| /** |
| * Implementation of the gamma and beta functions, and their integrals. |
| * |
| * License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0). |
| * Copyright: Based on the CEPHES math library, which is |
| * Copyright (C) 1994 Stephen L. Moshier (moshier@world.std.com). |
| * Authors: Stephen L. Moshier (original C code). Conversion to D by Don Clugston |
| * |
| * |
| Macros: |
| * TABLE_SV = <table border="1" cellpadding="4" cellspacing="0"> |
| * <caption>Special Values</caption> |
| * $0</table> |
| * SVH = $(TR $(TH $1) $(TH $2)) |
| * SV = $(TR $(TD $1) $(TD $2)) |
| * GAMMA = Γ |
| * INTEGRATE = $(BIG ∫<sub>$(SMALL $1)</sub><sup>$2</sup>) |
| * POWER = $1<sup>$2</sup> |
| * NAN = $(RED NAN) |
| */ |
| module std.internal.math.gammafunction; |
| import std.internal.math.errorfunction; |
| import std.math; |
| import core.math : fabs, sin, sqrt; |
| |
| pure: |
| nothrow: |
| @safe: |
| @nogc: |
| |
| private { |
| |
| enum real SQRT2PI = 2.50662827463100050242E0L; // sqrt(2pi) |
| immutable real EULERGAMMA = 0.57721_56649_01532_86060_65120_90082_40243_10421_59335_93992L; /** Euler-Mascheroni constant 0.57721566.. */ |
| |
| // Polynomial approximations for gamma and loggamma. |
| |
| immutable real[8] GammaNumeratorCoeffs = [ 1.0L, |
| 0x1.acf42d903366539ep-1L, 0x1.73a991c8475f1aeap-2L, 0x1.c7e918751d6b2a92p-4L, |
| 0x1.86d162cca32cfe86p-6L, 0x1.0c378e2e6eaf7cd8p-8L, 0x1.dc5c66b7d05feb54p-12L, |
| 0x1.616457b47e448694p-15L |
| ]; |
| |
| immutable real[9] GammaDenominatorCoeffs = [ 1.0L, |
| 0x1.a8f9faae5d8fc8bp-2L, -0x1.cb7895a6756eebdep-3L, -0x1.7b9bab006d30652ap-5L, |
| 0x1.c671af78f312082ep-6L, -0x1.a11ebbfaf96252dcp-11L, -0x1.447b4d2230a77ddap-10L, |
| 0x1.ec1d45bb85e06696p-13L,-0x1.d4ce24d05bd0a8e6p-17L |
| ]; |
| |
| immutable real[9] GammaSmallCoeffs = [ 1.0L, |
| 0x1.2788cfc6fb618f52p-1L, -0x1.4fcf4026afa2f7ecp-1L, -0x1.5815e8fa24d7e306p-5L, |
| 0x1.5512320aea2ad71ap-3L, -0x1.59af0fb9d82e216p-5L, -0x1.3b4b61d3bfdf244ap-7L, |
| 0x1.d9358e9d9d69fd34p-8L, -0x1.38fc4bcbada775d6p-10L |
| ]; |
| |
| immutable real[9] GammaSmallNegCoeffs = [ -1.0L, |
| 0x1.2788cfc6fb618f54p-1L, 0x1.4fcf4026afa2bc4cp-1L, -0x1.5815e8fa2468fec8p-5L, |
| -0x1.5512320baedaf4b6p-3L, -0x1.59af0fa283baf07ep-5L, 0x1.3b4a70de31e05942p-7L, |
| 0x1.d9398be3bad13136p-8L, 0x1.291b73ee05bcbba2p-10L |
| ]; |
| |
| immutable real[7] logGammaStirlingCoeffs = [ |
| 0x1.5555555555553f98p-4L, -0x1.6c16c16c07509b1p-9L, 0x1.a01a012461cbf1e4p-11L, |
| -0x1.3813089d3f9d164p-11L, 0x1.b911a92555a277b8p-11L, -0x1.ed0a7b4206087b22p-10L, |
| 0x1.402523859811b308p-8L |
| ]; |
| |
| immutable real[7] logGammaNumerator = [ |
| -0x1.0edd25913aaa40a2p+23L, -0x1.31c6ce2e58842d1ep+24L, -0x1.f015814039477c3p+23L, |
| -0x1.74ffe40c4b184b34p+22L, -0x1.0d9c6d08f9eab55p+20L, -0x1.54c6b71935f1fc88p+16L, |
| -0x1.0e761b42932b2aaep+11L |
| ]; |
| |
| immutable real[8] logGammaDenominator = [ |
| -0x1.4055572d75d08c56p+24L, -0x1.deeb6013998e4d76p+24L, -0x1.106f7cded5dcc79ep+24L, |
| -0x1.25e17184848c66d2p+22L, -0x1.301303b99a614a0ap+19L, -0x1.09e76ab41ae965p+15L, |
| -0x1.00f95ced9e5f54eep+9L, 1.0L |
| ]; |
| |
| /* |
| * Helper function: Gamma function computed by Stirling's formula. |
| * |
| * Stirling's formula for the gamma function is: |
| * |
| * $(GAMMA)(x) = sqrt(2 π) x<sup>x-0.5</sup> exp(-x) (1 + 1/x P(1/x)) |
| * |
| */ |
| real gammaStirling(real x) |
| { |
| // CEPHES code Copyright 1994 by Stephen L. Moshier |
| |
| static immutable real[9] SmallStirlingCoeffs = [ |
| 0x1.55555555555543aap-4L, 0x1.c71c71c720dd8792p-9L, -0x1.5f7268f0b5907438p-9L, |
| -0x1.e13cd410e0477de6p-13L, 0x1.9b0f31643442616ep-11L, 0x1.2527623a3472ae08p-14L, |
| -0x1.37f6bc8ef8b374dep-11L,-0x1.8c968886052b872ap-16L, 0x1.76baa9c6d3eeddbcp-11L |
| ]; |
| |
| static immutable real[7] LargeStirlingCoeffs = [ 1.0L, |
| 8.33333333333333333333E-2L, 3.47222222222222222222E-3L, |
| -2.68132716049382716049E-3L, -2.29472093621399176955E-4L, |
| 7.84039221720066627474E-4L, 6.97281375836585777429E-5L |
| ]; |
| |
| real w = 1.0L/x; |
| real y = exp(x); |
| if ( x > 1024.0L ) |
| { |
| // For large x, use rational coefficients from the analytical expansion. |
| w = poly(w, LargeStirlingCoeffs); |
| // Avoid overflow in pow() |
| real v = pow( x, 0.5L * x - 0.25L ); |
| y = v * (v / y); |
| } |
| else |
| { |
| w = 1.0L + w * poly( w, SmallStirlingCoeffs); |
| static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble) |
| { |
| // Avoid overflow in pow() for 64-bit reals |
| if (x > 143.0) |
| { |
| real v = pow( x, 0.5 * x - 0.25 ); |
| y = v * (v / y); |
| } |
| else |
| { |
| y = pow( x, x - 0.5 ) / y; |
| } |
| } |
| else |
| { |
| y = pow( x, x - 0.5L ) / y; |
| } |
| } |
| y = SQRT2PI * y * w; |
| return y; |
| } |
| |
| /* |
| * Helper function: Incomplete gamma function computed by Temme's expansion. |
| * |
| * This is a port of igamma_temme_large from Boost. |
| * |
| */ |
| real igammaTemmeLarge(real a, real x) |
| { |
| static immutable real[][13] coef = [ |
| [ -0.333333333333333333333L, 0.0833333333333333333333L, |
| -0.0148148148148148148148L, 0.00115740740740740740741L, |
| 0.000352733686067019400353L, -0.0001787551440329218107L, |
| 0.39192631785224377817e-4L, -0.218544851067999216147e-5L, |
| -0.18540622107151599607e-5L, 0.829671134095308600502e-6L, |
| -0.176659527368260793044e-6L, 0.670785354340149858037e-8L, |
| 0.102618097842403080426e-7L, -0.438203601845335318655e-8L, |
| 0.914769958223679023418e-9L, -0.255141939949462497669e-10L, |
| -0.583077213255042506746e-10L, 0.243619480206674162437e-10L, |
| -0.502766928011417558909e-11L ], |
| [ -0.00185185185185185185185L, -0.00347222222222222222222L, |
| 0.00264550264550264550265L, -0.000990226337448559670782L, |
| 0.000205761316872427983539L, -0.40187757201646090535e-6L, |
| -0.18098550334489977837e-4L, 0.764916091608111008464e-5L, |
| -0.161209008945634460038e-5L, 0.464712780280743434226e-8L, |
| 0.137863344691572095931e-6L, -0.575254560351770496402e-7L, |
| 0.119516285997781473243e-7L, -0.175432417197476476238e-10L, |
| -0.100915437106004126275e-8L, 0.416279299184258263623e-9L, |
| -0.856390702649298063807e-10L ], |
| [ 0.00413359788359788359788L, -0.00268132716049382716049L, |
| 0.000771604938271604938272L, 0.200938786008230452675e-5L, |
| -0.000107366532263651605215L, 0.529234488291201254164e-4L, |
| -0.127606351886187277134e-4L, 0.342357873409613807419e-7L, |
