| // Written in the D programming language. |
| |
| /** |
| This is a submodule of $(MREF std, math). |
| |
| It contains several functions for introspection on numerical values. |
| |
| Copyright: Copyright The D Language Foundation 2000 - 2011. |
| License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0). |
| Authors: $(HTTP digitalmars.com, Walter Bright), Don Clugston, |
| Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger |
| Source: $(PHOBOSSRC std/math/traits.d) |
| |
| Macros: |
| NAN = $(RED NAN) |
| PLUSMN = ± |
| INFIN = ∞ |
| */ |
| |
| module std.math.traits; |
| |
| import std.traits : isFloatingPoint, isIntegral, isNumeric, isSigned; |
| |
| |
| /********************************* |
| * Determines if $(D_PARAM x) is NaN. |
| * Params: |
| * x = a floating point number. |
| * Returns: |
| * `true` if $(D_PARAM x) is Nan. |
| */ |
| bool isNaN(X)(X x) @nogc @trusted pure nothrow |
| if (isFloatingPoint!(X)) |
| { |
| version (all) |
| { |
| return x != x; |
| } |
| else |
| { |
| /* |
| Code kept for historical context. At least on Intel, the simple test |
| x != x uses one dedicated instruction (ucomiss/ucomisd) that runs in one |
| cycle. Code for 80- and 128-bits is larger but still smaller than the |
| integrals-based solutions below. Future revisions may enable the code |
| below conditionally depending on hardware. |
| */ |
| alias F = floatTraits!(X); |
| static if (F.realFormat == RealFormat.ieeeSingle) |
| { |
| const uint p = *cast(uint *)&x; |
| // Sign bit (MSB) is irrelevant so mask it out. |
| // Next 8 bits should be all set. |
| // At least one bit among the least significant 23 bits should be set. |
| return (p & 0x7FFF_FFFF) > 0x7F80_0000; |
| } |
| else static if (F.realFormat == RealFormat.ieeeDouble) |
| { |
| const ulong p = *cast(ulong *)&x; |
| // Sign bit (MSB) is irrelevant so mask it out. |
| // Next 11 bits should be all set. |
| // At least one bit among the least significant 52 bits should be set. |
| return (p & 0x7FFF_FFFF_FFFF_FFFF) > 0x7FF0_0000_0000_0000; |
| } |
| else static if (F.realFormat == RealFormat.ieeeExtended || |
| F.realFormat == RealFormat.ieeeExtended53) |
| { |
| const ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; |
| const ulong ps = *cast(ulong *)&x; |
| return e == F.EXPMASK && |
| ps & 0x7FFF_FFFF_FFFF_FFFF; // not infinity |
| } |
| else static if (F.realFormat == RealFormat.ieeeQuadruple) |
| { |
| const ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; |
| const ulong psLsb = (cast(ulong *)&x)[MANTISSA_LSB]; |
| const ulong psMsb = (cast(ulong *)&x)[MANTISSA_MSB]; |
| return e == F.EXPMASK && |
| (psLsb | (psMsb& 0x0000_FFFF_FFFF_FFFF)) != 0; |
| } |
| else |
| { |
| return x != x; |
| } |
| } |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert( isNaN(float.init)); |
| assert( isNaN(-double.init)); |
| assert( isNaN(real.nan)); |
| assert( isNaN(-real.nan)); |
| assert(!isNaN(cast(float) 53.6)); |
| assert(!isNaN(cast(real)-53.6)); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| import std.meta : AliasSeq; |
| |
| static foreach (T; AliasSeq!(float, double, real)) |
| {{ |
| // CTFE-able tests |
| assert(isNaN(T.init)); |
| assert(isNaN(-T.init)); |
| assert(isNaN(T.nan)); |
| assert(isNaN(-T.nan)); |
| assert(!isNaN(T.infinity)); |
| assert(!isNaN(-T.infinity)); |
| assert(!isNaN(cast(T) 53.6)); |
| assert(!isNaN(cast(T)-53.6)); |
| |
| // Runtime tests |
| shared T f; |
| f = T.init; |
| assert(isNaN(f)); |
| assert(isNaN(-f)); |
| f = T.nan; |
| assert(isNaN(f)); |
| assert(isNaN(-f)); |
| f = T.infinity; |
| assert(!isNaN(f)); |
| assert(!isNaN(-f)); |
