blob: 37b804de655564cca9a7a6c6258cbc4e0593cc8d [file] [log] [blame]
{ Process this file with sppp.awk }
{ transput.a68.in - Standard transput.
Copyright (C) 2025 Jose E. Marchesi
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License
and a copy of the GCC Runtime Library Exception along with this
program; see the files COPYING3 and COPYING.RUNTIME respectively.
If not, see <http://www.gnu.org/licenses/>. }
module Transput =
def
{ 10.3.2.1. Conversion routines. }
mode Number = union (
{iter L {short short} {short} {} {long} {long long}}
{L} int
{reti {,}}
,
{iter L {} {long} {long long}}
{L} real
{reti {,}}
);
pub proc whole = (Number v, int width) string:
case v in
{iter L {short short} {short} {} {long} {long long}}
{iter L_ {short_short_} {short_} {} {long_} {long_long_}}
({L} int x):
(int length := ABS width - (x < {L} 0 OR width > 0 | 1 | 0),
{L} int n := ABS x;
if width = 0
then {L} int m := n; length := 0;
while m %:= {L} 10; length +:= 1; m /= {L} 0
do ~ od
fi;
string s := subwhole (n, length);
if length = 0 OR char_in_string (errorchar, loc int, s)
then ABS width * errorchar
else (x < {L} 0 | "-" |: width > 0 | "+" | "") +=: s;
(width /= 0 | (ABS width - UPB s) * " " +=: s);
s
fi),
({L} real x): fixed (x, width, 0)
{reti {,}}
esac;
pub proc fixed = (Number v, int width, after) string:
case v in
{iter L {} {long} {long long}}
({L} real x):
if int length := ABS width - (x < {L} 0 OR width > 0 | 1 | 0);
after >= 0 AND (length > after OR width = 0)
then {L} real y = ABS x;
if width = 0
then length := (after = 0 | 1 | 0);
while y + {L} .5 * {L} .1 ** after >= {L} 10 ** length
do length +:= 1 od;
length +:= (after = 0 | 0 | after + 1)
fi;
string s := subfixed (y, length, after);
if ~char_in_string (errorchar, loc int, s)
then (length > UPB s AND y < {L} 1.0 | "0" +=: s);
(x < {L} 0 | "-" |: width > 0 | "+" | "") +=: s;
(width /= 0 | (ABS width - UPB s) * " " +=: s);
s
elif after > 0
then fixed (v, width, after - 1)
else ABS width * errorchar
fi
else { XXX undefined } skip; ABS width * errorchar
fi,
({L} int x): fixed ({L} real (x), width, after)
{reti {,}}
esac;
pub proc float = (Number v, int width, after, exp) string:
case v in
{iter L {} {long} {long long}}
{iter L_ {} {long_} {long_long_}}
({L} real x):
if int before = ABS width - ABS exp - (after /= 0 | after+1 | 0) - 2;
SIGN before + SIGN after > 0
then string s, {L} real y := ABS x, int p := 0;
{L_}standardize (y, before, after, p);
s := fixed (SIGN (x * y), SIGN width * (ABS width - ABS exp - 1),
after) + "*^" + whole (p, exp);
if exp = 0 OR char_in_string (errorchar, loc int, s)
then float (x, width, (after /= 0 | after-1 | 0),
(exp > 0 | exp+1 | exp-1))
else s
fi
else { XXX undefined } skip; ABS width * errorchar
fi,
({L} int x): float ({L} real (x), width, after, exp)
{reti {,}}
esac;
{ Returns a string of maximum length `width' containing a decimal
representation of the positive integer `v'. }
proc subwhole = (Number v, int width) string:
case v in
{iter L {short short} {short} {} {long} {long long}}
{iter S {LENG LENG} {LENG} {} {SHORTEN} {SHORTEN SHORTEN}}
({L} int x):
begin string s, {L} int n := x;
while dig_char ({S} (n MOD {L} 10)) +=: s;
n %:= {L} 10; n /= {L} 0
do ~ od;
(UPB s > width | width * errorchar | s)
end
{reti {,}}
esac;
{ Returns a string of maximum length `width' containing a rounded
decimal representation of the positive real number `v'; if
`after' is greater than zero, this string contains a decimal
point followed by `after' digits. }
proc subfixed = (Number v, int width, after) string:
case v in
{iter L {} {long} {long long}}
{iter K {} {LENG} {LENG LENG}}
{iter S {} {SHORTEN} {SHORTEN SHORTEN}}
({L} real x):
begin string s, int before := 0;
{L} real y := x + {L} .5 * {L} .1 ** after;
proc choosedig = (ref {L} real y) char:
dig_char ((int c := {S} ENTIER (y *:= {L} 10.0); (c > 9 | c := 9);
y -:= {K} c; c));
while y >= {L} 10.0 ** before do before +:= 1 od;
y /:= {L} 10.0 ** before;
to before do s +:= choosedig (y) od;