| 0.137219573090629332056e-5L, -0.629899213838005502291e-6L, |
| 0.142806142060642417916e-6L, -0.204770984219908660149e-9L, |
| -0.140925299108675210533e-7L, 0.622897408492202203356e-8L, |
| -0.136704883966171134993e-8L ], |
| [ 0.000649434156378600823045L, 0.000229472093621399176955L, |
| -0.000469189494395255712128L, 0.000267720632062838852962L, |
| -0.756180167188397641073e-4L, -0.239650511386729665193e-6L, |
| 0.110826541153473023615e-4L, -0.56749528269915965675e-5L, |
| 0.142309007324358839146e-5L, -0.278610802915281422406e-10L, |
| -0.169584040919302772899e-6L, 0.809946490538808236335e-7L, |
| -0.191111684859736540607e-7L ], |
| [ -0.000861888290916711698605L, 0.000784039221720066627474L, |
| -0.000299072480303190179733L, -0.146384525788434181781e-5L, |
| 0.664149821546512218666e-4L, -0.396836504717943466443e-4L, |
| 0.113757269706784190981e-4L, 0.250749722623753280165e-9L, |
| -0.169541495365583060147e-5L, 0.890750753220530968883e-6L, |
| -0.229293483400080487057e-6L ], |
| [ -0.000336798553366358150309L, -0.697281375836585777429e-4L, |
| 0.000277275324495939207873L, -0.000199325705161888477003L, |
| 0.679778047793720783882e-4L, 0.141906292064396701483e-6L, |
| -0.135940481897686932785e-4L, 0.801847025633420153972e-5L, |
| -0.229148117650809517038e-5L ], |
| [ 0.000531307936463992223166L, -0.000592166437353693882865L, |
| 0.000270878209671804482771L, 0.790235323266032787212e-6L, |
| -0.815396936756196875093e-4L, 0.561168275310624965004e-4L, |
| -0.183291165828433755673e-4L, -0.307961345060330478256e-8L, |
| 0.346515536880360908674e-5L, -0.20291327396058603727e-5L, |
| 0.57887928631490037089e-6L ], |
| [ 0.000344367606892377671254L, 0.517179090826059219337e-4L, |
| -0.000334931610811422363117L, 0.000281269515476323702274L, |
| -0.000109765822446847310235L, -0.127410090954844853795e-6L, |
| 0.277444515115636441571e-4L, -0.182634888057113326614e-4L, |
| 0.578769494973505239894e-5L ], |
| [ -0.000652623918595309418922L, 0.000839498720672087279993L, |
| -0.000438297098541721005061L, -0.696909145842055197137e-6L, |
| 0.000166448466420675478374L, -0.000127835176797692185853L, |
| 0.462995326369130429061e-4L ], |
| [ -0.000596761290192746250124L, -0.720489541602001055909e-4L, |
| 0.000678230883766732836162L, -0.0006401475260262758451L, |
| 0.000277501076343287044992L ], |
| [ 0.00133244544948006563713L, -0.0019144384985654775265L, |
| 0.00110893691345966373396L ], |
| [ 0.00157972766073083495909L, 0.000162516262783915816899L, |
| -0.00206334210355432762645L, 0.00213896861856890981541L, |
| -0.00101085593912630031708L ], |
| [ -0.00407251211951401664727L, 0.00640336283380806979482L, |
| -0.00404101610816766177474L ] |
| ]; |
| |
| // avoid nans when one of the arguments is inf: |
| if (x == real.infinity && a != real.infinity) |
| return 0; |
| |
| if (x != real.infinity && a == real.infinity) |
| return 1; |
| |
| real sigma = (x - a) / a; |
| real phi = sigma - log(sigma + 1); |
| |
| real y = a * phi; |
| real z = sqrt(2 * phi); |
| if (x < a) |
| z = -z; |
| |
| real[13] workspace; |
| foreach (i; 0 .. coef.length) |
| workspace[i] = poly(z, coef[i]); |
| |
| real result = poly(1 / a, workspace); |
| result *= exp(-y) / sqrt(2 * PI * a); |
| if (x < a) |
| result = -result; |
| |
| result += erfc(sqrt(y)) / 2; |
| |
| return result; |
| } |
| |
| } // private |
| |
| public: |
| /// The maximum value of x for which gamma(x) < real.infinity. |
| static if (floatTraits!(real).realFormat == RealFormat.ieeeQuadruple) |
| enum real MAXGAMMA = 1755.5483429L; |
| else static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended) |
| enum real MAXGAMMA = 1755.5483429L; |
| else static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended53) |
| enum real MAXGAMMA = 1755.5483429L; |
| else static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble) |
| enum real MAXGAMMA = 171.6243769L; |
| else |
| static assert(0, "missing MAXGAMMA for other real types"); |
| |
| |
| /***************************************************** |
| * The Gamma function, $(GAMMA)(x) |
| * |
| * $(GAMMA)(x) is a generalisation of the factorial function |
| * to real and complex numbers. |
| * Like x!, $(GAMMA)(x+1) = x*$(GAMMA)(x). |
| * |
| * Mathematically, if z.re > 0 then |
| * $(GAMMA)(z) = $(INTEGRATE 0, ∞) $(POWER t, z-1)$(POWER e, -t) dt |
| * |
| * $(TABLE_SV |
| * $(SVH x, $(GAMMA)(x) ) |
| * $(SV $(NAN), $(NAN) ) |
| * $(SV ±0.0, ±∞) |
| * $(SV integer > 0, (x-1)! ) |
| * $(SV integer < 0, $(NAN) ) |
| * $(SV +∞, +∞ ) |
| * $(SV -∞, $(NAN) ) |
| * ) |
| */ |
| real gamma(real x) |
| { |
| /* Based on code from the CEPHES library. |
| * CEPHES code Copyright 1994 by Stephen L. Moshier |
| * |
| * Arguments |x| <= 13 are reduced by recurrence and the function |
| * approximated by a rational function of degree 7/8 in the |
| * interval (2,3). Large arguments are handled by Stirling's |
| * formula. Large negative arguments are made positive using |
| * a reflection formula. |
| */ |
| |
| real q, z; |
| if (isNaN(x)) return x; |
| if (x == -x.infinity) return real.nan; |
| if ( fabs(x) > MAXGAMMA ) return real.infinity; |
| if (x == 0) return 1.0 / x; // +- infinity depending on sign of x, create an exception. |
| |
| q = fabs(x); |
| |
| if ( q > 13.0L ) |
| { |
| // Large arguments are handled by Stirling's |
| // formula. Large negative arguments are made positive using |
| // the reflection formula. |
| |
| if ( x < 0.0L ) |
| { |
| if (x < -1/real.epsilon) |
| { |
| // Large negatives lose all precision |
| return real.nan; |
| } |
| int sgngam = 1; // sign of gamma. |
| long intpart = cast(long)(q); |
| if (q == intpart) |
| return real.nan; // poles for all integers <0. |
| real p = intpart; |
| if ( (intpart & 1) == 0 ) |
| sgngam = -1; |
| z = q - p; |
| if ( z > 0.5L ) |
| { |
| p += 1.0L; |
| z = q - p; |
| } |
| z = q * sin( PI * z ); |
| z = fabs(z) * gammaStirling(q); |
| if ( z <= PI/real.max ) return sgngam * real.infinity; |
| return sgngam * PI/z; |
| } |
| else |
| { |
| return gammaStirling(x); |
| } |
| } |
| |
| // Arguments |x| <= 13 are reduced by recurrence and the function |
| // approximated by a rational function of degree 7/8 in the |
| // interval (2,3). |
| |
| z = 1.0L; |
| while ( x >= 3.0L ) |
| { |
| x -= 1.0L; |
| z *= x; |
| } |
| |
| while ( x < -0.03125L ) |
| { |
| z /= x; |
| x += 1.0L; |
