptr pc = trace.trace[si]; |
| uptr pc1 = pc; |
| // We obtain the return address, but we're interested in the previous |
| // instruction. |
| if ((pc & kExternalPCBit) == 0) |
| pc1 = StackTrace::GetPreviousInstructionPc(pc); |
| SymbolizedStack *ent = SymbolizeCode(pc1); |
| CHECK_NE(ent, 0); |
| SymbolizedStack *last = ent; |
| while (last->next) { |
| last->info.address = pc; // restore original pc for report |
| last = last->next; |
| } |
| last->info.address = pc; // restore original pc for report |
| last->next = top; |
| top = ent; |
| } |
| StackStripMain(top); |
| |
| auto *stack = New<ReportStack>(); |
| stack->frames = top; |
| return stack; |
| } |
| |
| bool ShouldReport(ThreadState *thr, ReportType typ) { |
| // We set thr->suppress_reports in the fork context. |
| // Taking any locking in the fork context can lead to deadlocks. |
| // If any locks are already taken, it's too late to do this check. |
| CheckedMutex::CheckNoLocks(); |
| // For the same reason check we didn't lock thread_registry yet. |
| if (SANITIZER_DEBUG) |
| ThreadRegistryLock l(&ctx->thread_registry); |
| if (!flags()->report_bugs || thr->suppress_reports) |
| return false; |
| switch (typ) { |
| case ReportTypeSignalUnsafe: |
| return flags()->report_signal_unsafe; |
| case ReportTypeThreadLeak: |
| #if !SANITIZER_GO |
| // It's impossible to join phantom threads |
| // in the child after fork. |
| if (ctx->after_multithreaded_fork) |
| return false; |
| #endif |
| return flags()->report_thread_leaks; |
| case ReportTypeMutexDestroyLocked: |
| return flags()->report_destroy_locked; |
| default: |
| return true; |
| } |
| } |
| |
| ScopedReportBase::ScopedReportBase(ReportType typ, uptr tag) { |
| ctx->thread_registry.CheckLocked(); |
| rep_ = New<ReportDesc>(); |
| rep_->typ = typ; |
| rep_->tag = tag; |
| ctx->report_mtx.Lock(); |
| } |
| |
| ScopedReportBase::~ScopedReportBase() { |
| ctx->report_mtx.Unlock(); |
| DestroyAndFree(rep_); |
| } |
| |
| void ScopedReportBase::AddStack(StackTrace stack, bool suppressable) { |
| ReportStack **rs = rep_->stacks.PushBack(); |
| *rs = SymbolizeStack(stack); |
| (*rs)->suppressable = suppressable; |
| } |
| |
| void ScopedReportBase::AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, |
| StackTrace stack, const MutexSet *mset) { |
| auto *mop = New<ReportMop>(); |
| rep_->mops.PushBack(mop); |
| mop->tid = s.tid(); |
| mop->addr = addr + s.addr0(); |
| mop->size = s.size(); |
| mop->write = s.IsWrite(); |
| mop->atomic = s.IsAtomic(); |
| mop->stack = SymbolizeStack(stack); |
| mop->external_tag = external_tag; |
| if (mop->stack) |
| mop->stack->suppressable = true; |
| for (uptr i = 0; i < mset->Size(); i++) { |
| MutexSet::Desc d = mset->Get(i); |
| u64 mid = this->AddMutex(d.id); |
| ReportMopMutex mtx = {mid, d.write}; |
| mop->mset.PushBack(mtx); |
| } |
| } |
| |
| void ScopedReportBase::AddUniqueTid(Tid unique_tid) { |
| rep_->unique_tids.PushBack(unique_tid); |
| } |
| |
| void ScopedReportBase::AddThread(const ThreadContext *tctx, bool suppressable) { |
| for (uptr i = 0; i < rep_->threads.Size(); i++) { |
| if ((u32)rep_->threads[i]->id == tctx->tid) |
| return; |
| } |
| auto *rt = New<ReportThread>(); |
| rep_->threads.PushBack(rt); |
| rt->id = tctx->tid; |
| rt->os_id = tctx->os_id; |
| rt->running = (tctx->status == ThreadStatusRunning); |
| rt->name = internal_strdup(tctx->name); |
| rt->parent_tid = tctx->parent_tid; |
| rt->thread_type = tctx->thread_type; |
| rt->stack = 0; |
| rt->stack = SymbolizeStackId(tctx->creation_stack_id); |
| if (rt->stack) |
| rt->stack->suppressable = suppressable; |
| } |
| |
| #if !SANITIZER_GO |
| static bool FindThreadByUidLockedCallback(ThreadContextBase *tctx, void *arg) { |