| f = cast(T) 53.6; |
| assert(!isNaN(f)); |
| assert(!isNaN(-f)); |
| }} |
| } |
| |
| /********************************* |
| * Determines if $(D_PARAM x) is finite. |
| * Params: |
| * x = a floating point number. |
| * Returns: |
| * `true` if $(D_PARAM x) is finite. |
| */ |
| bool isFinite(X)(X x) @trusted pure nothrow @nogc |
| { |
| import std.math.traits : floatTraits, RealFormat; |
| |
| static if (__traits(isFloating, X)) |
| if (__ctfe) |
| return x == x && x != X.infinity && x != -X.infinity; |
| alias F = floatTraits!(X); |
| ushort* pe = cast(ushort *)&x; |
| return (pe[F.EXPPOS_SHORT] & F.EXPMASK) != F.EXPMASK; |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert( isFinite(1.23f)); |
| assert( isFinite(float.max)); |
| assert( isFinite(float.min_normal)); |
| assert(!isFinite(float.nan)); |
| assert(!isFinite(float.infinity)); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| assert(isFinite(1.23)); |
| assert(isFinite(double.max)); |
| assert(isFinite(double.min_normal)); |
| assert(!isFinite(double.nan)); |
| assert(!isFinite(double.infinity)); |
| |
| assert(isFinite(1.23L)); |
| assert(isFinite(real.max)); |
| assert(isFinite(real.min_normal)); |
| assert(!isFinite(real.nan)); |
| assert(!isFinite(real.infinity)); |
| |
| //CTFE |
| static assert(isFinite(1.23)); |
| static assert(isFinite(double.max)); |
| static assert(isFinite(double.min_normal)); |
| static assert(!isFinite(double.nan)); |
| static assert(!isFinite(double.infinity)); |
| |
| static assert(isFinite(1.23L)); |
| static assert(isFinite(real.max)); |
| static assert(isFinite(real.min_normal)); |
| static assert(!isFinite(real.nan)); |
| static assert(!isFinite(real.infinity)); |
| } |
| |
| |
| /********************************* |
| * Determines if $(D_PARAM x) is normalized. |
| * |
| * A normalized number must not be zero, subnormal, infinite nor $(NAN). |
| * |
| * Params: |
| * x = a floating point number. |
| * Returns: |
| * `true` if $(D_PARAM x) is normalized. |
| */ |
| |
| /* Need one for each format because subnormal floats might |
| * be converted to normal reals. |
| */ |
| bool isNormal(X)(X x) @trusted pure nothrow @nogc |
| { |
| import std.math.traits : floatTraits, RealFormat; |
| |
| static if (__traits(isFloating, X)) |
| if (__ctfe) |
| return (x <= -X.min_normal && x != -X.infinity) || (x >= X.min_normal && x != X.infinity); |
| alias F = floatTraits!(X); |
| ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; |
| return (e != F.EXPMASK && e != 0); |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| float f = 3; |
| double d = 500; |
| real e = 10e+48; |
| |
| assert(isNormal(f)); |
| assert(isNormal(d)); |
| assert(isNormal(e)); |
| f = d = e = 0; |
| assert(!isNormal(f)); |
| assert(!isNormal(d)); |
| assert(!isNormal(e)); |
| assert(!isNormal(real.infinity)); |
| assert(isNormal(-real.max)); |
| assert(!isNormal(real.min_normal/4)); |
| |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| // CTFE |
| enum float f = 3; |
| enum double d = 500; |
| enum real e = 10e+48; |
| |
| static assert(isNormal(f)); |
| static assert(isNormal(d)); |
| static assert(isNormal(e)); |
| |
| static assert(!isNormal(0.0f)); |
| static assert(!isNormal(0.0)); |
| static assert(!isNormal(0.0L)); |
| static assert(!isNormal(real.infinity)); |
| static assert(isNormal(-real.max)); |
| static assert(!isNormal(real.min_normal/4)); |
| } |
| |
| /********************************* |
| * Determines if $(D_PARAM x) is subnormal. |
| * |
| * Subnormals (also known as "denormal number"), have a 0 exponent |
| * and a 0 most significant mantissa bit. |
| * |