| } |
| |
| if ( x <= 0.03125L ) |
| { |
| if ( x == 0.0L ) |
| return real.nan; |
| else |
| { |
| if ( x < 0.0L ) |
| { |
| x = -x; |
| return z / (x * poly( x, GammaSmallNegCoeffs )); |
| } |
| else |
| { |
| return z / (x * poly( x, GammaSmallCoeffs )); |
| } |
| } |
| } |
| |
| while ( x < 2.0L ) |
| { |
| z /= x; |
| x += 1.0L; |
| } |
| if ( x == 2.0L ) return z; |
| |
| x -= 2.0L; |
| return z * poly( x, GammaNumeratorCoeffs ) / poly( x, GammaDenominatorCoeffs ); |
| } |
| |
| @safe unittest |
| { |
| // gamma(n) = factorial(n-1) if n is an integer. |
| real fact = 1.0L; |
| for (int i=1; fact<real.max; ++i) |
| { |
| // Require exact equality for small factorials |
| if (i<14) assert(gamma(i*1.0L) == fact); |
| assert(feqrel(gamma(i*1.0L), fact) >= real.mant_dig-15); |
| fact *= (i*1.0L); |
| } |
| assert(gamma(0.0) == real.infinity); |
| assert(gamma(-0.0) == -real.infinity); |
| assert(isNaN(gamma(-1.0))); |
| assert(isNaN(gamma(-15.0))); |
| assert(isIdentical(gamma(NaN(0xABC)), NaN(0xABC))); |
| assert(gamma(real.infinity) == real.infinity); |
| assert(gamma(real.max) == real.infinity); |
| assert(isNaN(gamma(-real.infinity))); |
| assert(gamma(real.min_normal*real.epsilon) == real.infinity); |
| assert(gamma(MAXGAMMA)< real.infinity); |
| assert(gamma(MAXGAMMA*2) == real.infinity); |
| |
| // Test some high-precision values (50 decimal digits) |
| real SQRT_PI = 1.77245385090551602729816748334114518279754945612238L; |
| |
| |
| assert(feqrel(gamma(0.5L), SQRT_PI) >= real.mant_dig-1); |
| assert(feqrel(gamma(17.25L), 4.224986665692703551570937158682064589938e13L) >= real.mant_dig-4); |
| |
| assert(feqrel(gamma(1.0 / 3.0L), 2.67893853470774763365569294097467764412868937795730L) >= real.mant_dig-2); |
| assert(feqrel(gamma(0.25L), |
| 3.62560990822190831193068515586767200299516768288006L) >= real.mant_dig-1); |
| assert(feqrel(gamma(1.0 / 5.0L), |
| 4.59084371199880305320475827592915200343410999829340L) >= real.mant_dig-1); |
| } |
| |
| /***************************************************** |
| * Natural logarithm of gamma function. |
| * |
| * Returns the base e (2.718...) logarithm of the absolute |
| * value of the gamma function of the argument. |
| * |
| * For reals, logGamma is equivalent to log(fabs(gamma(x))). |
| * |
| * $(TABLE_SV |
| * $(SVH x, logGamma(x) ) |
| * $(SV $(NAN), $(NAN) ) |
| * $(SV integer <= 0, +∞ ) |
| * $(SV ±∞, +∞ ) |
| * ) |
| */ |
| real logGamma(real x) |
| { |
| /* Based on code from the CEPHES library. |
| * CEPHES code Copyright 1994 by Stephen L. Moshier |
| * |
| * For arguments greater than 33, the logarithm of the gamma |
| * function is approximated by the logarithmic version of |
| * Stirling's formula using a polynomial approximation of |
| * degree 4. Arguments between -33 and +33 are reduced by |
| * recurrence to the interval [2,3] of a rational approximation. |
| * The cosecant reflection formula is employed for arguments |
| * less than -33. |
| */ |
| real q, w, z, f, nx; |
| |
| if (isNaN(x)) return x; |
| if (fabs(x) == x.infinity) return x.infinity; |
| |
| if ( x < -34.0L ) |
| { |
| q = -x; |
| w = logGamma(q); |
| real p = floor(q); |
| if ( p == q ) |
| return real.infinity; |
| int intpart = cast(int)(p); |
| real sgngam = 1; |
| if ( (intpart & 1) == 0 ) |
| sgngam = -1; |
| z = q - p; |
| if ( z > 0.5L ) |
| { |
| p += 1.0L; |
| z = p - q; |
| } |
| z = q * sin( PI * z ); |
| if ( z == 0.0L ) |
| return sgngam * real.infinity; |
| /* z = LOGPI - logl( z ) - w; */ |
| z = log( PI/z ) - w; |
| return z; |
| } |
| |
| if ( x < 13.0L ) |
| { |
| z = 1.0L; |
| nx = floor( x + 0.5L ); |
| f = x - nx; |
| while ( x >= 3.0L ) |
| { |
| nx -= 1.0L; |
| x = nx + f; |
| z *= x; |
| } |
| while ( x < 2.0L ) |
| { |
| if ( fabs(x) <= 0.03125L ) |
| { |
| if ( x == 0.0L ) |
| return real.infinity; |
| if ( x < 0.0L ) |
| { |
| x = -x; |
| q = z / (x * poly( x, GammaSmallNegCoeffs)); |
| } else |
| q = z / (x * poly( x, GammaSmallCoeffs)); |
| return log( fabs(q) ); |
| } |
| z /= nx + f; |
| nx += 1.0L; |
| x = nx + f; |
| } |
| z = fabs(z); |
| if ( x == 2.0L ) |
| return log(z); |
| x = (nx - 2.0L) + f; |
| real p = x * rationalPoly( x, logGammaNumerator, logGammaDenominator); |
| return log(z) + p; |
| } |
| |
| // const real MAXLGM = 1.04848146839019521116e+4928L; |
| // if ( x > MAXLGM ) return sgngaml * real.infinity; |
| |
| const real LOGSQRT2PI = 0.91893853320467274178L; // log( sqrt( 2*pi ) ) |
| |
| q = ( x - 0.5L ) * log(x) - x + LOGSQRT2PI; |
| if (x > 1.0e10L) return q; |
| real p = 1.0L / (x*x); |
| q += poly( p, logGammaStirlingCoeffs ) / x; |
| return q ; |
| } |
| |
| @safe unittest |
| { |
| assert(isIdentical(logGamma(NaN(0xDEF)), NaN(0xDEF))); |
| assert(logGamma(real.infinity) == real.infinity); |
| assert(logGamma(-1.0) == real.infinity); |
| assert(logGamma(0.0) == real.infinity); |
| assert(logGamma(-50.0) == real.infinity); |
| assert(isIdentical(0.0L, logGamma(1.0L))); |
| assert(isIdentical(0.0L, logGamma(2.0L))); |
| assert(logGamma(real.min_normal*real.epsilon) == real.infinity); |
| assert(logGamma(-real.min_normal*real.epsilon) == real.infinity); |
| |
| // x, correct loggamma(x), correct d/dx loggamma(x). |
| immutable static real[] testpoints = [ |
| 8.0L, 8.525146484375L + 1.48766904143001655310E-5, 2.01564147795560999654E0L, |
| 8.99993896484375e-1L, 6.6375732421875e-2L + 5.11505711292524166220E-6L, -7.54938684259372234258E-1, |
| 7.31597900390625e-1L, 2.2369384765625e-1 + 5.21506341809849792422E-6L, -1.13355566660398608343E0L, |
| 2.31639862060546875e-1L, 1.3686676025390625L + 1.12609441752996145670E-5L, -4.56670961813812679012E0, |
| 1.73162841796875L, -8.88214111328125e-2L + 3.36207740803753034508E-6L, 2.33339034686200586920E-1L, |
| 1.23162841796875L, -9.3902587890625e-2L + 1.28765089229009648104E-5L, -2.49677345775751390414E-1L, |
| 7.3786976294838206464e19L, 3.301798506038663053312e21L - 1.656137564136932662487046269677E5L, |
| 4.57477139169563904215E1L, |
| 1.08420217248550443401E-19L, 4.36682586669921875e1L + 1.37082843669932230418E-5L, |
| -9.22337203685477580858E18L, |
| 1.0L, 0.0L, -5.77215664901532860607E-1L, |
| 2.0L, 0.0L, 4.22784335098467139393E-1L, |
| -0.5L, 1.2655029296875L + 9.19379714539648894580E-6L, 3.64899739785765205590E-2L, |
| -1.5L, 8.6004638671875e-1L + 6.28657731014510932682E-7L, 7.03156640645243187226E-1L, |
