blob: 7e5b5f43e9be22d1a2e15e558c4bb35311fd14fa [file] [log] [blame]
/**
This module contains support array (vector) operations
Copyright: Copyright Digital Mars 2000 - 2019.
License: Distributed under the
$(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost Software License 1.0).
(See accompanying file LICENSE)
Source: $(DRUNTIMESRC core/_internal/_array/_operations.d)
*/
module core.internal.array.operations;
import core.internal.traits : Filter, staticMap, Unqual;
version (GNU) version = GNU_OR_LDC;
version (LDC) version = GNU_OR_LDC;
/**
* Perform array (vector) operations and store the result in `res`. Operand
* types and operations are passed as template arguments in Reverse Polish
* Notation (RPN).
* Operands can be slices or scalar types. The element types of all
* slices and all scalar types must be implicitly convertible to `T`.
*
* Operations are encoded as strings, e.g. `"+"`, `"%"`, `"*="`. Unary
* operations are prefixed with "u", e.g. `"u-"`, `"u~"`. Only the last
* operation can and must be an assignment (`"="`) or op-assignment (`"op="`).
*
* All slice operands must have the same length as the result slice.
*
* Params: T[] = type of result slice
* Args = operand types and operations in RPN
* res = the slice in which to store the results
* args = operand values
*
* Returns: the slice containing the result
*/
T[] arrayOp(T : T[], Args...)(T[] res, Filter!(isType, Args) args) @trusted
{
alias scalarizedExp = staticMap!(toElementType, Args);
alias check = typeCheck!(true, T, scalarizedExp); // must support all scalar ops
foreach (argsIdx, arg; typeof(args))
{
static if (is(arg == U[], U))
{
assert(res.length == args[argsIdx].length, "Mismatched array lengths for vector operation");
}
}
size_t pos;
static if (vectorizeable!(T[], Args))
{
alias vec = .vec!T;
alias load = .load!(T, vec.length);
alias store = .store!(T, vec.length);
// Given that there are at most as many scalars broadcast as there are
// operations in any `ary[] = ary[] op const op const`, it should always be
// worthwhile to choose vector operations.
if (!__ctfe && res.length >= vec.length)
{
mixin(initScalarVecs!Args);
auto n = res.length / vec.length;
do
{
mixin(vectorExp!Args ~ ";");
pos += vec.length;
}
while (--n);
}
}
for (; pos < res.length; ++pos)
mixin(scalarExp!Args ~ ";");
return res;
}
private:
// SIMD helpers
version (DigitalMars)
{
import core.simd;
template vec(T)
{
enum regsz = 16; // SSE2
enum N = regsz / T.sizeof;
alias vec = __vector(T[N]);
}
void store(T, size_t N)(T* p, const scope __vector(T[N]) val)
{
pragma(inline, true);
alias vec = __vector(T[N]);
static if (is(T == float))
cast(void) __simd_sto(XMM.STOUPS, *cast(vec*) p, val);
else static if (is(T == double))
cast(void) __simd_sto(XMM.STOUPD, *cast(vec*) p, val);
else
cast(void) __simd_sto(XMM.STODQU, *cast(vec*) p, val);
}
const(__vector(T[N])) load(T, size_t N)(const scope T* p)
{
import core.simd;
pragma(inline, true);
alias vec = __vector(T[N]);
static if (is(T == float))
return cast(typeof(return)) __simd(XMM.LODUPS, *cast(const vec*) p);
else static if (is(T == double))
return cast(typeof(return)) __simd(XMM.LODUPD, *cast(const vec*) p);
else
return cast(typeof(return)) __simd(XMM.LODDQU, *cast(const vec*) p);
}
__vector(T[N]) binop(string op, T, size_t N)(const scope __vector(T[N]) a, const scope __vector(T[N]) b)
{
pragma(inline, true);
return mixin("a " ~ op ~ " b");
}
__vector(T[N]) unaop(string op, T, size_t N)(const scope __vector(T[N]) a)
if (op[0] == 'u')
{
pragma(inline, true);
return mixin(op[1 .. $] ~ "a");
}
}
// mixin gen
/**
Check whether operations on operand types are supported. This
template recursively reduces the expression tree and determines
intermediate types.