| * Params: |
| * x = a floating point number. |
| * Returns: |
| * `true` if $(D_PARAM x) is a denormal number. |
| */ |
| bool isSubnormal(X)(X x) @trusted pure nothrow @nogc |
| { |
| import std.math.traits : floatTraits, RealFormat, MANTISSA_MSB, MANTISSA_LSB; |
| |
| static if (__traits(isFloating, X)) |
| if (__ctfe) |
| return -X.min_normal < x && x < X.min_normal; |
| /* |
| Need one for each format because subnormal floats might |
| be converted to normal reals. |
| */ |
| alias F = floatTraits!(X); |
| static if (F.realFormat == RealFormat.ieeeSingle) |
| { |
| uint *p = cast(uint *)&x; |
| return (*p & F.EXPMASK_INT) == 0 && *p & F.MANTISSAMASK_INT; |
| } |
| else static if (F.realFormat == RealFormat.ieeeDouble) |
| { |
| uint *p = cast(uint *)&x; |
| return (p[MANTISSA_MSB] & F.EXPMASK_INT) == 0 |
| && (p[MANTISSA_LSB] || p[MANTISSA_MSB] & F.MANTISSAMASK_INT); |
| } |
| else static if (F.realFormat == RealFormat.ieeeQuadruple) |
| { |
| ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; |
| long* ps = cast(long *)&x; |
| return (e == 0 && |
| ((ps[MANTISSA_LSB]|(ps[MANTISSA_MSB]& 0x0000_FFFF_FFFF_FFFF)) != 0)); |
| } |
| else static if (F.realFormat == RealFormat.ieeeExtended || |
| F.realFormat == RealFormat.ieeeExtended53) |
| { |
| ushort* pe = cast(ushort *)&x; |
| long* ps = cast(long *)&x; |
| |
| return (pe[F.EXPPOS_SHORT] & F.EXPMASK) == 0 && *ps > 0; |
| } |
| else |
| { |
| static assert(false, "Not implemented for this architecture"); |
| } |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| import std.meta : AliasSeq; |
| |
| static foreach (T; AliasSeq!(float, double, real)) |
| {{ |
| T f; |
| for (f = 1.0; !isSubnormal(f); f /= 2) |
| assert(f != 0); |
| }} |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| static bool subnormalTest(T)() |
| { |
| T f; |
| for (f = 1.0; !isSubnormal(f); f /= 2) |
| if (f == 0) |
| return false; |
| return true; |
| } |
| static assert(subnormalTest!float()); |
| static assert(subnormalTest!double()); |
| static assert(subnormalTest!real()); |
| } |
| |
| /********************************* |
| * Determines if $(D_PARAM x) is $(PLUSMN)$(INFIN). |
| * Params: |
| * x = a floating point number. |
| * Returns: |
| * `true` if $(D_PARAM x) is $(PLUSMN)$(INFIN). |
| */ |
| bool isInfinity(X)(X x) @nogc @trusted pure nothrow |
| if (isFloatingPoint!(X)) |
| { |
| import std.math.traits : floatTraits, RealFormat, MANTISSA_MSB, MANTISSA_LSB; |
| |
| alias F = floatTraits!(X); |
| static if (F.realFormat == RealFormat.ieeeSingle) |
| { |
| return ((*cast(uint *)&x) & 0x7FFF_FFFF) == 0x7F80_0000; |
| } |
| else static if (F.realFormat == RealFormat.ieeeDouble) |
| { |
| return ((*cast(ulong *)&x) & 0x7FFF_FFFF_FFFF_FFFF) |
| == 0x7FF0_0000_0000_0000; |
| } |
| else static if (F.realFormat == RealFormat.ieeeExtended || |
| F.realFormat == RealFormat.ieeeExtended53) |
| { |
| const ushort e = cast(ushort)(F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]); |
| const ulong ps = *cast(ulong *)&x; |
| |
| // On Motorola 68K, infinity can have hidden bit = 1 or 0. On x86, it is always 1. |
| return e == F.EXPMASK && (ps & 0x7FFF_FFFF_FFFF_FFFF) == 0; |
| } |
| else static if (F.realFormat == RealFormat.ieeeQuadruple) |
| { |
| const long psLsb = (cast(long *)&x)[MANTISSA_LSB]; |
| const long psMsb = (cast(long *)&x)[MANTISSA_MSB]; |
| return (psLsb == 0) |
| && (psMsb & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_0000_0000_0000; |
| } |
| else |
| { |
| return (x < -X.max) || (X.max < x); |
| } |
| } |
| |
| /// |
| @nogc @safe pure nothrow unittest |
| { |
| assert(!isInfinity(float.init)); |