(after > 0 | s +:= ".");
to after do s +:= choosedig (y) od;
(UPB s > width | width * errorchar | s)
end
{reti {,}}
esac;
{ Adjusts the value of `y' so that it may be transput according to
the format $ n(before)d, n(after)d $; `p' is set so that y * 10
** p is equal to the original value of `y'. }
{iter L {} {long} {long long}}
{iter L_ {} {long_} {long_long_}}
proc {L_}standardize = (ref {L} real y, int before, after, ref int p) void:
begin
{L} real g = {L} 10.0 ** before; {L} real h = g * {L} .1;
while y >= g do y *:= {L} .1; p +:= 1 od;
(y /= {L} 0.0 | while y < h do y *:= {L} 10.0; p -:= 1 od);
(y + {L} .5 * {L} .1 ** after >= g | y := h; p +:= 1)
end;
{reti}
proc dig_char = (int x) char: "0123456789abcdef"[x+1];
{ Returns true if the absolute value of the result is
<= L max int }
{iter L {short short} {short} {} {long} {long long}}
{iter K {SHORTEN SHORTEN} {SHORTEN} {} {LENG} {LENG LENG}}
{iter L_ {short_short_} {short_} {} {long_} {long_long_}}
proc string_to_{L_}int = (string s, int radix, ref {L} int i) bool:
begin
{L} int lr = {K} radix; bool safe := true;
{L} int n := {L} 0, {L} int m = {L_}max_int % lr;
{L} int m1 = {L_}max_int - m * lr;
for i from 2 to UPB s
while {L} int dig = {K} char_dig (s[i]);
safe := n < m OR n = m AND dig <= m1
do n := n * lr + dig od;
if safe then i := (s[1] = "+" | n | -n); true else false fi
end;
{reti}
{ Returns true if the absolute value of the result is <= L max
real. }
{iter L {} {long} {long long}}
{iter K {} {LENG} {LENG LENG}}
{iter S {} {SHORTEN} {SHORTEN SHORTEN}}
{iter L_ {} {long_} {long_long_}}
pub proc string_to_{L_}real = (string s, ref {L} real r) bool:
begin
int e := UPB s + 1;
char_in_string ("^" { XXX unicode 10^ }, e, s);
int p := e; char_in_string (".", p, s);
int j := 1, length := 0, {L} real x := {L} 0.0;
{ Skip leading zeroes: }
for i from 2 to e - 1
while s[i] = "0" OR s[i] = "." OR s[i] = "_."
do j := i od;
for i from j + 1 to e - 1 while length < {L_}real_width
do
if s[i] /= "."
then x := x * {L} 10.0 + {K} char_dig (s[j:=i]); length +:= 1
fi { all significant digits converted. }
od;
{ Set preliminary exponent: }
int exp := (p > j | p - j - 1 | p - j), expart := 0;
{ Convert exponent part: }
bool safe := if e < UPB s
then {L} int tmp := {K} expart;
bool b = string_to_{L_}int (s[e+1:], 10, tmp);
expart = {S} tmp;
b
else true
fi;
{ Prepare a representation of L max real to compare with the L
real value to be delivered: }
{L} real max_stag := {L_}max_real, int max_exp := 0;
{L_}standardize (max_stag, length, 0, max_exp); exp +:= expart;
if ~safe OR (exp > max_exp OR exp = max_exp AND x > max_stag)
then false
else r := (s[1] = "+" | x | -x) * {L} 10.0 ** exp; true
fi
end;
{reti}
proc char_dig = (char x) int:
(x = "." | 0 | int i; char_in_string (x,i,"0123456789abcdef"); i-1);
pub proc char_in_string = (char c, ref int i, string s) bool:
begin bool found := false;
for k from LWB s to UPB s while ~found
do (c = s[k] | i := k; found := true) od;
found
end;
{ The smallest integral value such that `L max int' may be
converted without error using the pattern n(L int width)d }
{iter L {} {long} {long long}}
{iter L_ {} {long_} {long_long_}}
pub int {L_}int_width =
(int c := 1; while {L} 10 ** (c - 1) < {L} .1 * {L_}max_int do c +:= 1 od;
c);
{reti}
{ The smallest integral value such that different string are
produced by conversion of `1.0' and of `1.0 + L small real'
using the pattern d .n(L real width - 1)d }
{iter L {} {long} {long long}}
{iter L_ {} {long_} {long_long_}}
{iter S {} {SHORTEN} {SHORTEN SHORTEN}}
pub int {L_}real_width = 1 - {S} ENTIER ({L_}ln ({L_}small_real) / {L_}ln ({L} 10));
{reti}
{ The smallest integral value such that `L max real' may be
converted without error using the pattern
d .n(L real width - 1)d e n(L exp with)d }
{iter L {} {long} {long long}}
{iter L_ {} {long_} {long_long_}}
{iter S {} {SHORTEN} {SHORTEN SHORTEN}}
pub int {L_}exp_width =
1 + {S} ENTIER ({L_}ln ({L_}ln ({L_}max_real) / {L_}ln ({L} 10)) / {L_}ln ({L} 10));
{reti}
skip
fed