| // { dg-do run } |
| // { dg-additional-options "-std=c++20" } |
| |
| #include <cmath> |
| #include <numbers> |
| |
| #define FP_EQUAL(x,y) (std::abs ((x) - (y)) < 1E-6) |
| |
| #pragma omp declare target |
| template<typename T> bool test_basic () |
| { |
| T x = -3.456789; |
| T y = 1.234567; |
| T z = 5.678901; |
| |
| if (std::abs (x) != -x) |
| return false; |
| if (!FP_EQUAL (std::trunc (x / y) * y + std::fmod (x, y), x)) |
| return false; |
| if (!FP_EQUAL (x - std::round (x / y) * y, std::remainder (x, y))) |
| return false; |
| if (!FP_EQUAL (std::fma (x, y, z), x * y + z)) |
| return false; |
| if (std::fmax (x, y) != (x > y ? x : y)) |
| return false; |
| if (std::fmin (x, y) != (x < y ? x : y)) |
| return false; |
| if (std::fdim (x, y) != std::max(x - y, (T) 0.0)) |
| return false; |
| if (std::fdim (y, x) != std::max(y - x, (T) 0.0)) |
| return false; |
| return true; |
| } |
| |
| template<typename T> bool test_exp () |
| { |
| T x = -4.567890; |
| T y = 2.345678; |
| |
| if (!FP_EQUAL (std::exp (x), std::pow (std::numbers::e_v<T>, x))) |
| return false; |
| if (!FP_EQUAL (std::exp2 (y), std::pow ((T) 2.0, y))) |
| return false; |
| if (!FP_EQUAL (std::expm1 (y), std::exp (y) - (T) 1.0)) |
| return false; |
| if (!FP_EQUAL (std::log (std::exp (x)), x)) |
| return false; |
| if (!FP_EQUAL (std::log10 (std::pow ((T) 10.0, y)), y)) |
| return false; |
| if (!FP_EQUAL (std::log2 (std::exp2 (y)), y)) |
| return false; |
| if (!FP_EQUAL (std::log1p (std::expm1 (y)), y)) |
| return false; |
| return true; |
| } |
| |
| template<typename T> bool test_power () |
| { |
| T x = 7.234251; |
| T y = 0.340128; |
| |
| if (!FP_EQUAL (std::log (std::pow (x, y)) / std::log (x), y)) |
| return false; |
| if (!FP_EQUAL (std::sqrt (x) * std::sqrt (x), x)) |
| return false; |
| if (!FP_EQUAL (std::cbrt (x) * std::cbrt (x) * std::cbrt (x), x)) |
| return false; |
| if (!FP_EQUAL (std::hypot (x, y), std::sqrt (x * x + y * y))) |
| return false; |
| return true; |
| } |
| |
| template<typename T> bool test_trig () |
| { |
| T theta = std::numbers::pi / 4; |
| T phi = std::numbers::pi / 6; |
| |
| if (!FP_EQUAL (std::sin (theta), std::sqrt ((T) 2) / 2)) |
| return false; |
| if (!FP_EQUAL (std::sin (phi), 0.5)) |
| return false; |
| if (!FP_EQUAL (std::cos (theta), std::sqrt ((T) 2) / 2)) |
| return false; |
| if (!FP_EQUAL (std::cos (phi), std::sqrt ((T) 3) / 2)) |
| return false; |
| if (!FP_EQUAL (std::tan (theta), 1.0)) |
| return false; |
| if (!FP_EQUAL (std::tan (phi), std::sqrt ((T) 3) / 3)) |
| return false; |
| |
| T x = 0.33245623; |
| |
| if (!FP_EQUAL (std::asin (std::sin (x)), x)) |
| return false; |
| if (!FP_EQUAL (std::acos (std::cos (x)), x)) |
| return false; |
| if (!FP_EQUAL (std::atan (std::tan (x)), x)) |
| return false; |
| if (!FP_EQUAL (std::atan2 (std::sin (x), std::cos (x)), x)) |
| return false; |
| return true; |
| } |
| |
| template<typename T> bool test_hyperbolic () |
| { |
| T x = 0.7423532; |
| |
| if (!FP_EQUAL (std::sinh (x), (std::exp (x) - std::exp (-x)) / (T) 2.0)) |
| return false; |
| if (!FP_EQUAL (std::cosh (x), (std::exp (x) + std::exp (-x)) / (T) 2.0)) |