| assert(!isInfinity(-float.init)); |
| assert(!isInfinity(float.nan)); |
| assert(!isInfinity(-float.nan)); |
| assert(isInfinity(float.infinity)); |
| assert(isInfinity(-float.infinity)); |
| assert(isInfinity(-1.0f / 0.0f)); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| // CTFE-able tests |
| assert(!isInfinity(double.init)); |
| assert(!isInfinity(-double.init)); |
| assert(!isInfinity(double.nan)); |
| assert(!isInfinity(-double.nan)); |
| assert(isInfinity(double.infinity)); |
| assert(isInfinity(-double.infinity)); |
| assert(isInfinity(-1.0 / 0.0)); |
| |
| assert(!isInfinity(real.init)); |
| assert(!isInfinity(-real.init)); |
| assert(!isInfinity(real.nan)); |
| assert(!isInfinity(-real.nan)); |
| assert(isInfinity(real.infinity)); |
| assert(isInfinity(-real.infinity)); |
| assert(isInfinity(-1.0L / 0.0L)); |
| |
| // Runtime tests |
| shared float f; |
| f = float.init; |
| assert(!isInfinity(f)); |
| assert(!isInfinity(-f)); |
| f = float.nan; |
| assert(!isInfinity(f)); |
| assert(!isInfinity(-f)); |
| f = float.infinity; |
| assert(isInfinity(f)); |
| assert(isInfinity(-f)); |
| f = (-1.0f / 0.0f); |
| assert(isInfinity(f)); |
| |
| shared double d; |
| d = double.init; |
| assert(!isInfinity(d)); |
| assert(!isInfinity(-d)); |
| d = double.nan; |
| assert(!isInfinity(d)); |
| assert(!isInfinity(-d)); |
| d = double.infinity; |
| assert(isInfinity(d)); |
| assert(isInfinity(-d)); |
| d = (-1.0 / 0.0); |
| assert(isInfinity(d)); |
| |
| shared real e; |
| e = real.init; |
| assert(!isInfinity(e)); |
| assert(!isInfinity(-e)); |
| e = real.nan; |
| assert(!isInfinity(e)); |
| assert(!isInfinity(-e)); |
| e = real.infinity; |
| assert(isInfinity(e)); |
| assert(isInfinity(-e)); |
| e = (-1.0L / 0.0L); |
| assert(isInfinity(e)); |
| } |
| |
| @nogc @safe pure nothrow unittest |
| { |
| import std.meta : AliasSeq; |
| static bool foo(T)(inout T x) { return isInfinity(x); } |
| foreach (T; AliasSeq!(float, double, real)) |
| { |
| assert(!foo(T(3.14f))); |
| assert(foo(T.infinity)); |
| } |
| } |
| |
| /********************************* |
| * Is the binary representation of x identical to y? |
| */ |
| bool isIdentical(real x, real y) @trusted pure nothrow @nogc |
| { |
| if (__ctfe) |
| { |
| if (x !is y) return false; |
| if (x == x) return true; // If not NaN `is` implies identical representation. |
| static if (double.mant_dig != real.mant_dig) |
| { |
| // Works because we are in CTFE and there is no way in CTFE to set more |
| // bits of NaN payload than can fit in a double, and since 2.087 |
| // changed real.init to be non-signaling I *think* there is no way in |
| // CTFE for a real to be a signaling NaN unless real and double have |
| // the same representation so real's bits can be manipulated directly. |
| double d1 = x, d2 = y; |
| } |
| else |
| { |
| // Alias to avoid converting signaling to quiet. |
| alias d1 = x; |
| alias d2 = y; |
| } |
| return *cast(long*) &d1 == *cast(long*) &d2; |
| } |
| // We're doing a bitwise comparison so the endianness is irrelevant. |
| long* pxs = cast(long *)&x; |
| long* pys = cast(long *)&y; |
| alias F = floatTraits!(real); |
| static if (F.realFormat == RealFormat.ieeeDouble) |
| { |
| return pxs[0] == pys[0]; |
| } |
| else static if (F.realFormat == RealFormat.ieeeQuadruple) |
| { |
| return pxs[0] == pys[0] && pxs[1] == pys[1]; |
| } |
| else static if (F.realFormat == RealFormat.ieeeExtended) |
| { |
| ushort* pxe = cast(ushort *)&x; |
| ushort* pye = cast(ushort *)&y; |
| return pxe[4] == pye[4] && pxs[0] == pys[0]; |
| } |
| else |
| { |
| assert(0, "isIdentical not implemented"); |