| -2.5L, -5.6243896484375E-2L + 1.79986700949327405470E-7, 1.10315664064524318723E0L, |
| -3.5L, -1.30902099609375L + 1.43111007079536392848E-5L, 1.38887092635952890151E0L |
| ]; |
| // TODO: test derivatives as well. |
| for (int i=0; i<testpoints.length; i+=3) |
| { |
| assert( feqrel(logGamma(testpoints[i]), testpoints[i+1]) > real.mant_dig-5); |
| if (testpoints[i]<MAXGAMMA) |
| { |
| assert( feqrel(log(fabs(gamma(testpoints[i]))), testpoints[i+1]) > real.mant_dig-5); |
| } |
| } |
| assert(feqrel(logGamma(-50.2L),log(fabs(gamma(-50.2L)))) > real.mant_dig-2); |
| assert(feqrel(logGamma(-0.008L),log(fabs(gamma(-0.008L)))) > real.mant_dig-2); |
| assert(feqrel(logGamma(-38.8L),log(fabs(gamma(-38.8L)))) > real.mant_dig-4); |
| static if (real.mant_dig >= 64) // incl. 80-bit reals |
| assert(feqrel(logGamma(1500.0L),log(gamma(1500.0L))) > real.mant_dig-2); |
| else static if (real.mant_dig >= 53) // incl. 64-bit reals |
| assert(feqrel(logGamma(150.0L),log(gamma(150.0L))) > real.mant_dig-2); |
| } |
| |
| |
| private { |
| /* |
| * These value can be calculated like this: |
| * 1) Get exact real.max/min_normal/epsilon from compiler: |
| * writefln!"%a"(real.max/min_normal_epsilon) |
| * 2) Convert for Wolfram Alpha |
| * 0xf.fffffffffffffffp+16380 ==> (f.fffffffffffffff base 16) * 2^16380 |
| * 3) Calculate result on wofram alpha: |
| * http://www.wolframalpha.com/input/?i=ln((1.ffffffffffffffffffffffffffff+base+16)+*+2%5E16383)+in+base+2 |
| * 4) Convert to proper format: |
| * string mantissa = "1.011..."; |
| * write(mantissa[0 .. 2]); mantissa = mantissa[2 .. $]; |
| * for (size_t i = 0; i < mantissa.length/4; i++) |
| * { |
| * writef!"%x"(to!ubyte(mantissa[0 .. 4], 2)); mantissa = mantissa[4 .. $]; |
| * } |
| */ |
| static if (floatTraits!(real).realFormat == RealFormat.ieeeQuadruple) |
| { |
| enum real MAXLOG = 0x1.62e42fefa39ef35793c7673007e6p+13L; // log(real.max) |
| enum real MINLOG = -0x1.6546282207802c89d24d65e96274p+13L; // log(real.min_normal*real.epsilon) = log(smallest denormal) |
| } |
| else static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended) |
| { |
| enum real MAXLOG = 0x1.62e42fefa39ef358p+13L; // log(real.max) |
| enum real MINLOG = -0x1.6436716d5406e6d8p+13L; // log(real.min_normal*real.epsilon) = log(smallest denormal) |
| } |
| else static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended53) |
| { |
| enum real MAXLOG = 0x1.62e42fefa39ef358p+13L; // log(real.max) |
| enum real MINLOG = -0x1.6436716d5406e6d8p+13L; // log(real.min_normal*real.epsilon) = log(smallest denormal) |
| } |
| else static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble) |
| { |
| enum real MAXLOG = 0x1.62e42fefa39efp+9L; // log(real.max) |
| enum real MINLOG = -0x1.74385446d71c3p+9L; // log(real.min_normal*real.epsilon) = log(smallest denormal) |
| } |
| else |
| static assert(0, "missing MAXLOG and MINLOG for other real types"); |
| |
| enum real BETA_BIG = 9.223372036854775808e18L; |
| enum real BETA_BIGINV = 1.084202172485504434007e-19L; |
| } |
| |
| /** Incomplete beta integral |
| * |
| * Returns incomplete beta integral of the arguments, evaluated |
| * from zero to x. The regularized incomplete beta function is defined as |
| * |
| * betaIncomplete(a, b, x) = Γ(a+b)/(Γ(a) Γ(b)) * |
| * $(INTEGRATE 0, x) $(POWER t, a-1)$(POWER (1-t),b-1) dt |
| * |
| * and is the same as the cumulative distribution function. |
| * |
| * The domain of definition is 0 <= x <= 1. In this |
| * implementation a and b are restricted to positive values. |
| * The integral from x to 1 may be obtained by the symmetry |
| * relation |
| * |
| * betaIncompleteCompl(a, b, x ) = betaIncomplete( b, a, 1-x ) |
| * |
| * The integral is evaluated by a continued fraction expansion |
| * or, when b*x is small, by a power series. |
| */ |
| real betaIncomplete(real aa, real bb, real xx ) |
| { |
| if ( !(aa>0 && bb>0) ) |
| { |
| if ( isNaN(aa) ) return aa; |
| if ( isNaN(bb) ) return bb; |
| return real.nan; // domain error |
| } |
| if (!(xx>0 && xx<1.0)) |
| { |
| if (isNaN(xx)) return xx; |
| if ( xx == 0.0L ) return 0.0; |
| if ( xx == 1.0L ) return 1.0; |
| return real.nan; // domain error |
| } |
| if ( (bb * xx) <= 1.0L && xx <= 0.95L) |
| { |
| return betaDistPowerSeries(aa, bb, xx); |
| } |
| real x; |
| real xc; // = 1 - x |
| |
| real a, b; |
| int flag = 0; |
| |
| /* Reverse a and b if x is greater than the mean. */ |
| if ( xx > (aa/(aa+bb)) ) |
| { |
| // here x > aa/(aa+bb) and (bb*x>1 or x>0.95) |
| flag = 1; |
| a = bb; |
| b = aa; |
| xc = xx; |
| x = 1.0L - xx; |
| } |
| else |
| { |
| a = aa; |
| b = bb; |
| xc = 1.0L - xx; |
| x = xx; |
| } |
| |
| if ( flag == 1 && (b * x) <= 1.0L && x <= 0.95L) |
| { |
| // here xx > aa/(aa+bb) and ((bb*xx>1) or xx>0.95) and (aa*(1-xx)<=1) and xx > 0.05 |
| return 1.0 - betaDistPowerSeries(a, b, x); // note loss of precision |
| } |
| |
| real w; |
| // Choose expansion for optimal convergence |
| // One is for x * (a+b+2) < (a+1), |
| // the other is for x * (a+b+2) > (a+1). |
| real y = x * (a+b-2.0L) - (a-1.0L); |
| if ( y < 0.0L ) |
| { |
| w = betaDistExpansion1( a, b, x ); |
| } |
| else |
| { |
| w = betaDistExpansion2( a, b, x ) / xc; |
| } |
| |
| /* Multiply w by the factor |
| a b |
| x (1-x) Gamma(a+b) / ( a Gamma(a) Gamma(b) ) . */ |
| |
| y = a * log(x); |
| real t = b * log(xc); |
| if ( (a+b) < MAXGAMMA && fabs(y) < MAXLOG && fabs(t) < MAXLOG ) |
| { |
| t = pow(xc,b); |
| t *= pow(x,a); |
| t /= a; |
| t *= w; |
| t *= gamma(a+b) / (gamma(a) * gamma(b)); |
| } |
| else |
| { |
| /* Resort to logarithms. */ |
| y += t + logGamma(a+b) - logGamma(a) - logGamma(b); |
| y += log(w/a); |
| |
| t = exp(y); |
| /+ |
| // There seems to be a bug in Cephes at this point. |
| // Problems occur for y > MAXLOG, not y < MINLOG. |
| if ( y < MINLOG ) |
| { |
| t = 0.0L; |
| } |
| else |
| { |
| t = exp(y); |
| } |
| +/ |
| } |
| if ( flag == 1 ) |
| { |
| /+ // CEPHES includes this code, but I think it is erroneous. |
| if ( t <= real.epsilon ) |
| { |
| t = 1.0L - real.epsilon; |
| } else |
| +/ |
| t = 1.0L - t; |
| } |
| return t; |
| } |
| |
| /** Inverse of incomplete beta integral |
| * |
| * Given y, the function finds x such that |
| * |
| * betaIncomplete(a, b, x) == y |
| * |
| * Newton iterations or interval halving is used. |
| */ |
| real betaIncompleteInv(real aa, real bb, real yy0 ) |