Type checking is done here rather than in the compiler to provide more
detailed error messages.
Params:
fail = whether to fail (static assert) with a human-friendly error message
T = type of result
Args = operand types and operations in RPN
Returns:
The resulting type of the expression
See_Also:
$(LREF arrayOp)
*/
template typeCheck(bool fail, T, Args...)
{
enum idx = staticIndexOf!(not!isType, Args);
static if (isUnaryOp(Args[idx]))
{
alias UT = Args[idx - 1];
enum op = Args[idx][1 .. $];
static if (is(typeof((UT a) => mixin(op ~ "cast(int) a")) RT == return))
alias typeCheck = typeCheck!(fail, T, Args[0 .. idx - 1], RT, Args[idx + 1 .. $]);
else static if (fail)
static assert(0, "Unary `" ~ op ~ "` not supported for type `" ~ UT.stringof ~ "`.");
}
else static if (isBinaryOp(Args[idx]))
{
alias LHT = Args[idx - 2];
alias RHT = Args[idx - 1];
enum op = Args[idx];
static if (is(typeof((LHT a, RHT b) => mixin("a " ~ op ~ " b")) RT == return))
alias typeCheck = typeCheck!(fail, T, Args[0 .. idx - 2], RT, Args[idx + 1 .. $]);
else static if (fail)
static assert(0,
"Binary `" ~ op ~ "` not supported for types `"
~ LHT.stringof ~ "` and `" ~ RHT.stringof ~ "`.");
}
else static if (Args[idx] == "=" || isBinaryAssignOp(Args[idx]))
{
alias RHT = Args[idx - 1];
enum op = Args[idx];
static if (is(T == __vector(ET[N]), ET, size_t N))
{
// no `cast(T)` before assignment for vectors
static if (is(typeof((T res, RHT b) => mixin("res " ~ op ~ " b")) RT == return)
&& // workaround https://issues.dlang.org/show_bug.cgi?id=17758
(op != "=" || is(Unqual!T == Unqual!RHT)))
alias typeCheck = typeCheck!(fail, T, Args[0 .. idx - 1], RT, Args[idx + 1 .. $]);
else static if (fail)
static assert(0,
"Binary op `" ~ op ~ "` not supported for types `"
~ T.stringof ~ "` and `" ~ RHT.stringof ~ "`.");
}
else
{
static if (is(typeof((RHT b) => mixin("cast(T) b"))))
{
static if (is(typeof((T res, T b) => mixin("res " ~ op ~ " b")) RT == return))
alias typeCheck = typeCheck!(fail, T, Args[0 .. idx - 1], RT, Args[idx + 1 .. $]);
else static if (fail)
static assert(0,
"Binary op `" ~ op ~ "` not supported for types `"
~ T.stringof ~ "` and `" ~ T.stringof ~ "`.");
}
else static if (fail)
static assert(0,
"`cast(" ~ T.stringof ~ ")` not supported for type `" ~ RHT.stringof ~ "`.");
}
}
else
static assert(0);
}
/// ditto
template typeCheck(bool fail, T, ResultType)
{
alias typeCheck = ResultType;
}
version (GNU_OR_LDC)
{
// leave it to the auto-vectorizer
enum vectorizeable(E : E[], Args...) = false;
}
else
{
// check whether arrayOp is vectorizable
template vectorizeable(E : E[], Args...)
{
static if (is(vec!E))
{
// type check with vector types
enum vectorizeable = is(typeCheck!(false, vec!E, staticMap!(toVecType, Args)));
}
else
enum vectorizeable = false;
}
version (X86_64) unittest
{
static assert(vectorizeable!(double[], const(double)[], double[], "+", "="));
static assert(!vectorizeable!(double[], const(ulong)[], double[], "+", "="));
// Vector type are (atm.) not implicitly convertible and would require
// lots of SIMD intrinsics. Therefor leave mixed type array ops to
// GDC/LDC's auto-vectorizers.