| int unique_id = *(int *)arg; |
| return tctx->unique_id == (u32)unique_id; |
| } |
| |
| static ThreadContext *FindThreadByUidLocked(Tid unique_id) { |
| ctx->thread_registry.CheckLocked(); |
| return static_cast<ThreadContext *>( |
| ctx->thread_registry.FindThreadContextLocked( |
| FindThreadByUidLockedCallback, &unique_id)); |
| } |
| |
| static ThreadContext *FindThreadByTidLocked(Tid tid) { |
| ctx->thread_registry.CheckLocked(); |
| return static_cast<ThreadContext *>( |
| ctx->thread_registry.GetThreadLocked(tid)); |
| } |
| |
| static bool IsInStackOrTls(ThreadContextBase *tctx_base, void *arg) { |
| uptr addr = (uptr)arg; |
| ThreadContext *tctx = static_cast<ThreadContext*>(tctx_base); |
| if (tctx->status != ThreadStatusRunning) |
| return false; |
| ThreadState *thr = tctx->thr; |
| CHECK(thr); |
| return ((addr >= thr->stk_addr && addr < thr->stk_addr + thr->stk_size) || |
| (addr >= thr->tls_addr && addr < thr->tls_addr + thr->tls_size)); |
| } |
| |
| ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack) { |
| ctx->thread_registry.CheckLocked(); |
| ThreadContext *tctx = |
| static_cast<ThreadContext *>(ctx->thread_registry.FindThreadContextLocked( |
| IsInStackOrTls, (void *)addr)); |
| if (!tctx) |
| return 0; |
| ThreadState *thr = tctx->thr; |
| CHECK(thr); |
| *is_stack = (addr >= thr->stk_addr && addr < thr->stk_addr + thr->stk_size); |
| return tctx; |
| } |
| #endif |
| |
| void ScopedReportBase::AddThread(Tid unique_tid, bool suppressable) { |
| #if !SANITIZER_GO |
| if (const ThreadContext *tctx = FindThreadByUidLocked(unique_tid)) |
| AddThread(tctx, suppressable); |
| #endif |
| } |
| |
| void ScopedReportBase::AddMutex(const SyncVar *s) { |
| for (uptr i = 0; i < rep_->mutexes.Size(); i++) { |
| if (rep_->mutexes[i]->id == s->uid) |
| return; |
| } |
| auto *rm = New<ReportMutex>(); |
| rep_->mutexes.PushBack(rm); |
| rm->id = s->uid; |
| rm->addr = s->addr; |
| rm->destroyed = false; |
| rm->stack = SymbolizeStackId(s->creation_stack_id); |
| } |
| |
| u64 ScopedReportBase::AddMutex(u64 id) { |
| u64 uid = 0; |
| u64 mid = id; |
| uptr addr = SyncVar::SplitId(id, &uid); |
| SyncVar *s = ctx->metamap.GetSyncIfExists(addr); |
| // Check that the mutex is still alive. |
| // Another mutex can be created at the same address, |
| // so check uid as well. |
| if (s && s->CheckId(uid)) { |
| Lock l(&s->mtx); |
| mid = s->uid; |
| AddMutex(s); |
| } else { |
| AddDeadMutex(id); |
| } |
| return mid; |
| } |
| |
| void ScopedReportBase::AddDeadMutex(u64 id) { |
| for (uptr i = 0; i < rep_->mutexes.Size(); i++) { |
| if (rep_->mutexes[i]->id == id) |
| return; |
| } |
| auto *rm = New<ReportMutex>(); |
| rep_->mutexes.PushBack(rm); |
| rm->id = id; |
| rm->addr = 0; |
| rm->destroyed = true; |
| rm->stack = 0; |
| } |
| |
| void ScopedReportBase::AddLocation(uptr addr, uptr size) { |
| if (addr == 0) |
| return; |
| #if !SANITIZER_GO |
| int fd = -1; |
| Tid creat_tid = kInvalidTid; |
| StackID creat_stack = 0; |
| if (FdLocation(addr, &fd, &creat_tid, &creat_stack)) { |
| auto *loc = New<ReportLocation>(); |
| loc->type = ReportLocationFD; |
| loc->fd = fd; |
| loc->tid = creat_tid; |
| loc->stack = SymbolizeStackId(creat_stack); |
| rep_->locs.PushBack(loc); |
| ThreadContext *tctx = FindThreadByUidLocked(creat_tid); |
| if (tctx) |
| AddThread(tctx); |
| return; |
| } |
| MBlock *b = 0; |
| uptr block_begin = 0; |
| Allocator *a = allocator(); |
| if (a->PointerIsMine((void*)addr)) { |
| block_begin = (uptr)a->GetBlockBegin((void *)addr); |
| if (block_begin) |
| b = ctx->metamap.GetBlock(block_begin); |
| } |
| if (!b) |
| b = JavaHeapBlock(addr, &block_begin); |
| if (b != 0) { |