| { |
| real a, b, y0, d, y, x, x0, x1, lgm, yp, di, dithresh, yl, yh, xt; |
| int i, rflg, dir, nflg; |
| |
| if (isNaN(yy0)) return yy0; |
| if (isNaN(aa)) return aa; |
| if (isNaN(bb)) return bb; |
| if ( yy0 <= 0.0L ) |
| return 0.0L; |
| if ( yy0 >= 1.0L ) |
| return 1.0L; |
| x0 = 0.0L; |
| yl = 0.0L; |
| x1 = 1.0L; |
| yh = 1.0L; |
| if ( aa <= 1.0L || bb <= 1.0L ) |
| { |
| dithresh = 1.0e-7L; |
| rflg = 0; |
| a = aa; |
| b = bb; |
| y0 = yy0; |
| x = a/(a+b); |
| y = betaIncomplete( a, b, x ); |
| nflg = 0; |
| goto ihalve; |
| } |
| else |
| { |
| nflg = 0; |
| dithresh = 1.0e-4L; |
| } |
| |
| // approximation to inverse function |
| |
| yp = -normalDistributionInvImpl( yy0 ); |
| |
| if ( yy0 > 0.5L ) |
| { |
| rflg = 1; |
| a = bb; |
| b = aa; |
| y0 = 1.0L - yy0; |
| yp = -yp; |
| } |
| else |
| { |
| rflg = 0; |
| a = aa; |
| b = bb; |
| y0 = yy0; |
| } |
| |
| lgm = (yp * yp - 3.0L)/6.0L; |
| x = 2.0L/( 1.0L/(2.0L * a-1.0L) + 1.0L/(2.0L * b - 1.0L) ); |
| d = yp * sqrt( x + lgm ) / x |
| - ( 1.0L/(2.0L * b - 1.0L) - 1.0L/(2.0L * a - 1.0L) ) |
| * (lgm + (5.0L/6.0L) - 2.0L/(3.0L * x)); |
| d = 2.0L * d; |
| if ( d < MINLOG ) |
| { |
| x = 1.0L; |
| goto under; |
| } |
| x = a/( a + b * exp(d) ); |
| y = betaIncomplete( a, b, x ); |
| yp = (y - y0)/y0; |
| if ( fabs(yp) < 0.2 ) |
| goto newt; |
| |
| /* Resort to interval halving if not close enough. */ |
| ihalve: |
| |
| dir = 0; |
| di = 0.5L; |
| for ( i=0; i<400; i++ ) |
| { |
| if ( i != 0 ) |
| { |
| x = x0 + di * (x1 - x0); |
| if ( x == 1.0L ) |
| { |
| x = 1.0L - real.epsilon; |
| } |
| if ( x == 0.0L ) |
| { |
| di = 0.5; |
| x = x0 + di * (x1 - x0); |
| if ( x == 0.0 ) |
| goto under; |
| } |
| y = betaIncomplete( a, b, x ); |
| yp = (x1 - x0)/(x1 + x0); |
| if ( fabs(yp) < dithresh ) |
| goto newt; |
| yp = (y-y0)/y0; |
| if ( fabs(yp) < dithresh ) |
| goto newt; |
| } |
| if ( y < y0 ) |
| { |
| x0 = x; |
| yl = y; |
| if ( dir < 0 ) |
| { |
| dir = 0; |
| di = 0.5L; |
| } else if ( dir > 3 ) |
| di = 1.0L - (1.0L - di) * (1.0L - di); |
| else if ( dir > 1 ) |
| di = 0.5L * di + 0.5L; |
| else |
| di = (y0 - y)/(yh - yl); |
| dir += 1; |
| if ( x0 > 0.95L ) |
| { |
| if ( rflg == 1 ) |
| { |
| rflg = 0; |
| a = aa; |
| b = bb; |
| y0 = yy0; |
| } |
| else |
| { |
| rflg = 1; |
| a = bb; |
| b = aa; |
| y0 = 1.0 - yy0; |
| } |
| x = 1.0L - x; |
| y = betaIncomplete( a, b, x ); |
| x0 = 0.0; |
| yl = 0.0; |
| x1 = 1.0; |
| yh = 1.0; |
| goto ihalve; |
| } |
| } |
| else |
| { |
| x1 = x; |
| if ( rflg == 1 && x1 < real.epsilon ) |
| { |
| x = 0.0L; |
| goto done; |
| } |
| yh = y; |
| if ( dir > 0 ) |
| { |
| dir = 0; |
| di = 0.5L; |
| } |
| else if ( dir < -3 ) |
| di = di * di; |
| else if ( dir < -1 ) |
| di = 0.5L * di; |
| else |
| di = (y - y0)/(yh - yl); |
| dir -= 1; |
| } |
| } |
| if ( x0 >= 1.0L ) |
| { |
| // partial loss of precision |
| x = 1.0L - real.epsilon; |
| goto done; |
| } |
| if ( x <= 0.0L ) |
| { |
| under: |
| // underflow has occurred |
| x = real.min_normal * real.min_normal; |
| goto done; |
| } |
| |
| newt: |
| |
| if ( nflg ) |
| { |
| goto done; |
| } |
| nflg = 1; |
| lgm = logGamma(a+b) - logGamma(a) - logGamma(b); |
| |
| for ( i=0; i<15; i++ ) |
| { |
| /* Compute the function at this point. */ |
| if ( i != 0 ) |
| y = betaIncomplete(a,b,x); |
| if ( y < yl ) |
| { |
| x = x0; |
| y = yl; |
| } |
| else if ( y > yh ) |
| { |
| x = x1; |
| y = yh; |
| } |
| else if ( y < y0 ) |
| { |
| x0 = x; |
| yl = y; |
| } |
| else |
| { |
| x1 = x; |
| yh = y; |
| } |
| if ( x == 1.0L || x == 0.0L ) |
| break; |
| /* Compute the derivative of the function at this point. */ |
| d = (a - 1.0L) * log(x) + (b - 1.0L) * log(1.0L - x) + lgm; |
| if ( d < MINLOG ) |
| { |
| goto done; |
| } |
| if ( d > MAXLOG ) |
| { |
| break; |
| } |
| d = exp(d); |
| /* Compute the step to the next approximation of x. */ |
| d = (y - y0)/d; |
| xt = x - d; |
| if ( xt <= x0 ) |
| { |
| y = (x - x0) / (x1 - x0); |
| xt = x0 + 0.5L * y * (x - x0); |
| if ( xt <= 0.0L ) |
| break; |
| } |
| if ( xt >= x1 ) |
| { |
| y = (x1 - x) / (x1 - x0); |
| xt = x1 - 0.5L * y * (x1 - x); |
| if ( xt >= 1.0L ) |
| break; |
| } |
| x = xt; |
| if ( fabs(d/x) < (128.0L * real.epsilon) ) |
| goto done; |
| } |
| /* Did not converge. */ |
| dithresh = 256.0L * real.epsilon; |
| goto ihalve; |
| |
| done: |
| if ( rflg ) |
| { |
| if ( x <= real.epsilon ) |
| x = 1.0L - real.epsilon; |
| else |
| x = 1.0L - x; |
| } |
| return x; |
| } |
| |
| @safe unittest { // also tested by the normal distribution |
| // check NaN propagation |
| assert(isIdentical(betaIncomplete(NaN(0xABC),2,3), NaN(0xABC))); |
| assert(isIdentical(betaIncomplete(7,NaN(0xABC),3), NaN(0xABC))); |
| assert(isIdentical(betaIncomplete(7,15,NaN(0xABC)), NaN(0xABC))); |
| assert(isIdentical(betaIncompleteInv(NaN(0xABC),1,17), NaN(0xABC))); |
| assert(isIdentical(betaIncompleteInv(2,NaN(0xABC),8), NaN(0xABC))); |
| assert(isIdentical(betaIncompleteInv(2,3, NaN(0xABC)), NaN(0xABC))); |
| |
| assert(isNaN(betaIncomplete(-1, 2, 3))); |
| |
| assert(betaIncomplete(1, 2, 0)==0); |
| assert(betaIncomplete(1, 2, 1)==1); |
| assert(isNaN(betaIncomplete(1, 2, 3))); |
| assert(betaIncompleteInv(1, 1, 0)==0); |
| assert(betaIncompleteInv(1, 1, 1)==1); |
| |
| // Test against Mathematica betaRegularized[z,a,b] |
| // These arbitrary points are chosen to give good code coverage. |
| assert(feqrel(betaIncomplete(8, 10, 0.2L), 0.010_934_315_234_099_2L) >= real.mant_dig - 5); |
| assert(feqrel(betaIncomplete(2, 2.5L, 0.9L), 0.989_722_597_604_452_767_171_003_59L) >= real.mant_dig - 1); |
| static if (real.mant_dig >= 64) // incl. 80-bit reals |
| assert(feqrel(betaIncomplete(1000, 800, 0.5L), 1.179140859734704555102808541457164E-06L) >= real.mant_dig - 13); |
| else |
| assert(feqrel(betaIncomplete(1000, 800, 0.5L), 1.179140859734704555102808541457164E-06L) >= real.mant_dig - 14); |
| assert(feqrel(betaIncomplete(0.0001, 10000, 0.0001L), 0.999978059362107134278786L) >= real.mant_dig - 18); |
| assert(betaIncomplete(0.01L, 327726.7L, 0.545113L) == 1.0); |
| assert(feqrel(betaIncompleteInv(8, 10, 0.010_934_315_234_099_2L), 0.2L) >= real.mant_dig - 2); |
| assert(feqrel(betaIncomplete(0.01L, 498.437L, 0.0121433L), 0.99999664562033077636065L) >= real.mant_dig - 1); |
| assert(feqrel(betaIncompleteInv(5, 10, 0.2000002972865658842L), 0.229121208190918L) >= real.mant_dig - 3); |