static assert(!vectorizeable!(double[], const(uint)[], uint, "+", "="));
}
}
bool isUnaryOp(scope string op) pure nothrow @safe @nogc
{
return op[0] == 'u';
}
bool isBinaryOp(scope string op) pure nothrow @safe @nogc
{
if (op == "^^")
return true;
if (op.length != 1)
return false;
switch (op[0])
{
case '+', '-', '*', '/', '%', '|', '&', '^':
return true;
default:
return false;
}
}
bool isBinaryAssignOp(string op)
{
return op.length >= 2 && op[$ - 1] == '=' && isBinaryOp(op[0 .. $ - 1]);
}
// Generate mixin expression to perform scalar arrayOp loop expression, assumes
// `pos` to be the current slice index, `args` to contain operand values, and
// `res` the target slice.
enum scalarExp(Args...) =
(){
string[] stack;
size_t argsIdx;
static if (is(Args[0] == U[], U))
alias Type = U;
else
alias Type = Args[0];
foreach (i, arg; Args)
{
static if (is(arg == T[], T))
stack ~= "args[" ~ argsIdx++.toString ~ "][pos]";
else static if (is(arg))
stack ~= "args[" ~ argsIdx++.toString ~ "]";
else static if (isUnaryOp(arg))
{
auto op = arg[0] == 'u' ? arg[1 .. $] : arg;
// Explicitly use the old integral promotion rules
// See also: https://dlang.org/changelog/2.078.0.html#fix16997
static if (is(Type : int))
stack[$ - 1] = "cast(typeof(" ~ stack[$ -1] ~ "))" ~ op ~ "cast(int)("~ stack[$ - 1] ~ ")";
else
stack[$ - 1] = op ~ stack[$ - 1];
}
else static if (arg == "=")
{
stack[$ - 1] = "res[pos] = cast(T)(" ~ stack[$ - 1] ~ ")";
}
else static if (isBinaryAssignOp(arg))
{
stack[$ - 1] = "res[pos] " ~ arg ~ " cast(T)(" ~ stack[$ - 1] ~ ")";
}
else static if (isBinaryOp(arg))
{
stack[$ - 2] = "(" ~ stack[$ - 2] ~ " " ~ arg ~ " " ~ stack[$ - 1] ~ ")";
stack.length -= 1;
}
else
assert(0, "Unexpected op " ~ arg);
}
assert(stack.length == 1);
return stack[0];
}();
// Generate mixin statement to perform vector loop initialization, assumes
// `args` to contain operand values.
enum initScalarVecs(Args...) =
() {
size_t scalarsIdx, argsIdx;
string res;
foreach (arg; Args)
{
static if (is(arg == T[], T))
{
++argsIdx;
}
else static if (is(arg))
res ~= "immutable vec scalar" ~ scalarsIdx++.toString ~ " = args["
~ argsIdx++.toString ~ "];\n";
}
return res;
}();
// Generate mixin expression to perform vector arrayOp loop expression, assumes
// `pos` to be the current slice index, `args` to contain operand values, and
// `res` the target slice.
enum vectorExp(Args...) =
() {
size_t scalarsIdx, argsIdx;
string[] stack;
foreach (arg; Args)
{
static if (is(arg == T[], T))
stack ~= "load(&args[" ~ argsIdx++.toString ~ "][pos])";
else static if (is(arg))
{
++argsIdx;
stack ~= "scalar" ~ scalarsIdx++.toString;
}
else static if (isUnaryOp(arg))
{
auto op = arg[0] == 'u' ? arg[1 .. $] : arg;
stack[$ - 1] = "unaop!\"" ~ arg ~ "\"(" ~ stack[$ - 1] ~ ")";
}
else static if (arg == "=")
{
stack[$ - 1] = "store(&res[pos], " ~ stack[$ - 1] ~ ")";
}
else static if (isBinaryAssignOp(arg))
{
stack[$ - 1] = "store(&res[pos], binop!\"" ~ arg[0 .. $ - 1]
~ "\"(load(&res[pos]), " ~ stack[$ - 1] ~ "))";
}
else static if (isBinaryOp(arg))
{
stack[$ - 2] = "binop!\"" ~ arg ~ "\"(" ~ stack[$ - 2] ~ ", " ~ stack[$ - 1] ~ ")";
stack.length -= 1;
}
else
assert(0, "Unexpected op " ~ arg);
}
assert(stack.length == 1);
return stack[0];
}();
// other helpers
enum isType(T) = true;
enum isType(alias a) = false;
template not(alias tmlp)
{
enum not(Args...) = !tmlp!Args;
}
/**
Find element in `haystack` for which `pred` is true.