| ThreadContext *tctx = FindThreadByTidLocked(b->tid); |
| auto *loc = New<ReportLocation>(); |
| loc->type = ReportLocationHeap; |
| loc->heap_chunk_start = (uptr)allocator()->GetBlockBegin((void *)addr); |
| loc->heap_chunk_size = b->siz; |
| loc->external_tag = b->tag; |
| loc->tid = tctx ? tctx->tid : b->tid; |
| loc->stack = SymbolizeStackId(b->stk); |
| rep_->locs.PushBack(loc); |
| if (tctx) |
| AddThread(tctx); |
| return; |
| } |
| bool is_stack = false; |
| if (ThreadContext *tctx = IsThreadStackOrTls(addr, &is_stack)) { |
| auto *loc = New<ReportLocation>(); |
| loc->type = is_stack ? ReportLocationStack : ReportLocationTLS; |
| loc->tid = tctx->tid; |
| rep_->locs.PushBack(loc); |
| AddThread(tctx); |
| } |
| #endif |
| if (ReportLocation *loc = SymbolizeData(addr)) { |
| loc->suppressable = true; |
| rep_->locs.PushBack(loc); |
| return; |
| } |
| } |
| |
| #if !SANITIZER_GO |
| void ScopedReportBase::AddSleep(StackID stack_id) { |
| rep_->sleep = SymbolizeStackId(stack_id); |
| } |
| #endif |
| |
| void ScopedReportBase::SetCount(int count) { rep_->count = count; } |
| |
| const ReportDesc *ScopedReportBase::GetReport() const { return rep_; } |
| |
| ScopedReport::ScopedReport(ReportType typ, uptr tag) |
| : ScopedReportBase(typ, tag) {} |
| |
| ScopedReport::~ScopedReport() {} |
| |
| void RestoreStack(Tid tid, const u64 epoch, VarSizeStackTrace *stk, |
| MutexSet *mset, uptr *tag) { |
| // This function restores stack trace and mutex set for the thread/epoch. |
| // It does so by getting stack trace and mutex set at the beginning of |
| // trace part, and then replaying the trace till the given epoch. |
| Trace* trace = ThreadTrace(tid); |
| ReadLock l(&trace->mtx); |
| const int partidx = (epoch / kTracePartSize) % TraceParts(); |
| TraceHeader* hdr = &trace->headers[partidx]; |
| if (epoch < hdr->epoch0 || epoch >= hdr->epoch0 + kTracePartSize) |
| return; |
| CHECK_EQ(RoundDown(epoch, kTracePartSize), hdr->epoch0); |
| const u64 epoch0 = RoundDown(epoch, TraceSize()); |
| const u64 eend = epoch % TraceSize(); |
| const u64 ebegin = RoundDown(eend, kTracePartSize); |
| DPrintf("#%d: RestoreStack epoch=%zu ebegin=%zu eend=%zu partidx=%d\n", |
| tid, (uptr)epoch, (uptr)ebegin, (uptr)eend, partidx); |
| Vector<uptr> stack; |
| stack.Resize(hdr->stack0.size + 64); |
| for (uptr i = 0; i < hdr->stack0.size; i++) { |
| stack[i] = hdr->stack0.trace[i]; |
| DPrintf2(" #%02zu: pc=%zx\n", i, stack[i]); |
| } |
| if (mset) |
| *mset = hdr->mset0; |
| uptr pos = hdr->stack0.size; |
| Event *events = (Event*)GetThreadTrace(tid); |
| for (uptr i = ebegin; i <= eend; i++) { |
| Event ev = events[i]; |
| EventType typ = (EventType)(ev >> kEventPCBits); |
| uptr pc = (uptr)(ev & ((1ull << kEventPCBits) - 1)); |
| DPrintf2(" %zu typ=%d pc=%zx\n", i, typ, pc); |
| if (typ == EventTypeMop) { |
| stack[pos] = pc; |
| } else if (typ == EventTypeFuncEnter) { |
| if (stack.Size() < pos + 2) |
| stack.Resize(pos + 2); |
| stack[pos++] = pc; |
| } else if (typ == EventTypeFuncExit) { |
| if (pos > 0) |
| pos--; |
| } |
| if (mset) { |
| if (typ == EventTypeLock) { |
| mset->Add(pc, true, epoch0 + i); |
| } else if (typ == EventTypeUnlock) { |
| mset->Del(pc, true); |
| } else if (typ == EventTypeRLock) { |
| mset->Add(pc, false, epoch0 + i); |
| } else if (typ == EventTypeRUnlock) { |
| mset->Del(pc, false); |
| } |
| } |
| for (uptr j = 0; j <= pos; j++) |
| DPrintf2(" #%zu: %zx\n", j, stack[j]); |
| } |
| if (pos == 0 && stack[0] == 0) |
| return; |
| pos++; |
| stk->Init(&stack[0], pos); |
| ExtractTagFromStack(stk, tag); |
| } |
| |
| namespace v3 { |
| |
| // Replays the trace up to last_pos position in the last part |
| // or up to the provided epoch/sid (whichever is earlier) |