| assert(feqrel(betaIncompleteInv(4, 7, 0.8000002209179505L), 0.483657360076904L) >= real.mant_dig - 3); |
| |
| // Coverage tests. I don't have correct values for these tests, but |
| // these values cover most of the code, so they are useful for |
| // regression testing. |
| // Extensive testing failed to increase the coverage. It seems likely that about |
| // half the code in this function is unnecessary; there is potential for |
| // significant improvement over the original CEPHES code. |
| static if (real.mant_dig == 64) // 80-bit reals |
| { |
| assert(betaIncompleteInv(0.01L, 8e-48L, 5.45464e-20L) == 1-real.epsilon); |
| assert(betaIncompleteInv(0.01L, 8e-48L, 9e-26L) == 1-real.epsilon); |
| |
| // Beware: a one-bit change in pow() changes almost all digits in the result! |
| assert(feqrel( |
| betaIncompleteInv(0x1.b3d151fbba0eb18p+1L, 1.2265e-19L, 2.44859e-18L), |
| 0x1.c0110c8531d0952cp-1L |
| ) > 10); |
| // This next case uncovered a one-bit difference in the FYL2X instruction |
| // between Intel and AMD processors. This difference gets magnified by 2^^38. |
| // WolframAlpha crashes attempting to calculate this. |
| assert(feqrel(betaIncompleteInv(0x1.ff1275ae5b939bcap-41L, 4.6713e18L, 0.0813601L), |
| 0x1.f97749d90c7adba8p-63L) >= real.mant_dig - 39); |
| real a1 = 3.40483L; |
| assert(betaIncompleteInv(a1, 4.0640301659679627772e19L, 0.545113L) == 0x1.ba8c08108aaf5d14p-109L); |
| real b1 = 2.82847e-25L; |
| assert(feqrel(betaIncompleteInv(0.01L, b1, 9e-26L), 0x1.549696104490aa9p-830L) >= real.mant_dig-10); |
| |
| // --- Problematic cases --- |
| // This is a situation where the series expansion fails to converge |
| assert( isNaN(betaIncompleteInv(0.12167L, 4.0640301659679627772e19L, 0.0813601L))); |
| // This next result is almost certainly erroneous. |
| // Mathematica states: "(cannot be determined by current methods)" |
| assert(betaIncomplete(1.16251e20L, 2.18e39L, 5.45e-20L) == -real.infinity); |
| // WolframAlpha gives no result for this, though indicates that it approximately 1.0 - 1.3e-9 |
| assert(1 - betaIncomplete(0.01L, 328222, 4.0375e-5L) == 0x1.5f62926b4p-30L); |
| } |
| } |
| |
| |
| private { |
| // Implementation functions |
| |
| // Continued fraction expansion #1 for incomplete beta integral |
| // Use when x < (a+1)/(a+b+2) |
| real betaDistExpansion1(real a, real b, real x ) |
| { |
| real xk, pk, pkm1, pkm2, qk, qkm1, qkm2; |
| real k1, k2, k3, k4, k5, k6, k7, k8; |
| real r, t, ans; |
| int n; |
| |
| k1 = a; |
| k2 = a + b; |
| k3 = a; |
| k4 = a + 1.0L; |
| k5 = 1.0L; |
| k6 = b - 1.0L; |
| k7 = k4; |
| k8 = a + 2.0L; |
| |
| pkm2 = 0.0L; |
| qkm2 = 1.0L; |
| pkm1 = 1.0L; |
| qkm1 = 1.0L; |
| ans = 1.0L; |
| r = 1.0L; |
| n = 0; |
| const real thresh = 3.0L * real.epsilon; |
| do |
| { |
| xk = -( x * k1 * k2 )/( k3 * k4 ); |
| pk = pkm1 + pkm2 * xk; |
| qk = qkm1 + qkm2 * xk; |
| pkm2 = pkm1; |
| pkm1 = pk; |
| qkm2 = qkm1; |
| qkm1 = qk; |
| |
| xk = ( x * k5 * k6 )/( k7 * k8 ); |
| pk = pkm1 + pkm2 * xk; |
| qk = qkm1 + qkm2 * xk; |
| pkm2 = pkm1; |
| pkm1 = pk; |
| qkm2 = qkm1; |
| qkm1 = qk; |
| |
| if ( qk != 0.0L ) |
| r = pk/qk; |
| if ( r != 0.0L ) |
| { |
| t = fabs( (ans - r)/r ); |
| ans = r; |
| } |
| else |
| { |
| t = 1.0L; |
| } |
| |
| if ( t < thresh ) |
| return ans; |
| |
| k1 += 1.0L; |
| k2 += 1.0L; |
| k3 += 2.0L; |
| k4 += 2.0L; |
| k5 += 1.0L; |
| k6 -= 1.0L; |
| k7 += 2.0L; |
| k8 += 2.0L; |
| |
| if ( (fabs(qk) + fabs(pk)) > BETA_BIG ) |
| { |
| pkm2 *= BETA_BIGINV; |
| pkm1 *= BETA_BIGINV; |
| qkm2 *= BETA_BIGINV; |
| qkm1 *= BETA_BIGINV; |
| } |
| if ( (fabs(qk) < BETA_BIGINV) || (fabs(pk) < BETA_BIGINV) ) |
| { |
| pkm2 *= BETA_BIG; |
| pkm1 *= BETA_BIG; |
| qkm2 *= BETA_BIG; |
| qkm1 *= BETA_BIG; |
| } |
| } |
| while ( ++n < 400 ); |
| // loss of precision has occurred |
| // mtherr( "incbetl", PLOSS ); |
| return ans; |
| } |
| |
| // Continued fraction expansion #2 for incomplete beta integral |
| // Use when x > (a+1)/(a+b+2) |
| real betaDistExpansion2(real a, real b, real x ) |
| { |
| real xk, pk, pkm1, pkm2, qk, qkm1, qkm2; |
| real k1, k2, k3, k4, k5, k6, k7, k8; |
| real r, t, ans, z; |
| |
| k1 = a; |
| k2 = b - 1.0L; |
| k3 = a; |
| k4 = a + 1.0L; |
| k5 = 1.0L; |
| k6 = a + b; |
| k7 = a + 1.0L; |
| k8 = a + 2.0L; |
| |
| pkm2 = 0.0L; |
| qkm2 = 1.0L; |
| pkm1 = 1.0L; |
| qkm1 = 1.0L; |
| z = x / (1.0L-x); |
| ans = 1.0L; |
| r = 1.0L; |
| int n = 0; |
| const real thresh = 3.0L * real.epsilon; |
| do |
| { |
| xk = -( z * k1 * k2 )/( k3 * k4 ); |
| pk = pkm1 + pkm2 * xk; |
| qk = qkm1 + qkm2 * xk; |
| pkm2 = pkm1; |
| pkm1 = pk; |
| qkm2 = qkm1; |
| qkm1 = qk; |
| |
| xk = ( z * k5 * k6 )/( k7 * k8 ); |
| pk = pkm1 + pkm2 * xk; |
| qk = qkm1 + qkm2 * xk; |
| pkm2 = pkm1; |
| pkm1 = pk; |
| qkm2 = qkm1; |
| qkm1 = qk; |
| |
| if ( qk != 0.0L ) |
| r = pk/qk; |
| if ( r != 0.0L ) |
| { |
| t = fabs( (ans - r)/r ); |
| ans = r; |
| } else |
| t = 1.0L; |
| |
| if ( t < thresh ) |
| return ans; |
| k1 += 1.0L; |
| k2 -= 1.0L; |
| k3 += 2.0L; |
| k4 += 2.0L; |
| k5 += 1.0L; |
| k6 += 1.0L; |
| k7 += 2.0L; |
| k8 += 2.0L; |
| |
| if ( (fabs(qk) + fabs(pk)) > BETA_BIG ) |
| { |
| pkm2 *= BETA_BIGINV; |
| pkm1 *= BETA_BIGINV; |
| qkm2 *= BETA_BIGINV; |
| qkm1 *= BETA_BIGINV; |
| } |
| if ( (fabs(qk) < BETA_BIGINV) || (fabs(pk) < BETA_BIGINV) ) |
| { |
| pkm2 *= BETA_BIG; |
| pkm1 *= BETA_BIG; |
| qkm2 *= BETA_BIG; |
| qkm1 *= BETA_BIG; |
| } |
| } while ( ++n < 400 ); |
| // loss of precision has occurred |
| //mtherr( "incbetl", PLOSS ); |
| return ans; |
| } |
| |
| /* Power series for incomplete gamma integral. |
| Use when b*x is small. */ |
| real betaDistPowerSeries(real a, real b, real x ) |
| { |
| real ai = 1.0L / a; |
| real u = (1.0L - b) * x; |
| real v = u / (a + 1.0L); |
| real t1 = v; |
| real t = u; |
| real n = 2.0L; |
| real s = 0.0L; |
| real z = real.epsilon * ai; |
| while ( fabs(v) > z ) |
| { |
| u = (n - b) * x / n; |
| t *= u; |
| v = t / (a + n); |
| s += v; |
| n += 1.0L; |
| } |
| s += t1; |
| s += ai; |
| |
| u = a * log(x); |
| if ( (a+b) < MAXGAMMA && fabs(u) < MAXLOG ) |
| { |
| t = gamma(a+b)/(gamma(a)*gamma(b)); |
| s = s * t * pow(x,a); |
| } |
| else |
| { |
| t = logGamma(a+b) - logGamma(a) - logGamma(b) + u + log(s); |
| |
| if ( t < MINLOG ) |
| { |
| s = 0.0L; |
| } else |
| s = exp(t); |