| } |
| } |
| /// |
| @safe @nogc pure nothrow unittest |
| { |
| // We're forcing the CTFE to run by assigning the result of the function to an enum |
| enum test1 = isIdentical(1.0,1.0); |
| enum test2 = isIdentical(real.nan,real.nan); |
| enum test3 = isIdentical(real.infinity, real.infinity); |
| enum test4 = isIdentical(real.infinity, real.infinity); |
| enum test5 = isIdentical(0.0, 0.0); |
| |
| assert(test1); |
| assert(test2); |
| assert(test3); |
| assert(test4); |
| assert(test5); |
| |
| enum test6 = !isIdentical(0.0, -0.0); |
| enum test7 = !isIdentical(real.nan, -real.nan); |
| enum test8 = !isIdentical(real.infinity, -real.infinity); |
| |
| assert(test6); |
| assert(test7); |
| assert(test8); |
| } |
| |
| @safe @nogc pure nothrow unittest |
| { |
| assert( !isIdentical(1.2,1.3)); |
| assert( isIdentical(0.0, 0.0)); |
| assert( isIdentical(1.0, 1.0)); |
| assert( isIdentical(real.infinity, real.infinity)); |
| assert( isIdentical(-real.infinity, -real.infinity)); |
| assert( isIdentical(real.nan, real.nan)); |
| |
| assert(!isIdentical(0.0, -0.0)); |
| assert(!isIdentical(real.nan, -real.nan)); |
| assert(!isIdentical(real.infinity, -real.infinity)); |
| } |
| /********************************* |
| * Return 1 if sign bit of e is set, 0 if not. |
| */ |
| int signbit(X)(X x) @nogc @trusted pure nothrow |
| { |
| import std.math.traits : floatTraits, RealFormat; |
| |
| if (__ctfe) |
| { |
| double dval = cast(double) x; // Precision can increase or decrease but sign won't change (even NaN). |
| return 0 > *cast(long*) &dval; |
| } |
| |
| alias F = floatTraits!(X); |
| return ((cast(ubyte *)&x)[F.SIGNPOS_BYTE] & 0x80) != 0; |
| } |
| |
| /// |
| @nogc @safe pure nothrow unittest |
| { |
| assert(!signbit(float.nan)); |
| assert(signbit(-float.nan)); |
| assert(!signbit(168.1234f)); |
| assert(signbit(-168.1234f)); |
| assert(!signbit(0.0f)); |
| assert(signbit(-0.0f)); |
| assert(signbit(-float.max)); |
| assert(!signbit(float.max)); |
| |
| assert(!signbit(double.nan)); |
| assert(signbit(-double.nan)); |
| assert(!signbit(168.1234)); |
| assert(signbit(-168.1234)); |
| assert(!signbit(0.0)); |
| assert(signbit(-0.0)); |
| assert(signbit(-double.max)); |
| assert(!signbit(double.max)); |
| |
| assert(!signbit(real.nan)); |
| assert(signbit(-real.nan)); |
| assert(!signbit(168.1234L)); |
| assert(signbit(-168.1234L)); |
| assert(!signbit(0.0L)); |
| assert(signbit(-0.0L)); |
| assert(signbit(-real.max)); |
| assert(!signbit(real.max)); |
| } |
| |
| @nogc @safe pure nothrow unittest |
| { |
| // CTFE |
| static assert(!signbit(float.nan)); |
| static assert(signbit(-float.nan)); |
| static assert(!signbit(168.1234f)); |
| static assert(signbit(-168.1234f)); |
| static assert(!signbit(0.0f)); |
| static assert(signbit(-0.0f)); |
| static assert(signbit(-float.max)); |
| static assert(!signbit(float.max)); |
| |
| static assert(!signbit(double.nan)); |
| static assert(signbit(-double.nan)); |
| static assert(!signbit(168.1234)); |
| static assert(signbit(-168.1234)); |
| static assert(!signbit(0.0)); |
| static assert(signbit(-0.0)); |
| static assert(signbit(-double.max)); |
| static assert(!signbit(double.max)); |
| |
| static assert(!signbit(real.nan)); |
| static assert(signbit(-real.nan)); |
| static assert(!signbit(168.1234L)); |
| static assert(signbit(-168.1234L)); |
| static assert(!signbit(0.0L)); |
| static assert(signbit(-0.0L)); |
| static assert(signbit(-real.max)); |
| static assert(!signbit(real.max)); |
| } |
| |
| /** |
| Params: |
| to = the numeric value to use |
| from = the sign value to use |
| Returns: |