| return false; |
| if (!FP_EQUAL (std::tanh (x), std::sinh (x) / std::cosh (x))) |
| return false; |
| if (!FP_EQUAL (std::asinh (std::sinh (x)), x)) |
| return false; |
| if (!FP_EQUAL (std::acosh (std::cosh (x)), x)) |
| return false; |
| if (!FP_EQUAL (std::atanh (std::tanh (x)), x)) |
| return false; |
| return true; |
| } |
| |
| template<typename T> bool test_erf () |
| { |
| if (!FP_EQUAL (std::erf ((T) 0), 0)) |
| return false; |
| if (!FP_EQUAL (std::erf ((T) INFINITY), 1)) |
| return false; |
| if (!FP_EQUAL (std::erf ((T) -INFINITY), -1)) |
| return false; |
| |
| if (!FP_EQUAL (std::erfc (0), 1)) |
| return false; |
| if (!FP_EQUAL (std::erfc ((T) INFINITY), 0)) |
| return false; |
| if (!FP_EQUAL (std::erfc ((T) -INFINITY), 2)) |
| return false; |
| |
| return true; |
| } |
| |
| template<typename T> bool test_gamma () |
| { |
| if (!FP_EQUAL (std::tgamma ((T) 5), 4*3*2*1)) |
| return false; |
| if (!FP_EQUAL (std::tgamma ((T) 0.5), std::sqrt (std::numbers::pi_v<T>))) |
| return false; |
| if (!FP_EQUAL (std::tgamma ((T) -0.5), (T) -2 * std::sqrt (std::numbers::pi_v<T>))) |
| return false; |
| if (!FP_EQUAL (std::tgamma ((T) 2.5), (T) 0.75 * std::sqrt (std::numbers::pi_v<T>))) |
| return false; |
| if (!FP_EQUAL (std::tgamma ((T) -2.5), (T) -8.0/15 * std::sqrt (std::numbers::pi_v<T>))) |
| return false; |
| |
| if (!FP_EQUAL (std::lgamma ((T) 5), std::log ((T) 4*3*2*1))) |
| return false; |
| if (!FP_EQUAL (std::lgamma ((T) 0.5), std::log (std::sqrt (std::numbers::pi_v<T>)))) |
| return false; |
| if (!FP_EQUAL (std::lgamma ((T) 2.5), |
| std::log ((T) 0.75 * std::sqrt (std::numbers::pi_v<T>)))) |
| return false; |
| |
| return true; |
| } |
| |
| template<typename T> bool test_rounding () |
| { |
| T x = -2.5678; |
| T y = 3.6789; |
| |
| if (std::ceil (x) != -2) |
| return false; |
| if (std::floor (x) != -3) |
| return false; |
| if (std::trunc (x) != -2) |
| return false; |
| if (std::round (x) != -3) |
| return false; |
| |
| if (std::ceil (y) != 4) |
| return false; |
| if (std::floor (y) != 3) |
| return false; |
| if (std::trunc (y) != 3) |
| return false; |
| if (std::round (y) != 4) |
| return false; |
| |
| /* Not testing std::rint and std::nearbyint due to dependence on |
| floating-point environment. */ |
| |
| return true; |
| } |
| |
| template<typename T> bool test_fpmanip () |
| { |
| T x = -2.3456789; |
| T y = 3.6789012; |
| int exp; |
| |
| T mantissa = std::frexp (x, &exp); |
| if (std::ldexp (mantissa, exp) != x) |
| return false; |
| if (std::logb (x) + 1 != exp) |
| return false; |
| if (std::ilogb (x) + 1 != exp) |
| return false; |
| if (std::scalbn (x, -exp) != mantissa) |
| return false; |
| |
| T next = std::nextafter (x, y); |
| if (!(next > x && next < y)) |
| return false; |
| |
| #if 0 |
| /* TODO Due to 'std::nexttoward' using 'long double to', this triggers a |
| '80-bit-precision floating-point numbers unsupported (mode ‘XF’)' error |
| with x86_64 host and nvptx, GCN offload compilers, or |
| '128-bit-precision floating-point numbers unsupported (mode ‘TF’)' error |