| } |
| return s; |
| } |
| |
| } |
| |
| /*************************************** |
| * Incomplete gamma integral and its complement |
| * |
| * These functions are defined by |
| * |
| * gammaIncomplete = ( $(INTEGRATE 0, x) $(POWER e, -t) $(POWER t, a-1) dt )/ $(GAMMA)(a) |
| * |
| * gammaIncompleteCompl(a,x) = 1 - gammaIncomplete(a,x) |
| * = ($(INTEGRATE x, ∞) $(POWER e, -t) $(POWER t, a-1) dt )/ $(GAMMA)(a) |
| * |
| * In this implementation both arguments must be positive. |
| * The integral is evaluated by either a power series or |
| * continued fraction expansion, depending on the relative |
| * values of a and x. |
| */ |
| real gammaIncomplete(real a, real x ) |
| in |
| { |
| assert(x >= 0); |
| assert(a > 0); |
| } |
| do |
| { |
| /* left tail of incomplete gamma function: |
| * |
| * inf. k |
| * a -x - x |
| * x e > ---------- |
| * - - |
| * k=0 | (a+k+1) |
| * |
| */ |
| if (x == 0) |
| return 0.0L; |
| |
| if ( (x > 1.0L) && (x > a ) ) |
| return 1.0L - gammaIncompleteCompl(a,x); |
| |
| real ax = a * log(x) - x - logGamma(a); |
| /+ |
| if ( ax < MINLOGL ) return 0; // underflow |
| // { mtherr( "igaml", UNDERFLOW ); return( 0.0L ); } |
| +/ |
| ax = exp(ax); |
| |
| /* power series */ |
| real r = a; |
| real c = 1.0L; |
| real ans = 1.0L; |
| |
| do |
| { |
| r += 1.0L; |
| c *= x/r; |
| ans += c; |
| } while ( c/ans > real.epsilon ); |
| |
| return ans * ax/a; |
| } |
| |
| /** ditto */ |
| real gammaIncompleteCompl(real a, real x ) |
| in |
| { |
| assert(x >= 0); |
| assert(a > 0); |
| } |
| do |
| { |
| if (x == 0) |
| return 1.0L; |
| if ( (x < 1.0L) || (x < a) ) |
| return 1.0L - gammaIncomplete(a,x); |
| |
| // DAC (Cephes bug fix): This is necessary to avoid |
| // spurious nans, eg |
| // log(x)-x = NaN when x = real.infinity |
| const real MAXLOGL = 1.1356523406294143949492E4L; |
| if (x > MAXLOGL) |
| return igammaTemmeLarge(a, x); |
| |
| real ax = a * log(x) - x - logGamma(a); |
| //const real MINLOGL = -1.1355137111933024058873E4L; |
| // if ( ax < MINLOGL ) return 0; // underflow; |
| ax = exp(ax); |
| |
| |
| /* continued fraction */ |
| real y = 1.0L - a; |
| real z = x + y + 1.0L; |
| real c = 0.0L; |
| |
| real pk, qk, t; |
| |
| real pkm2 = 1.0L; |
| real qkm2 = x; |
| real pkm1 = x + 1.0L; |
| real qkm1 = z * x; |
| real ans = pkm1/qkm1; |
| |
| do |
| { |
| c += 1.0L; |
| y += 1.0L; |
| z += 2.0L; |
| real yc = y * c; |
| pk = pkm1 * z - pkm2 * yc; |
| qk = qkm1 * z - qkm2 * yc; |
| if ( qk != 0.0L ) |
| { |
| real r = pk/qk; |
| t = fabs( (ans - r)/r ); |
| ans = r; |
| } |
| else |
| { |
| t = 1.0L; |
| } |
| pkm2 = pkm1; |
| pkm1 = pk; |
| qkm2 = qkm1; |
| qkm1 = qk; |
| |
| const real BIG = 9.223372036854775808e18L; |
| |
| if ( fabs(pk) > BIG ) |
| { |
| pkm2 /= BIG; |
| pkm1 /= BIG; |
| qkm2 /= BIG; |
| qkm1 /= BIG; |
| } |
| } while ( t > real.epsilon ); |
| |
| return ans * ax; |
| } |
| |
| /** Inverse of complemented incomplete gamma integral |
| * |
| * Given a and p, the function finds x such that |
| * |
| * gammaIncompleteCompl( a, x ) = p. |
| * |
| * Starting with the approximate value x = a $(POWER t, 3), where |
| * t = 1 - d - normalDistributionInv(p) sqrt(d), |
| * and d = 1/9a, |
| * the routine performs up to 10 Newton iterations to find the |
| * root of incompleteGammaCompl(a,x) - p = 0. |
| */ |
| real gammaIncompleteComplInv(real a, real p) |
| in |
| { |
| assert(p >= 0 && p <= 1); |
| assert(a>0); |
| } |
| do |
| { |
| if (p == 0) return real.infinity; |
| |
| real y0 = p; |
| const real MAXLOGL = 1.1356523406294143949492E4L; |
| real x0, x1, x, yl, yh, y, d, lgm, dithresh; |
| int i, dir; |
| |
| /* bound the solution */ |
| x0 = real.max; |
| yl = 0.0L; |
| x1 = 0.0L; |
| yh = 1.0L; |
| dithresh = 4.0 * real.epsilon; |
| |
| /* approximation to inverse function */ |
| d = 1.0L/(9.0L*a); |
| y = 1.0L - d - normalDistributionInvImpl(y0) * sqrt(d); |
| x = a * y * y * y; |
| |
| lgm = logGamma(a); |
| |
| for ( i=0; i<10; i++ ) |
| { |
| if ( x > x0 || x < x1 ) |
| goto ihalve; |
| y = gammaIncompleteCompl(a,x); |
| if ( y < yl || y > yh ) |
| goto ihalve; |
| if ( y < y0 ) |
| { |
| x0 = x; |
| yl = y; |
| } |
| else |
| { |
| x1 = x; |
| yh = y; |
| } |
| /* compute the derivative of the function at this point */ |
| d = (a - 1.0L) * log(x0) - x0 - lgm; |
| if ( d < -MAXLOGL ) |
| goto ihalve; |
| d = -exp(d); |
| /* compute the step to the next approximation of x */ |
| d = (y - y0)/d; |
| x = x - d; |
| if ( i < 3 ) continue; |
| if ( fabs(d/x) < dithresh ) return x; |
| } |
| |
| /* Resort to interval halving if Newton iteration did not converge. */ |
| ihalve: |
| d = 0.0625L; |
| if ( x0 == real.max ) |
| { |
| if ( x <= 0.0L ) |
| x = 1.0L; |
| while ( x0 == real.max ) |
| { |
| x = (1.0L + d) * x; |
| y = gammaIncompleteCompl( a, x ); |
| if ( y < y0 ) |
| { |
| x0 = x; |
| yl = y; |
| break; |
| } |
| d = d + d; |
| } |
| } |
| d = 0.5L; |
| dir = 0; |
| |
| for ( i=0; i<400; i++ ) |
| { |
| x = x1 + d * (x0 - x1); |
| y = gammaIncompleteCompl( a, x ); |
| lgm = (x0 - x1)/(x1 + x0); |
| if ( fabs(lgm) < dithresh ) |
| break; |
| lgm = (y - y0)/y0; |
| if ( fabs(lgm) < dithresh ) |
| break; |
| if ( x <= 0.0L ) |
| break; |
| if ( y > y0 ) |
| { |
| x1 = x; |
| yh = y; |
| if ( dir < 0 ) |
| { |
| dir = 0; |
| d = 0.5L; |
| } else if ( dir > 1 ) |
| d = 0.5L * d + 0.5L; |
| else |
| d = (y0 - yl)/(yh - yl); |
| dir += 1; |
| } |
| else |
| { |
| x0 = x; |
| yl = y; |
| if ( dir > 0 ) |
| { |
| dir = 0; |
| d = 0.5L; |
| } else if ( dir < -1 ) |
| d = 0.5L * d; |
| else |
| d = (y0 - yl)/(yh - yl); |
| dir -= 1; |
| } |
| } |
| /+ |
| if ( x == 0.0L ) |
| mtherr( "igamil", UNDERFLOW ); |
| +/ |
| return x; |
| } |
| |
| @safe unittest |
| { |
| //Values from Excel's GammaInv(1-p, x, 1) |
| assert(fabs(gammaIncompleteComplInv(1, 0.5L) - 0.693147188044814L) < 0.00000005L); |
| assert(fabs(gammaIncompleteComplInv(12, 0.99L) - 5.42818075054289L) < 0.00000005L); |
| assert(fabs(gammaIncompleteComplInv(100, 0.8L) - 91.5013985848288L) < 0.000005L); |
| assert(gammaIncomplete(1, 0)==0); |
| assert(gammaIncompleteCompl(1, 0)==1); |
| assert(gammaIncomplete(4545, real.infinity)==1); |
| |
| // Values from Excel's (1-GammaDist(x, alpha, 1, TRUE)) |
| |
| assert(fabs(1.0L-gammaIncompleteCompl(0.5L, 2) - 0.954499729507309L) < 0.00000005L); |