| a value composed of to with from's sign bit. |
| */ |
| R copysign(R, X)(R to, X from) @trusted pure nothrow @nogc |
| if (isFloatingPoint!(R) && isFloatingPoint!(X)) |
| { |
| import std.math.traits : floatTraits, RealFormat; |
| |
| if (__ctfe) |
| { |
| return signbit(to) == signbit(from) ? to : -to; |
| } |
| ubyte* pto = cast(ubyte *)&to; |
| const ubyte* pfrom = cast(ubyte *)&from; |
| |
| alias T = floatTraits!(R); |
| alias F = floatTraits!(X); |
| pto[T.SIGNPOS_BYTE] &= 0x7F; |
| pto[T.SIGNPOS_BYTE] |= pfrom[F.SIGNPOS_BYTE] & 0x80; |
| return to; |
| } |
| |
| /// ditto |
| R copysign(R, X)(X to, R from) @trusted pure nothrow @nogc |
| if (isIntegral!(X) && isFloatingPoint!(R)) |
| { |
| return copysign(cast(R) to, from); |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert(copysign(1.0, 1.0) == 1.0); |
| assert(copysign(1.0, -0.0) == -1.0); |
| assert(copysign(1UL, -1.0) == -1.0); |
| assert(copysign(-1.0, -1.0) == -1.0); |
| |
| assert(copysign(real.infinity, -1.0) == -real.infinity); |
| assert(copysign(real.nan, 1.0) is real.nan); |
| assert(copysign(-real.nan, 1.0) is real.nan); |
| assert(copysign(real.nan, -1.0) is -real.nan); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| import std.meta : AliasSeq; |
| |
| static foreach (X; AliasSeq!(float, double, real, int, long)) |
| { |
| static foreach (Y; AliasSeq!(float, double, real)) |
| {{ |
| X x = 21; |
| Y y = 23.8; |
| Y e = void; |
| |
| e = copysign(x, y); |
| assert(e == 21.0); |
| |
| e = copysign(-x, y); |
| assert(e == 21.0); |
| |
| e = copysign(x, -y); |
| assert(e == -21.0); |
| |
| e = copysign(-x, -y); |
| assert(e == -21.0); |
| |
| static if (isFloatingPoint!X) |
| { |
| e = copysign(X.nan, y); |
| assert(isNaN(e) && !signbit(e)); |
| |
| e = copysign(X.nan, -y); |
| assert(isNaN(e) && signbit(e)); |
| } |
| }} |
| } |
| // CTFE |
| static foreach (X; AliasSeq!(float, double, real, int, long)) |
| { |
| static foreach (Y; AliasSeq!(float, double, real)) |
| {{ |
| enum X x = 21; |
| enum Y y = 23.8; |
| |
| assert(21.0 == copysign(x, y)); |
| assert(21.0 == copysign(-x, y)); |
| assert(-21.0 == copysign(x, -y)); |
| assert(-21.0 == copysign(-x, -y)); |
| |
| static if (isFloatingPoint!X) |
| { |
| static assert(isNaN(copysign(X.nan, y)) && !signbit(copysign(X.nan, y))); |
| assert(isNaN(copysign(X.nan, -y)) && signbit(copysign(X.nan, -y))); |
| } |
| }} |
| } |
| } |
| |
| /********************************* |
| Returns `-1` if $(D x < 0), `x` if $(D x == 0), `1` if |
| $(D x > 0), and $(NAN) if x==$(NAN). |
| */ |
| F sgn(F)(F x) @safe pure nothrow @nogc |
| if (isFloatingPoint!F || isIntegral!F) |
| { |
| // @@@TODO@@@: make this faster |
| return x > 0 ? 1 : x < 0 ? -1 : x; |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert(sgn(168.1234) == 1); |
| assert(sgn(-168.1234) == -1); |
| assert(sgn(0.0) == 0); |
| assert(sgn(-0.0) == 0); |
| } |
| |
| /** |
| Check whether a number is an integer power of two. |
| |
| Note that only positive numbers can be integer powers of two. This |
| function always return `false` if `x` is negative or zero. |
| |
| Params: |
| x = the number to test |
| |
| Returns: |
| `true` if `x` is an integer power of two. |
| */ |
| bool isPowerOf2(X)(const X x) pure @safe nothrow @nogc |
| if (isNumeric!X) |
| { |
| import std.math.exponential : frexp; |
| |
| static if (isFloatingPoint!X) |
| { |
| int exp; |
| const X sig = frexp(x, exp); |
| |
| return (exp != int.min) && (sig is cast(X) 0.5L); |
| } |
| else |
| { |
| static if (isSigned!X) |
| { |
| auto y = cast(typeof(x + 0))x; |
| return y > 0 && !(y & (y - 1)); |
| } |
| else |
| { |