Params:
pred = the template predicate
haystack = elements to search
Returns:
The first index for which `pred!haystack[index]` is true or -1.
*/
template staticIndexOf(alias pred, haystack...)
{
static if (pred!(haystack[0]))
enum staticIndexOf = 0;
else
{
enum next = staticIndexOf!(pred, haystack[1 .. $]);
enum staticIndexOf = next == -1 ? -1 : next + 1;
}
}
/// converts slice types to their element type, preserves anything else
alias toElementType(E : E[]) = E;
alias toElementType(S) = S;
alias toElementType(alias op) = op;
/// converts slice types to their element type, preserves anything else
alias toVecType(E : E[]) = vec!E;
alias toVecType(S) = vec!S;
alias toVecType(alias op) = op;
string toString(size_t num)
{
import core.internal.string : unsignedToTempString;
version (D_BetterC)
{
// Workaround for https://issues.dlang.org/show_bug.cgi?id=19268
if (__ctfe)
{
char[20] fixedbuf = void;
char[] buf = unsignedToTempString(num, fixedbuf);
char[] result = new char[buf.length];
result[] = buf[];
return (() @trusted => cast(string) result)();
}
else
{
// Failing at execution rather than during compilation is
// not good, but this is in `core.internal` so it should
// not be used by the unwary.
assert(0, __FUNCTION__ ~ " not available in -betterC except during CTFE.");
}
}
else
{
char[20] buf = void;
return unsignedToTempString(num, buf).idup;
}
}
bool contains(T)(const scope T[] ary, const scope T[] vals...)
{
foreach (v1; ary)
foreach (v2; vals)
if (v1 == v2)
return true;
return false;
}
// tests
version (CoreUnittest) template TT(T...)
{
alias TT = T;
}
version (CoreUnittest) template _arrayOp(Args...)
{
alias _arrayOp = arrayOp!Args;
}
unittest
{
static void check(string op, TA, TB, T, size_t N)(TA a, TB b, const scope ref T[N] exp)
{
T[N] res;
_arrayOp!(T[], TA, TB, op, "=")(res[], a, b);
foreach (i; 0 .. N)
assert(res[i] == exp[i]);
}
static void check2(string unaOp, string binOp, TA, TB, T, size_t N)(TA a, TB b, const scope ref T[N] exp)
{
T[N] res;
_arrayOp!(T[], TA, TB, unaOp, binOp, "=")(res[], a, b);
foreach (i; 0 .. N)
assert(res[i] == exp[i]);
}
static void test(T, string op, size_t N = 16)(T a, T b, T exp)
{
T[N] va = a, vb = b, vexp = exp;
check!op(va[], vb[], vexp);
check!op(va[], b, vexp);
check!op(a, vb[], vexp);
}
static void test2(T, string unaOp, string binOp, size_t N = 16)(T a, T b, T exp)
{
T[N] va = a, vb = b, vexp = exp;
check2!(unaOp, binOp)(va[], vb[], vexp);
check2!(unaOp, binOp)(va[], b, vexp);
check2!(unaOp, binOp)(a, vb[], vexp);
}
alias UINTS = TT!(ubyte, ushort, uint, ulong);
alias INTS = TT!(byte, short, int, long);
alias FLOATS = TT!(float, double);
foreach (T; TT!(UINTS, INTS, FLOATS))
{
test!(T, "+")(1, 2, 3);
test!(T, "-")(3, 2, 1);
static if (__traits(compiles, { import std.math; }))
test!(T, "^^")(2, 3, 8);
test2!(T, "u-", "+")(3, 2, 1);
}
foreach (T; TT!(UINTS, INTS))
{
test!(T, "|")(1, 2, 3);
test!(T, "&")(3, 1, 1);
test!(T, "^")(3, 1, 2);
test2!(T, "u~", "+")(3, cast(T)~2, 5);