| // and calls the provided function f for each event. |
| template <typename Func> |
| void TraceReplay(Trace *trace, TracePart *last, Event *last_pos, Sid sid, |
| Epoch epoch, Func f) { |
| TracePart *part = trace->parts.Front(); |
| Sid ev_sid = kFreeSid; |
| Epoch ev_epoch = kEpochOver; |
| for (;;) { |
| DCHECK_EQ(part->trace, trace); |
| // Note: an event can't start in the last element. |
| // Since an event can take up to 2 elements, |
| // we ensure we have at least 2 before adding an event. |
| Event *end = &part->events[TracePart::kSize - 1]; |
| if (part == last) |
| end = last_pos; |
| for (Event *evp = &part->events[0]; evp < end; evp++) { |
| Event *evp0 = evp; |
| if (!evp->is_access && !evp->is_func) { |
| switch (evp->type) { |
| case EventType::kTime: { |
| auto *ev = reinterpret_cast<EventTime *>(evp); |
| ev_sid = static_cast<Sid>(ev->sid); |
| ev_epoch = static_cast<Epoch>(ev->epoch); |
| if (ev_sid == sid && ev_epoch > epoch) |
| return; |
| break; |
| } |
| case EventType::kAccessExt: |
| FALLTHROUGH; |
| case EventType::kAccessRange: |
| FALLTHROUGH; |
| case EventType::kLock: |
| FALLTHROUGH; |
| case EventType::kRLock: |
| // These take 2 Event elements. |
| evp++; |
| break; |
| case EventType::kUnlock: |
| // This takes 1 Event element. |
| break; |
| } |
| } |
| CHECK_NE(ev_sid, kFreeSid); |
| CHECK_NE(ev_epoch, kEpochOver); |
| f(ev_sid, ev_epoch, evp0); |
| } |
| if (part == last) |
| return; |
| part = trace->parts.Next(part); |
| CHECK(part); |
| } |
| CHECK(0); |
| } |
| |
| static void RestoreStackMatch(VarSizeStackTrace *pstk, MutexSet *pmset, |
| Vector<uptr> *stack, MutexSet *mset, uptr pc, |
| bool *found) { |
| DPrintf2(" MATCHED\n"); |
| *pmset = *mset; |
| stack->PushBack(pc); |
| pstk->Init(&(*stack)[0], stack->Size()); |
| stack->PopBack(); |
| *found = true; |
| } |
| |
| // Checks if addr1|size1 is fully contained in addr2|size2. |
| // We check for fully contained instread of just overlapping |
| // because a memory access is always traced once, but can be |
| // split into multiple accesses in the shadow. |
| static constexpr bool IsWithinAccess(uptr addr1, uptr size1, uptr addr2, |
| uptr size2) { |
| return addr1 >= addr2 && addr1 + size1 <= addr2 + size2; |
| } |
| |
| // Replays the trace of thread tid up to the target event identified |
| // by sid/epoch/addr/size/typ and restores and returns stack, mutex set |
| // and tag for that event. If there are multiple such events, it returns |
| // the last one. Returns false if the event is not present in the trace. |
| bool RestoreStack(Tid tid, EventType type, Sid sid, Epoch epoch, uptr addr, |
| uptr size, AccessType typ, VarSizeStackTrace *pstk, |
| MutexSet *pmset, uptr *ptag) { |
| // This function restores stack trace and mutex set for the thread/epoch. |
| // It does so by getting stack trace and mutex set at the beginning of |
| // trace part, and then replaying the trace till the given epoch. |
| DPrintf2("RestoreStack: tid=%u sid=%u@%u addr=0x%zx/%zu typ=%x\n", tid, |
| static_cast<int>(sid), static_cast<int>(epoch), addr, size, |
| static_cast<int>(typ)); |
| ctx->slot_mtx.CheckLocked(); // needed to prevent trace part recycling |
| ctx->thread_registry.CheckLocked(); |
| ThreadContext *tctx = |
| static_cast<ThreadContext *>(ctx->thread_registry.GetThreadLocked(tid)); |
| Trace *trace = &tctx->trace; |
| // Snapshot first/last parts and the current position in the last part. |
| TracePart *first_part; |
| TracePart *last_part; |
| Event *last_pos; |
| { |
| Lock lock(&trace->mtx); |
| first_part = trace->parts.Front(); |
| if (!first_part) |
| return false; |
| last_part = trace->parts.Back(); |