| auto y = cast(typeof(x + 0u))x; |
| return (y & -y) > (y - 1); |
| } |
| } |
| } |
| /// |
| @safe unittest |
| { |
| import std.math.exponential : pow; |
| |
| assert( isPowerOf2(1.0L)); |
| assert( isPowerOf2(2.0L)); |
| assert( isPowerOf2(0.5L)); |
| assert( isPowerOf2(pow(2.0L, 96))); |
| assert( isPowerOf2(pow(2.0L, -77))); |
| |
| assert(!isPowerOf2(-2.0L)); |
| assert(!isPowerOf2(-0.5L)); |
| assert(!isPowerOf2(0.0L)); |
| assert(!isPowerOf2(4.315)); |
| assert(!isPowerOf2(1.0L / 3.0L)); |
| |
| assert(!isPowerOf2(real.nan)); |
| assert(!isPowerOf2(real.infinity)); |
| } |
| /// |
| @safe unittest |
| { |
| assert( isPowerOf2(1)); |
| assert( isPowerOf2(2)); |
| assert( isPowerOf2(1uL << 63)); |
| |
| assert(!isPowerOf2(-4)); |
| assert(!isPowerOf2(0)); |
| assert(!isPowerOf2(1337u)); |
| } |
| |
| @safe unittest |
| { |
| import std.math.exponential : pow; |
| import std.meta : AliasSeq; |
| |
| enum smallP2 = pow(2.0L, -62); |
| enum bigP2 = pow(2.0L, 50); |
| enum smallP7 = pow(7.0L, -35); |
| enum bigP7 = pow(7.0L, 30); |
| |
| static foreach (X; AliasSeq!(float, double, real)) |
| {{ |
| immutable min_sub = X.min_normal * X.epsilon; |
| |
| foreach (x; [smallP2, min_sub, X.min_normal, .25L, 0.5L, 1.0L, |
| 2.0L, 8.0L, pow(2.0L, X.max_exp - 1), bigP2]) |
| { |
| assert( isPowerOf2(cast(X) x)); |
| assert(!isPowerOf2(cast(X)-x)); |
| } |
| |
| foreach (x; [0.0L, 3 * min_sub, smallP7, 0.1L, 1337.0L, bigP7, X.max, real.nan, real.infinity]) |
| { |
| assert(!isPowerOf2(cast(X) x)); |
| assert(!isPowerOf2(cast(X)-x)); |
| } |
| }} |
| |
| static foreach (X; AliasSeq!(byte, ubyte, short, ushort, int, uint, long, ulong)) |
| {{ |
| foreach (x; [1, 2, 4, 8, (X.max >>> 1) + 1]) |
| { |
| assert( isPowerOf2(cast(X) x)); |
| static if (isSigned!X) |
| assert(!isPowerOf2(cast(X)-x)); |
| } |
| |
| foreach (x; [0, 3, 5, 13, 77, X.min, X.max]) |
| assert(!isPowerOf2(cast(X) x)); |
| }} |
| |
| // CTFE |
| static foreach (X; AliasSeq!(float, double, real)) |
| {{ |
| enum min_sub = X.min_normal * X.epsilon; |
| |
| static foreach (x; [smallP2, min_sub, X.min_normal, .25L, 0.5L, 1.0L, |
| 2.0L, 8.0L, pow(2.0L, X.max_exp - 1), bigP2]) |
| { |
| static assert( isPowerOf2(cast(X) x)); |
| static assert(!isPowerOf2(cast(X)-x)); |
| } |
| |
| static foreach (x; [0.0L, 3 * min_sub, smallP7, 0.1L, 1337.0L, bigP7, X.max, real.nan, real.infinity]) |
| { |
| static assert(!isPowerOf2(cast(X) x)); |
| static assert(!isPowerOf2(cast(X)-x)); |
| } |
| }} |
| |
| static foreach (X; AliasSeq!(byte, ubyte, short, ushort, int, uint, long, ulong)) |
| {{ |
| static foreach (x; [1, 2, 4, 8, (X.max >>> 1) + 1]) |
| { |
| static assert( isPowerOf2(cast(X) x)); |
| static if (isSigned!X) |
| static assert(!isPowerOf2(cast(X)-x)); |
| } |
| |
| static foreach (x; [0, 3, 5, 13, 77, X.min, X.max]) |
| static assert(!isPowerOf2(cast(X) x)); |
| }} |
| } |
| |
| // Underlying format exposed through floatTraits |
| enum RealFormat |
| { |
| ieeeHalf, |
| ieeeSingle, |
| ieeeDouble, |
| ieeeExtended, // x87 80-bit real |
| ieeeExtended53, // x87 real rounded to precision of double. |
| ibmExtended, // IBM 128-bit extended |
| ieeeQuadruple, |
| } |
| |
| // Constants used for extracting the components of the representation. |
| // They supplement the built-in floating point properties. |
| template floatTraits(T) |
| { |
| import std.traits : Unqual; |
| |
| // EXPMASK is a ushort mask to select the exponent portion (without sign) |
| // EXPSHIFT is the number of bits the exponent is left-shifted by in its ushort |
| // EXPBIAS is the exponent bias - 1 (exp == EXPBIAS yields ×2^-1). |