| assert(fabs(gammaIncomplete(0.5L, 2) - 0.954499729507309L) < 0.00000005L); |
| // Fixed Cephes bug: |
| assert(gammaIncompleteCompl(384, real.infinity)==0); |
| assert(gammaIncompleteComplInv(3, 0)==real.infinity); |
| // Fixed a bug that caused gammaIncompleteCompl to return a wrong value when |
| // x was larger than a, but not by much, and both were large: |
| // The value is from WolframAlpha (Gamma[100000, 100001, inf] / Gamma[100000]) |
| static if (real.mant_dig >= 64) // incl. 80-bit reals |
| assert(fabs(gammaIncompleteCompl(100000, 100001) - 0.49831792109L) < 0.000000000005L); |
| else |
| assert(fabs(gammaIncompleteCompl(100000, 100001) - 0.49831792109L) < 0.00000005L); |
| } |
| |
| |
| // DAC: These values are Bn / n for n=2,4,6,8,10,12,14. |
| immutable real [7] Bn_n = [ |
| 1.0L/(6*2), -1.0L/(30*4), 1.0L/(42*6), -1.0L/(30*8), |
| 5.0L/(66*10), -691.0L/(2730*12), 7.0L/(6*14) ]; |
| |
| /** Digamma function |
| * |
| * The digamma function is the logarithmic derivative of the gamma function. |
| * |
| * digamma(x) = d/dx logGamma(x) |
| * |
| * References: |
| * 1. Abramowitz, M., and Stegun, I. A. (1970). |
| * Handbook of mathematical functions. Dover, New York, |
| * pages 258-259, equations 6.3.6 and 6.3.18. |
| */ |
| real digamma(real x) |
| { |
| // Based on CEPHES, Stephen L. Moshier. |
| |
| real p, q, nz, s, w, y, z; |
| long i, n; |
| int negative; |
| |
| negative = 0; |
| nz = 0.0; |
| |
| if ( x <= 0.0 ) |
| { |
| negative = 1; |
| q = x; |
| p = floor(q); |
| if ( p == q ) |
| { |
| return real.nan; // singularity. |
| } |
| /* Remove the zeros of tan(PI x) |
| * by subtracting the nearest integer from x |
| */ |
| nz = q - p; |
| if ( nz != 0.5 ) |
| { |
| if ( nz > 0.5 ) |
| { |
| p += 1.0; |
| nz = q - p; |
| } |
| nz = PI/tan(PI*nz); |
| } |
| else |
| { |
| nz = 0.0; |
| } |
| x = 1.0 - x; |
| } |
| |
| // check for small positive integer |
| if ((x <= 13.0) && (x == floor(x)) ) |
| { |
| y = 0.0; |
| n = lrint(x); |
| // DAC: CEPHES bugfix. Cephes did this in reverse order, which |
| // created a larger roundoff error. |
| for (i=n-1; i>0; --i) |
| { |
| y+=1.0L/i; |
| } |
| y -= EULERGAMMA; |
| goto done; |
| } |
| |
| s = x; |
| w = 0.0; |
| while ( s < 10.0 ) |
| { |
| w += 1.0/s; |
| s += 1.0; |
| } |
| |
| if ( s < 1.0e17L ) |
| { |
| z = 1.0/(s * s); |
| y = z * poly(z, Bn_n); |
| } else |
| y = 0.0; |
| |
| y = log(s) - 0.5L/s - y - w; |
| |
| done: |
| if ( negative ) |
| { |
| y -= nz; |
| } |
| return y; |
| } |
| |
| @safe unittest |
| { |
| // Exact values |
| assert(digamma(1.0)== -EULERGAMMA); |
| assert(feqrel(digamma(0.25), -PI/2 - 3* LN2 - EULERGAMMA) >= real.mant_dig-7); |
| assert(feqrel(digamma(1.0L/6), -PI/2 *sqrt(3.0L) - 2* LN2 -1.5*log(3.0L) - EULERGAMMA) >= real.mant_dig-7); |
| assert(digamma(-5.0).isNaN()); |
| assert(feqrel(digamma(2.5), -EULERGAMMA - 2*LN2 + 2.0 + 2.0L/3) >= real.mant_dig-9); |
| assert(isIdentical(digamma(NaN(0xABC)), NaN(0xABC))); |
| |
| for (int k=1; k<40; ++k) |
| { |
| real y=0; |
| for (int u=k; u >= 1; --u) |
| { |
| y += 1.0L/u; |
| } |
| assert(feqrel(digamma(k+1.0), -EULERGAMMA + y) >= real.mant_dig-2); |
| } |
| } |
| |
| /** Log Minus Digamma function |
| * |
| * logmdigamma(x) = log(x) - digamma(x) |
| * |
| * References: |
| * 1. Abramowitz, M., and Stegun, I. A. (1970). |
| * Handbook of mathematical functions. Dover, New York, |
| * pages 258-259, equations 6.3.6 and 6.3.18. |
| */ |
| real logmdigamma(real x) |
| { |
| if (x <= 0.0) |
| { |
| if (x == 0.0) |
| { |
| return real.infinity; |
| } |
| return real.nan; |
| } |
| |
| real s = x; |
| real w = 0.0; |
| while ( s < 10.0 ) |
| { |
| w += 1.0/s; |
| s += 1.0; |
| } |
| |
| real y; |
| if ( s < 1.0e17L ) |
| { |
| immutable real z = 1.0/(s * s); |
| y = z * poly(z, Bn_n); |
| } else |
| y = 0.0; |
| |
| return x == s ? y + 0.5L/s : (log(x/s) + 0.5L/s + y + w); |
| } |
| |
| @safe unittest |
| { |
| assert(logmdigamma(-5.0).isNaN()); |
| assert(isIdentical(logmdigamma(NaN(0xABC)), NaN(0xABC))); |
| assert(logmdigamma(0.0) == real.infinity); |
| for (auto x = 0.01; x < 1.0; x += 0.1) |
| assert(isClose(digamma(x), log(x) - logmdigamma(x))); |
| for (auto x = 1.0; x < 15.0; x += 1.0) |
| assert(isClose(digamma(x), log(x) - logmdigamma(x))); |
| } |
| |
| /** Inverse of the Log Minus Digamma function |
| * |
| * Returns x such $(D log(x) - digamma(x) == y). |
| * |
| * References: |
| * 1. Abramowitz, M., and Stegun, I. A. (1970). |
| * Handbook of mathematical functions. Dover, New York, |
| * pages 258-259, equation 6.3.18. |
| * |
| * Authors: Ilya Yaroshenko |
| */ |
| real logmdigammaInverse(real y) |
| { |
| import std.numeric : findRoot; |
| // FIXME: should be returned back to enum. |
| // Fix requires CTFEable `log` on non-x86 targets (check both LDC and GDC). |
| immutable maxY = logmdigamma(real.min_normal); |
| assert(maxY > 0 && maxY <= real.max); |
| |
| if (y >= maxY) |
| { |
| //lim x->0 (log(x)-digamma(x))*x == 1 |
| return 1 / y; |
| } |
| if (y < 0) |
| { |
| return real.nan; |
| } |
| if (y < real.min_normal) |
| { |
| //6.3.18 |
| return 0.5 / y; |
| } |
| if (y > 0) |
| { |
| // x/2 <= logmdigamma(1 / x) <= x, x > 0 |
| // calls logmdigamma ~6 times |
| return 1 / findRoot((real x) => logmdigamma(1 / x) - y, y, 2*y); |
| } |
| return y; //NaN |
| } |
| |
| @safe unittest |
| { |
| import std.typecons; |
| //WolframAlpha, 22.02.2015 |
| immutable Tuple!(real, real)[5] testData = [ |
| tuple(1.0L, 0.615556766479594378978099158335549201923L), |
| tuple(1.0L/8, 4.15937801516894947161054974029150730555L), |
| tuple(1.0L/1024, 512.166612384991507850643277924243523243L), |
| tuple(0.000500083333325000003968249801594877323784632117L, 1000.0L), |
| tuple(1017.644138623741168814449776695062817947092468536L, 1.0L/1024), |
| ]; |
| foreach (test; testData) |
| assert(isClose(logmdigammaInverse(test[0]), test[1], 2e-15L)); |
| |
| assert(isClose(logmdigamma(logmdigammaInverse(1)), 1, 1e-15L)); |
| assert(isClose(logmdigamma(logmdigammaInverse(real.min_normal)), real.min_normal, 1e-15L)); |
| assert(isClose(logmdigamma(logmdigammaInverse(real.max/2)), real.max/2, 1e-15L)); |
| assert(isClose(logmdigammaInverse(logmdigamma(1)), 1, 1e-15L)); |
| assert(isClose(logmdigammaInverse(logmdigamma(real.min_normal)), real.min_normal, 1e-15L)); |
| assert(isClose(logmdigammaInverse(logmdigamma(real.max/2)), real.max/2, 1e-15L)); |
| } |