| last_pos = trace->final_pos; |
| if (tctx->thr) |
| last_pos = (Event *)atomic_load_relaxed(&tctx->thr->trace_pos); |
| } |
| // Too large for stack. |
| alignas(MutexSet) static char mset_storage[sizeof(MutexSet)]; |
| MutexSet &mset = *new (mset_storage) MutexSet(); |
| Vector<uptr> stack; |
| uptr prev_pc = 0; |
| bool found = false; |
| bool is_read = typ & kAccessRead; |
| bool is_atomic = typ & kAccessAtomic; |
| bool is_free = typ & kAccessFree; |
| TraceReplay( |
| trace, last_part, last_pos, sid, epoch, |
| [&](Sid ev_sid, Epoch ev_epoch, Event *evp) { |
| bool match = ev_sid == sid && ev_epoch == epoch; |
| if (evp->is_access) { |
| if (evp->is_func == 0 && evp->type == EventType::kAccessExt && |
| evp->_ == 0) // NopEvent |
| return; |
| auto *ev = reinterpret_cast<EventAccess *>(evp); |
| uptr ev_addr = RestoreAddr(ev->addr); |
| uptr ev_size = 1 << ev->size_log; |
| uptr ev_pc = |
| prev_pc + ev->pc_delta - (1 << (EventAccess::kPCBits - 1)); |
| prev_pc = ev_pc; |
| DPrintf2(" Access: pc=0x%zx addr=0x%zx/%zu type=%u/%u\n", ev_pc, |
| ev_addr, ev_size, ev->is_read, ev->is_atomic); |
| if (match && type == EventType::kAccessExt && |
| IsWithinAccess(addr, size, ev_addr, ev_size) && |
| is_read == ev->is_read && is_atomic == ev->is_atomic && !is_free) |
| RestoreStackMatch(pstk, pmset, &stack, &mset, ev_pc, &found); |
| return; |
| } |
| if (evp->is_func) { |
| auto *ev = reinterpret_cast<EventFunc *>(evp); |
| if (ev->pc) { |
| DPrintf2(" FuncEnter: pc=0x%llx\n", ev->pc); |
| stack.PushBack(ev->pc); |
| } else { |
| DPrintf2(" FuncExit\n"); |
| CHECK(stack.Size()); |
| stack.PopBack(); |
| } |
| return; |
| } |
| switch (evp->type) { |
| case EventType::kAccessExt: { |
| auto *ev = reinterpret_cast<EventAccessExt *>(evp); |
| uptr ev_addr = RestoreAddr(ev->addr); |
| uptr ev_size = 1 << ev->size_log; |
| prev_pc = ev->pc; |
| DPrintf2(" AccessExt: pc=0x%llx addr=0x%zx/%zu type=%u/%u\n", |
| ev->pc, ev_addr, ev_size, ev->is_read, ev->is_atomic); |
| if (match && type == EventType::kAccessExt && |
| IsWithinAccess(addr, size, ev_addr, ev_size) && |
| is_read == ev->is_read && is_atomic == ev->is_atomic && |
| !is_free) |
| RestoreStackMatch(pstk, pmset, &stack, &mset, ev->pc, &found); |
| break; |
| } |
| case EventType::kAccessRange: { |
| auto *ev = reinterpret_cast<EventAccessRange *>(evp); |
| uptr ev_addr = RestoreAddr(ev->addr); |
| uptr ev_size = |
| (ev->size_hi << EventAccessRange::kSizeLoBits) + ev->size_lo; |
| uptr ev_pc = RestoreAddr(ev->pc); |
| prev_pc = ev_pc; |
| DPrintf2(" Range: pc=0x%zx addr=0x%zx/%zu type=%u/%u\n", ev_pc, |
| ev_addr, ev_size, ev->is_read, ev->is_free); |
| if (match && type == EventType::kAccessExt && |
| IsWithinAccess(addr, size, ev_addr, ev_size) && |
| is_read == ev->is_read && !is_atomic && is_free == ev->is_free) |
| RestoreStackMatch(pstk, pmset, &stack, &mset, ev_pc, &found); |
| break; |
| } |
| case EventType::kLock: |
| FALLTHROUGH; |
| case EventType::kRLock: { |
| auto *ev = reinterpret_cast<EventLock *>(evp); |
| bool is_write = ev->type == EventType::kLock; |
| uptr ev_addr = RestoreAddr(ev->addr); |
| uptr ev_pc = RestoreAddr(ev->pc); |
| StackID stack_id = |
| (ev->stack_hi << EventLock::kStackIDLoBits) + ev->stack_lo; |
| DPrintf2(" Lock: pc=0x%zx addr=0x%zx stack=%u write=%d\n", ev_pc, |
| ev_addr, stack_id, is_write); |
| mset.AddAddr(ev_addr, stack_id, is_write); |
| // Events with ev_pc == 0 are written to the beginning of trace |
| // part as initial mutex set (are not real). |
| if (match && type == EventType::kLock && addr == ev_addr && ev_pc) |
| RestoreStackMatch(pstk, pmset, &stack, &mset, ev_pc, &found); |
| break; |
| } |
| case EventType::kUnlock: { |
| auto *ev = reinterpret_cast<EventUnlock *>(evp); |