| // EXPPOS_SHORT is the index of the exponent when represented as a ushort array. |
| // SIGNPOS_BYTE is the index of the sign when represented as a ubyte array. |
| // RECIP_EPSILON is the value such that (smallest_subnormal) * RECIP_EPSILON == T.min_normal |
| enum Unqual!T RECIP_EPSILON = (1/T.epsilon); |
| static if (T.mant_dig == 24) |
| { |
| // Single precision float |
| enum ushort EXPMASK = 0x7F80; |
| enum ushort EXPSHIFT = 7; |
| enum ushort EXPBIAS = 0x3F00; |
| enum uint EXPMASK_INT = 0x7F80_0000; |
| enum uint MANTISSAMASK_INT = 0x007F_FFFF; |
| enum realFormat = RealFormat.ieeeSingle; |
| version (LittleEndian) |
| { |
| enum EXPPOS_SHORT = 1; |
| enum SIGNPOS_BYTE = 3; |
| } |
| else |
| { |
| enum EXPPOS_SHORT = 0; |
| enum SIGNPOS_BYTE = 0; |
| } |
| } |
| else static if (T.mant_dig == 53) |
| { |
| static if (T.sizeof == 8) |
| { |
| // Double precision float, or real == double |
| enum ushort EXPMASK = 0x7FF0; |
| enum ushort EXPSHIFT = 4; |
| enum ushort EXPBIAS = 0x3FE0; |
| enum uint EXPMASK_INT = 0x7FF0_0000; |
| enum uint MANTISSAMASK_INT = 0x000F_FFFF; // for the MSB only |
| enum ulong MANTISSAMASK_LONG = 0x000F_FFFF_FFFF_FFFF; |
| enum realFormat = RealFormat.ieeeDouble; |
| version (LittleEndian) |
| { |
| enum EXPPOS_SHORT = 3; |
| enum SIGNPOS_BYTE = 7; |
| } |
| else |
| { |
| enum EXPPOS_SHORT = 0; |
| enum SIGNPOS_BYTE = 0; |
| } |
| } |
| else static if (T.sizeof == 12) |
| { |
| // Intel extended real80 rounded to double |
| enum ushort EXPMASK = 0x7FFF; |
| enum ushort EXPSHIFT = 0; |
| enum ushort EXPBIAS = 0x3FFE; |
| enum realFormat = RealFormat.ieeeExtended53; |
| version (LittleEndian) |
| { |
| enum EXPPOS_SHORT = 4; |
| enum SIGNPOS_BYTE = 9; |
| } |
| else |
| { |
| enum EXPPOS_SHORT = 0; |
| enum SIGNPOS_BYTE = 0; |
| } |
| } |
| else |
| static assert(false, "No traits support for " ~ T.stringof); |
| } |
| else static if (T.mant_dig == 64) |
| { |
| // Intel extended real80 |
| enum ushort EXPMASK = 0x7FFF; |
| enum ushort EXPSHIFT = 0; |
| enum ushort EXPBIAS = 0x3FFE; |
| enum realFormat = RealFormat.ieeeExtended; |
| version (LittleEndian) |
| { |
| enum EXPPOS_SHORT = 4; |
| enum SIGNPOS_BYTE = 9; |
| } |
| else |
| { |
| enum EXPPOS_SHORT = 0; |
| enum SIGNPOS_BYTE = 0; |
| } |
| } |
| else static if (T.mant_dig == 113) |
| { |
| // Quadruple precision float |
| enum ushort EXPMASK = 0x7FFF; |
| enum ushort EXPSHIFT = 0; |
| enum ushort EXPBIAS = 0x3FFE; |
| enum realFormat = RealFormat.ieeeQuadruple; |
| version (LittleEndian) |
| { |
| enum EXPPOS_SHORT = 7; |
| enum SIGNPOS_BYTE = 15; |
| } |
| else |
| { |
| enum EXPPOS_SHORT = 0; |
| enum SIGNPOS_BYTE = 0; |
| } |
| } |
| else static if (T.mant_dig == 106) |
| { |
| // IBM Extended doubledouble |
| enum ushort EXPMASK = 0x7FF0; |
| enum ushort EXPSHIFT = 4; |
| enum realFormat = RealFormat.ibmExtended; |
| |
| // For IBM doubledouble the larger magnitude double comes first. |
| // It's really a double[2] and arrays don't index differently |
| // between little and big-endian targets. |
| enum DOUBLEPAIR_MSB = 0; |
| enum DOUBLEPAIR_LSB = 1; |
| |
| // The exponent/sign byte is for most significant part. |
| version (LittleEndian) |
| { |
| enum EXPPOS_SHORT = 3; |
| enum SIGNPOS_BYTE = 7; |
| } |
| else |
| { |
| enum EXPPOS_SHORT = 0; |
| enum SIGNPOS_BYTE = 0; |
| } |
| } |
| else |
| static assert(false, "No traits support for " ~ T.stringof); |
| } |
| |
| // These apply to all floating-point types |
| version (LittleEndian) |
| { |
| enum MANTISSA_LSB = 0; |
| enum MANTISSA_MSB = 1; |
| } |
| else |
| { |
| enum MANTISSA_LSB = 1; |
| enum MANTISSA_MSB = 0; |
| } |