}
foreach (T; TT!(INTS, FLOATS))
{
test!(T, "-")(1, 2, -1);
test2!(T, "u-", "+")(-3, -2, -1);
test2!(T, "u-", "*")(-3, -2, -6);
}
foreach (T; TT!(UINTS, INTS, FLOATS))
{
test!(T, "*")(2, 3, 6);
test!(T, "/")(8, 4, 2);
test!(T, "%")(8, 6, 2);
}
}
// test handling of v op= exp
@nogc nothrow pure @safe unittest
{
uint[32] c;
arrayOp!(uint[], uint, "+=")(c[], 2);
foreach (v; c)
assert(v == 2);
static if (__traits(compiles, { import std.math; }))
{
arrayOp!(uint[], uint, "^^=")(c[], 3);
foreach (v; c)
assert(v == 8);
}
}
// proper error message for UDT lacking certain ops
@nogc nothrow pure @safe unittest
{
static assert(!is(typeof(&arrayOp!(int[4][], int[4], "+="))));
static assert(!is(typeof(&arrayOp!(int[4][], int[4], "u-", "="))));
static struct S
{
}
static assert(!is(typeof(&arrayOp!(S[], S, "+="))));
static assert(!is(typeof(&arrayOp!(S[], S[], "*", S, "+="))));
static struct S2
{
S2 opBinary(string op)(in S2) @nogc pure nothrow
{
return this;
}
ref S2 opOpAssign(string op)(in S2) @nogc pure nothrow
{
return this;
}
}
static assert(is(typeof(&arrayOp!(S2[], S2[], S2[], S2, "*", "+", "="))));
static assert(is(typeof(&arrayOp!(S2[], S2[], S2, "*", "+="))));
}
// test mixed type array op
@nogc nothrow pure @safe unittest
{
uint[32] a = 0xF;
float[32] res = 2.0f;
arrayOp!(float[], const(uint)[], uint, "&", "*=")(res[], a[], 12);
foreach (v; res[])
assert(v == 24.0f);
}
// test mixed type array op
@nogc nothrow pure @safe unittest
{
static struct S
{
float opBinary(string op)(in S) @nogc const pure nothrow
{
return 2.0f;
}
}
float[32] res = 24.0f;
S[32] s;
arrayOp!(float[], const(S)[], const(S)[], "+", "/=")(res[], s[], s[]);
foreach (v; res[])
assert(v == 12.0f);
}
// test scalar after operation argument
@nogc nothrow pure @safe unittest
{
float[32] res, a = 2, b = 3;
float c = 4;
arrayOp!(float[], const(float)[], const(float)[], "*", float, "+", "=")(res[], a[], b[], c);
foreach (v; res[])
assert(v == 2 * 3 + 4);
}
@nogc nothrow pure @safe unittest
{
// https://issues.dlang.org/show_bug.cgi?id=17964
uint bug(){
uint[] a = [1, 2, 3, 5, 6, 7];
uint[] b = [1, 2, 3, 5, 6, 7];
a[] |= ~b[];
return a[1];
}
enum x = bug();
}
// https://issues.dlang.org/show_bug.cgi?id=19796
nothrow pure @safe unittest
{
double[] data = [0.5];
double[] result;
result.length = data.length;
result[] = -data[];
assert(result[0] == -0.5);
}
// https://issues.dlang.org/show_bug.cgi?id=21110
pure unittest
{
import core.exception;
static void assertThrown(T : Throwable, E)(lazy E expression, string msg)
{
try
expression;
catch (T)
return;
assert(0, "msg");
}
int[] dst;
int[] a;
int[] b;
a.length = 3;
b.length = 3;
dst.length = 4;
void func() { dst[] = a[] + b[]; }
assertThrown!AssertError(func(), "Array operations with mismatched lengths must throw an error");
}
// https://issues.dlang.org/show_bug.cgi?id=24272
unittest
{
static struct B
{
B opOpAssign(string op)(B other)
{
static int g;
g++;
throw new Exception("");
}
}
B[] bArr;
bArr[] += B();
}