| uptr ev_addr = RestoreAddr(ev->addr); |
| DPrintf2(" Unlock: addr=0x%zx\n", ev_addr); |
| mset.DelAddr(ev_addr); |
| break; |
| } |
| case EventType::kTime: |
| // TraceReplay already extracted sid/epoch from it, |
| // nothing else to do here. |
| break; |
| } |
| }); |
| ExtractTagFromStack(pstk, ptag); |
| return found; |
| } |
| |
| } // namespace v3 |
| |
| bool RacyStacks::operator==(const RacyStacks &other) const { |
| if (hash[0] == other.hash[0] && hash[1] == other.hash[1]) |
| return true; |
| if (hash[0] == other.hash[1] && hash[1] == other.hash[0]) |
| return true; |
| return false; |
| } |
| |
| static bool FindRacyStacks(const RacyStacks &hash) { |
| for (uptr i = 0; i < ctx->racy_stacks.Size(); i++) { |
| if (hash == ctx->racy_stacks[i]) { |
| VPrintf(2, "ThreadSanitizer: suppressing report as doubled (stack)\n"); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool HandleRacyStacks(ThreadState *thr, VarSizeStackTrace traces[2]) { |
| if (!flags()->suppress_equal_stacks) |
| return false; |
| RacyStacks hash; |
| hash.hash[0] = md5_hash(traces[0].trace, traces[0].size * sizeof(uptr)); |
| hash.hash[1] = md5_hash(traces[1].trace, traces[1].size * sizeof(uptr)); |
| { |
| ReadLock lock(&ctx->racy_mtx); |
| if (FindRacyStacks(hash)) |
| return true; |
| } |
| Lock lock(&ctx->racy_mtx); |
| if (FindRacyStacks(hash)) |
| return true; |
| ctx->racy_stacks.PushBack(hash); |
| return false; |
| } |
| |
| static bool FindRacyAddress(const RacyAddress &ra0) { |
| for (uptr i = 0; i < ctx->racy_addresses.Size(); i++) { |
| RacyAddress ra2 = ctx->racy_addresses[i]; |
| uptr maxbeg = max(ra0.addr_min, ra2.addr_min); |
| uptr minend = min(ra0.addr_max, ra2.addr_max); |
| if (maxbeg < minend) { |
| VPrintf(2, "ThreadSanitizer: suppressing report as doubled (addr)\n"); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool HandleRacyAddress(ThreadState *thr, uptr addr_min, uptr addr_max) { |
| if (!flags()->suppress_equal_addresses) |
| return false; |
| RacyAddress ra0 = {addr_min, addr_max}; |
| { |
| ReadLock lock(&ctx->racy_mtx); |
| if (FindRacyAddress(ra0)) |
| return true; |
| } |
| Lock lock(&ctx->racy_mtx); |
| if (FindRacyAddress(ra0)) |
| return true; |
| ctx->racy_addresses.PushBack(ra0); |
| return false; |
| } |
| |
| bool OutputReport(ThreadState *thr, const ScopedReport &srep) { |
| // These should have been checked in ShouldReport. |
| // It's too late to check them here, we have already taken locks. |
| CHECK(flags()->report_bugs); |
| CHECK(!thr->suppress_reports); |
| atomic_store_relaxed(&ctx->last_symbolize_time_ns, NanoTime()); |
| const ReportDesc *rep = srep.GetReport(); |
| CHECK_EQ(thr->current_report, nullptr); |
| thr->current_report = rep; |
| Suppression *supp = 0; |
| uptr pc_or_addr = 0; |
| for (uptr i = 0; pc_or_addr == 0 && i < rep->mops.Size(); i++) |
| pc_or_addr = IsSuppressed(rep->typ, rep->mops[i]->stack, &supp); |
| for (uptr i = 0; pc_or_addr == 0 && i < rep->stacks.Size(); i++) |
| pc_or_addr = IsSuppressed(rep->typ, rep->stacks[i], &supp); |
| for (uptr i = 0; pc_or_addr == 0 && i < rep->threads.Size(); i++) |
| pc_or_addr = IsSuppressed(rep->typ, rep->threads[i]->stack, &supp); |
| for (uptr i = 0; pc_or_addr == 0 && i < rep->locs.Size(); i++) |
| pc_or_addr = IsSuppressed(rep->typ, rep->locs[i], &supp); |
| if (pc_or_addr != 0) { |
| Lock lock(&ctx->fired_suppressions_mtx); |
| FiredSuppression s = {srep.GetReport()->typ, pc_or_addr, supp}; |
| ctx->fired_suppressions.push_back(s); |
| } |
| { |
| bool old_is_freeing = thr->is_freeing; |
| thr->is_freeing = false; |
| bool suppressed = OnReport(rep, pc_or_addr != 0); |
| thr->is_freeing = old_is_freeing; |