| with powerpc64le host and nvptx offload compiler, for example; |
| PR71064 'nvptx offloading: "long double" data type'. |
| It ought to work on systems where the host's 'long double' is the same as |
| 'double' ('DF'): aarch64, for example? */ |
| next = std::nexttoward (x, y); |
| if (!(next > x && next < y)) |
| return false; |
| #endif |
| |
| if (std::copysign (x, y) != std::abs (x)) |
| return false; |
| if (std::copysign (y, x) != -y) |
| return false; |
| |
| return true; |
| } |
| |
| template<typename T> bool test_classify () |
| { |
| T x = -2.3456789; |
| T y = 3.6789012; |
| |
| if (std::fpclassify (x) != FP_NORMAL || std::fpclassify (y) != FP_NORMAL) |
| return false; |
| if (std::fpclassify ((T) INFINITY) != FP_INFINITE |
| || std::fpclassify ((T) -INFINITY) != FP_INFINITE) |
| return false; |
| if (std::fpclassify ((T) 0.0) != FP_ZERO) |
| return false; |
| if (std::fpclassify ((T) NAN) != FP_NAN) |
| return false; |
| if (!std::isfinite (x) || !std::isfinite (y)) |
| return false; |
| if (std::isfinite ((T) INFINITY) || std::isfinite ((T) -INFINITY)) |
| return false; |
| if (std::isinf (x) || std::isinf (y)) |
| return false; |
| if (!std::isinf ((T) INFINITY) || !std::isinf ((T) -INFINITY)) |
| return false; |
| if (std::isnan (x) || std::isnan (y)) |
| return false; |
| if (!std::isnan ((T) 0.0 / (T) 0.0)) |
| return false; |
| if (std::isnan (x) || std::isnan (y)) |
| return false; |
| if (!std::isnormal (x) || !std::isnormal (y)) |
| return false; |
| if (std::isnormal ((T) 0.0) || std::isnormal ((T) INFINITY) || std::isnormal ((T) NAN)) |
| return false; |
| if (!std::signbit (x) || std::signbit (y)) |
| return false; |
| |
| return true; |
| } |
| |
| template<typename T> bool test_compare () |
| { |
| T x = 5.6789012; |
| T y = 8.9012345; |
| |
| if (std::isgreater (x, y)) |
| return false; |
| if (std::isgreater (x, x)) |
| return false; |
| if (std::isgreaterequal (x, y)) |
| return false; |
| if (!std::isgreaterequal (x, x)) |
| return false; |
| if (!std::isless (x, y)) |
| return false; |
| if (std::isless (x, x)) |
| return false; |
| if (!std::islessequal (x, y)) |
| return false; |
| if (!std::islessequal (x, x)) |
| return false; |
| if (!std::islessgreater (x, y)) |
| return false; |
| if (std::islessgreater (x, x)) |
| return false; |
| if (std::isunordered (x, y)) |
| return false; |
| if (!std::isunordered (x, NAN)) |
| return false; |
| return true; |
| } |
| #pragma omp end declare target |
| |
| #define RUN_TEST(func) \ |
| { \ |
| pass++; \ |
| bool ok = test_##func<float> (); \ |
| if (!ok) { result = pass; break; } \ |
| pass++; \ |
| ok = test_##func<double> (); \ |
| if (!ok) { result = pass; break; } \ |
| } |
| |
| int main (void) |
| { |
| int result = 0; |
| |
| #pragma omp target map (tofrom: result) |
| do { |
| int pass = 0; |
| |
| RUN_TEST (basic); |
| RUN_TEST (exp); |
| RUN_TEST (power); |
| RUN_TEST (trig); |
| RUN_TEST (hyperbolic); |
| RUN_TEST (erf); |
| RUN_TEST (gamma); |
| RUN_TEST (rounding); |
| RUN_TEST (fpmanip); |
| RUN_TEST (classify); |
| RUN_TEST (compare); |
| } while (false); |
| |
| return result; |
| } |