| if (suppressed) { |
| thr->current_report = nullptr; |
| return false; |
| } |
| } |
| PrintReport(rep); |
| __tsan_on_report(rep); |
| ctx->nreported++; |
| if (flags()->halt_on_error) |
| Die(); |
| thr->current_report = nullptr; |
| return true; |
| } |
| |
| bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace) { |
| ReadLock lock(&ctx->fired_suppressions_mtx); |
| for (uptr k = 0; k < ctx->fired_suppressions.size(); k++) { |
| if (ctx->fired_suppressions[k].type != type) |
| continue; |
| for (uptr j = 0; j < trace.size; j++) { |
| FiredSuppression *s = &ctx->fired_suppressions[k]; |
| if (trace.trace[j] == s->pc_or_addr) { |
| if (s->supp) |
| atomic_fetch_add(&s->supp->hit_count, 1, memory_order_relaxed); |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| static bool IsFiredSuppression(Context *ctx, ReportType type, uptr addr) { |
| ReadLock lock(&ctx->fired_suppressions_mtx); |
| for (uptr k = 0; k < ctx->fired_suppressions.size(); k++) { |
| if (ctx->fired_suppressions[k].type != type) |
| continue; |
| FiredSuppression *s = &ctx->fired_suppressions[k]; |
| if (addr == s->pc_or_addr) { |
| if (s->supp) |
| atomic_fetch_add(&s->supp->hit_count, 1, memory_order_relaxed); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool RaceBetweenAtomicAndFree(ThreadState *thr) { |
| Shadow s0(thr->racy_state[0]); |
| Shadow s1(thr->racy_state[1]); |
| CHECK(!(s0.IsAtomic() && s1.IsAtomic())); |
| if (!s0.IsAtomic() && !s1.IsAtomic()) |
| return true; |
| if (s0.IsAtomic() && s1.IsFreed()) |
| return true; |
| if (s1.IsAtomic() && thr->is_freeing) |
| return true; |
| return false; |
| } |
| |
| void ReportRace(ThreadState *thr) { |
| CheckedMutex::CheckNoLocks(); |
| |
| // Symbolizer makes lots of intercepted calls. If we try to process them, |
| // at best it will cause deadlocks on internal mutexes. |
| ScopedIgnoreInterceptors ignore; |
| |
| if (!ShouldReport(thr, ReportTypeRace)) |
| return; |
| if (!flags()->report_atomic_races && !RaceBetweenAtomicAndFree(thr)) |
| return; |
| |
| bool freed = false; |
| { |
| Shadow s(thr->racy_state[1]); |
| freed = s.GetFreedAndReset(); |
| thr->racy_state[1] = s.raw(); |
| } |
| |
| uptr addr = ShadowToMem(thr->racy_shadow_addr); |
| uptr addr_min = 0; |
| uptr addr_max = 0; |
| { |
| uptr a0 = addr + Shadow(thr->racy_state[0]).addr0(); |
| uptr a1 = addr + Shadow(thr->racy_state[1]).addr0(); |
| uptr e0 = a0 + Shadow(thr->racy_state[0]).size(); |
| uptr e1 = a1 + Shadow(thr->racy_state[1]).size(); |
| addr_min = min(a0, a1); |
| addr_max = max(e0, e1); |
| if (IsExpectedReport(addr_min, addr_max - addr_min)) |
| return; |
| } |
| if (HandleRacyAddress(thr, addr_min, addr_max)) |
| return; |
| |
| ReportType typ = ReportTypeRace; |
| if (thr->is_vptr_access && freed) |
| typ = ReportTypeVptrUseAfterFree; |
| else if (thr->is_vptr_access) |
| typ = ReportTypeVptrRace; |
| else if (freed) |
| typ = ReportTypeUseAfterFree; |
| |
| if (IsFiredSuppression(ctx, typ, addr)) |
| return; |
| |
| const uptr kMop = 2; |
| VarSizeStackTrace traces[kMop]; |
| uptr tags[kMop] = {kExternalTagNone}; |
| uptr toppc = TraceTopPC(thr); |
| if (toppc >> kEventPCBits) { |
| // This is a work-around for a known issue. |
| // The scenario where this happens is rather elaborate and requires |
| // an instrumented __sanitizer_report_error_summary callback and |
| // a __tsan_symbolize_external callback and a race during a range memory |
| // access larger than 8 bytes. MemoryAccessRange adds the current PC to |
| // the trace and starts processing memory accesses. A first memory access |
| // triggers a race, we report it and call the instrumented |
| // __sanitizer_report_error_summary, which adds more stuff to the trace |
| // since it is intrumented. Then a second memory access in MemoryAccessRange |
| // also triggers a race and we get here and call TraceTopPC to get the |
| // current PC, however now it contains some unrelated events from the |
| // callback. Most likely, TraceTopPC will now return a EventTypeFuncExit |
| // event. Later we subtract -1 from it (in GetPreviousInstructionPc) |
| // and the resulting PC has kExternalPCBit set, so we pass it to |
| // __tsan_symbolize_external_ex. __tsan_symbolize_external_ex is within its |
| // rights to crash since the PC is completely bogus. |
| // test/tsan/double_race.cpp contains a test case for this. |
| toppc = 0; |
| } |
| ObtainCurrentStack(thr, toppc, &traces[0], &tags[0]); |
| if (IsFiredSuppression(ctx, typ, traces[0])) |
| return; |
| |
| // MutexSet is too large to live on stack. |
| Vector<u64> mset_buffer; |
| mset_buffer.Resize(sizeof(MutexSet) / sizeof(u64) + 1); |
| MutexSet *mset2 = new(&mset_buffer[0]) MutexSet(); |
| |
| Shadow s2(thr->racy_state[1]); |
| RestoreStack(s2.tid(), s2.epoch(), &traces[1], mset2, &tags[1]); |
| if (IsFiredSuppression(ctx, typ, traces[1])) |
| return; |
| |
| if (HandleRacyStacks(thr, traces)) |
| return; |
| |
| // If any of the accesses has a tag, treat this as an "external" race. |
| uptr tag = kExternalTagNone; |
| for (uptr i = 0; i < kMop; i++) { |
| if (tags[i] != kExternalTagNone) { |
| typ = ReportTypeExternalRace; |
| tag = tags[i]; |
| break; |
| } |
| } |
| |
| ThreadRegistryLock l0(&ctx->thread_registry); |
| ScopedReport rep(typ, tag); |
| for (uptr i = 0; i < kMop; i++) { |
| Shadow s(thr->racy_state[i]); |
| rep.AddMemoryAccess(addr, tags[i], s, traces[i], |
| i == 0 ? &thr->mset : mset2); |
| } |
| |
| for (uptr i = 0; i < kMop; i++) { |
| FastState s(thr->racy_state[i]); |
| ThreadContext *tctx = static_cast<ThreadContext *>( |
| ctx->thread_registry.GetThreadLocked(s.tid())); |
| if (s.epoch() < tctx->epoch0 || s.epoch() > tctx->epoch1) |
| continue; |
| rep.AddThread(tctx); |
| } |
| |
| rep.AddLocation(addr_min, addr_max - addr_min); |
| |
| #if !SANITIZER_GO |
| { |
| Shadow s(thr->racy_state[1]); |
| if (s.epoch() <= thr->last_sleep_clock.get(s.tid())) |
| rep.AddSleep(thr->last_sleep_stack_id); |
| } |
| #endif |
| |
| OutputReport(thr, rep); |
| } |
| |
| void PrintCurrentStack(ThreadState *thr, uptr pc) { |
| VarSizeStackTrace trace; |
| ObtainCurrentStack(thr, pc, &trace); |
| PrintStack(SymbolizeStack(trace)); |
| } |
| |
| // Always inlining PrintCurrentStackSlow, because LocatePcInTrace assumes |
| // __sanitizer_print_stack_trace exists in the actual unwinded stack, but |
| // tail-call to PrintCurrentStackSlow breaks this assumption because |
| // __sanitizer_print_stack_trace disappears after tail-call. |
| // However, this solution is not reliable enough, please see dvyukov's comment |
| // http://reviews.llvm.org/D19148#406208 |
| // Also see PR27280 comment 2 and 3 for breaking examples and analysis. |
| ALWAYS_INLINE USED void PrintCurrentStackSlow(uptr pc) { |
| #if !SANITIZER_GO |
| uptr bp = GET_CURRENT_FRAME(); |
| auto *ptrace = New<BufferedStackTrace>(); |
| ptrace->Unwind(pc, bp, nullptr, false); |
| |
| for (uptr i = 0; i < ptrace->size / 2; i++) { |
| uptr tmp = ptrace->trace_buffer[i]; |
| ptrace->trace_buffer[i] = ptrace->trace_buffer[ptrace->size - i - 1]; |
| ptrace->trace_buffer[ptrace->size - i - 1] = tmp; |
| } |
| PrintStack(SymbolizeStack(*ptrace)); |
| #endif |
| } |
| |
| } // namespace __tsan |
| |
| using namespace __tsan; |
| |
| extern "C" { |
| SANITIZER_INTERFACE_ATTRIBUTE |
| void __sanitizer_print_stack_trace() { |
| PrintCurrentStackSlow(StackTrace::GetCurrentPc()); |
| } |
| } // extern "C" |